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Today: Lab Exercise

• Bundle Adjustment

• Q&A session on mini-projects and VO integration
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Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

Local optimization



𝑛-View Structure From Motion

• Compute initial structure and motion using either:
• Hierarchical SFM

• Sequential SFM → Visual Odometry (VO)

• Refine simultaneously structure and motion through BA
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Hierarchical SFM applied to random internet images

• Reconstruction from 150,000 images from Flickr associated with the tags “Rome”

• 4 million 3D points. Cloud of 496 computers. 21 hours of computation!
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Agarwal, Snavely, Simon, Seitz, Szeliski, Building Rome in a Day, International Conference on Computer Vision (ICCV), 2009. PDF, code, datasets
Most influential paper of 2009

State of the art software: COLMAP: 
Schoenberger, Frahm,  Structure-from-Motion Revisited, Conf. on Computer Vision and Pattern Recognition (CVPR), 2016

https://grail.cs.washington.edu/rome/
https://colmap.github.io/


Hierarchical SFM

1. Extract and match features between nearby frames

2. Build clusters consisting of 2 nearby frames
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…



Hierarchical SFM

1. Extract and match features between nearby frames

2. Build clusters consisting of 2 nearby frames

3. Extract topological tree (e.g., count number of SIFT matches)

4. Start from the terminal nodes
1. Compute 2-view SFM and build 3D model (point cloud)

5. Iterate according to tree structure:
1. Merge new view by running 3-point RANSAC 

between 3D model and 3rd view

2. Merge near-by models by running 
again 3-point RANSAC between one 3D model 
and one view of the other 3D model

3. Bundle adjust
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The circle ○ corresponds to the creation of a stereo-
model, the triangle △ corresponds to applying PNP, the 

diamond ⋄ corresponds to a fusion of two partial 
independent models. …



COLMAP

• COLMAP has become the gold standard SFM unordered and ordered image set

• It can be used for ground truth of VO/VSLAM algorithms

• COLMAP poses and 3D points are even used to initialize dense mapping methods, such as Nerf and Gaussian Spatting

• Extensions of COLMAP integrating learned-based features or other sensor modalities (IMU, GPS, …) exist
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[1] Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng, NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV’20 

[2] Kerbl, Kopanas, Leimkühler, Drettakis, 3D Gaussian Splatting for Real-Time Radiance Field Rendering, SIGGRAPH’23

[3] Sarlin, Cadena, Siegwart, Dymczyk, From Coarse to Fine: Robust Hierarchical Localization at Large Scale, CVPR’19

[4] Cioffi, Cieslewski, Scaramuzza, Continuous-time vs. Discrete-time vision-based SLAM: A comparative study, RA-L’22

Camera poses are depicted in red

Schoenberger, Frahm,  Structure-from-Motion Revisited, Conf. on Computer Vision and Pattern Recognition (CVPR), 2016. PDF, Code

https://demuc.de/papers/schoenberger2016sfm.pdf
https://colmap.github.io/


𝑛-View Structure From Motion

• Compute initial structure and motion using either:
• Hierarchical SFM

• Sequential SFM → Visual Odometry (VO)

• Refine simultaneously structure and motion through BA
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Sequential SFM (also called Visual Odometry (VO))

• Initialize structure and motion from 2 views (bootstrapping)

• For each additional view
• Determine pose (localization)

• Extend structure, i.e., extract and triangulate new features (mapping)

• Refine structure and motion through Bundle Adjustment (BA) (optimization)
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VO Flow Chart: review (Lecture 01)

VO computes the camera path incrementally (pose after pose)
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Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

Local optimization

Front-end: outputs the relative pose between the last two frames

Back-end: “adjusts” the relative poses among multiple recent frames



Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

Local optimization

VO Flow Chart: review (Lecture 01)

VO computes the camera path incrementally (pose after pose)
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Features tracked over multiple recent frames 
overlaid on the last frame



Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

Local optimization

VO Flow Chart: review (Lecture 01)

VO computes the camera path incrementally (pose after pose)
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2D-2D 3D-2D 3D-3D

Ck-1

Ck

Ck+1
𝑅𝑘,𝑘+1, 𝑇𝑘,𝑘+1

𝑅𝑘−1,𝑘 , 𝑇𝑘−1,𝑘



Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

Local optimization

VO Flow Chart: review (Lecture 01)

VO computes the camera path incrementally (pose after pose)

13

𝑃𝑖 , 𝐶2, … , 𝐶𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑃𝑖,𝐶2,…,𝐶𝑘
෍

𝑘=1

𝑛

෍

𝑖=1

𝑁

 𝑝𝑘
𝑖 − 𝜋 𝑃𝑖 , 𝐾𝑘 , 𝐶𝑘
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Example: Bundle Adjustment:

Or Pose-Graph Optimization (see later)



Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

Local optimization

VO Flow Chart: review (Lecture 01)

VO computes the camera path incrementally (pose after pose)
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Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

Local optimization

VO Flow Chart: review (Lecture 01)

VO computes the camera path incrementally (pose after pose)
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2D-to-2D (already seen: Lecture 08)

Motion from 2D-to-2D feature correspondences 

• Both feature correspondences 𝑓𝑘−1 and 𝑓𝑘 are specified in image coordinates (2D)

• The minimal-case solution involves 5 feature correspondences

• Popular algorithms: 

• 8-point algorithm (NB: works only for non-coplanar points [slide 19 of Lecture 08]) 

• 5-point algorithm (works with any point configuration)
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Motion estimation

2D-2D 3D-2D 3D-3D

𝐶𝑘−1
𝐶𝑘

𝑅𝑘−1,𝑘 , 𝑇𝑘−1,𝑘



3D-to-2D (already seen: Lecture 03)

Motion from 3D-to-2D feature correspondences (i.e., Perspective from 𝑛 Points: PnP problem)

• 𝑓𝑘−1 is specified in 3D and 𝑓𝑘 in 2D

• Minimal case: 

• DLT algorithm: minimal case: 6 points from 3D objects, or 4 from planar objects

• P3P algorithm: minimal case: 3 points (+1 for disambiguation)

• EPNP algorithm: for more than 4 points
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Motion estimation

2D-2D 3D-2D 3D-3D

𝑅𝑘−1,𝑘 , 𝑇𝑘−1,𝑘

𝑓𝑘−1

𝑓𝑘



3D-to-3D

• Motion from 3D-to-3D feature correspondences (also known as point cloud registration problem)

• Both 𝑓𝑘−1 and 𝑓𝑘 are specified in 3D. To do this, it is necessary to first triangulate 3D points (e.g. use a 
stereo camera)

• The minimal-case solution involves 3 non-collinear correspondences

• Popular algorithm: [Arun’87]

• Consists of solving the following system of equations with R and T as unknowns:

where 𝑖 is the feature ID.
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Motion estimation

2D-2D 3D-2D 3D-3D

Arun, Huang, Blostein, “Least-Squares Fitting of Two 3-D Point Sets,” Transactions on Pattern Analysis and Machine Intelligence (PAMI), 1987. PDF
Yang, Shi, Carlone, "TEASER: Fast and Certifiable Point Cloud Registration,“ Transactions on Robotics, 2020. Paper. Code.

𝑅𝑘−1,𝑘 , 𝑇𝑘−1,𝑘
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https://www.ece.queensu.ca/people/S-D-Blostein/papers/PAMI-3DLS-1987.pdf
https://arxiv.org/pdf/2001.07715.pdf
https://github.com/MIT-SPARK/TEASER-plusplus/tree/master


3D-to-3D

• Motion from 3D-to-3D feature correspondences (also known as point cloud registration problem)

• Both 𝑓𝑘−1 and 𝑓𝑘 are specified in 3D. To do this, it is necessary to first triangulate 3D points (e.g. use a 
stereo camera)

• The minimal-case solution involves 3 non-collinear correspondences

• Popular algorithm: [Arun’87]

• Consists of solving the following system of equations with R and T as unknowns:

where 𝑖 is the feature ID.
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Motion estimation

2D-2D 3D-2D 3D-3D

Arun, Huang, Blostein, “Least-Squares Fitting of Two 3-D Point Sets,” Transactions on Pattern Analysis and Machine Intelligence (PAMI), 1987. PDF
Yang, Shi, Carlone, "TEASER: Fast and Certifiable Point Cloud Registration,“ Transactions on Robotics, 2020. Paper. Code.
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Motion Estimation: Recap

20

Type of correspondences Monocular Stereo

2D-2D X

3D-2D X X

3D-3D X

Which one provides higher accuracy for Stereo VO, 3D-2D or 3D-3D?



Case Study: Monocular VO (i.e., single camera VO)

This pipeline was initially proposed in PTAM (Parallel Tracking & Mapping) [Klein, ISMAR’07]

21

Keyframe 1 Keyframe 2

Initial pointcloud New triangulated points

Current frame
New keyframe

Klein, Murray, Parallel Tracking and Mapping for Small AR Workspaces, International Symposium on Mixed and Augmented Reality (ISMAR), 2007.
PDF, code, videos. Best paper award

http://www.robots.ox.ac.uk/~gk/PTAM/


Case Study: Monocular VO (i.e., single camera VO)

1. Bootstrapping (i.e., initialization)

• Initialize structure and motion from 2 views: e.g., 5- or 8-point RANSAC

• Refine structure and motion (Bundle Adjustment)

• How far should the two frames (i.e., keyframes) be?

22

Keyframe 1 Keyframe 2

Initial pointcloud

Motion estimation

2D-2D 3D-2D 3D-3D



Case Study: Monocular VO (i.e., single camera VO)

2. Keyframe selection (i.e., skipping frames)

• When frames are taken at nearby positions compared to the scene distance, 3D points will exibit large 
uncertainty

23
Small baseline → large depth uncertainty Large baseline → small depth uncertainty



Case Study: Monocular VO (i.e., single camera VO)

2. Keyframe selection (i.e., skipping frames)

• When frames are taken at nearby positions compared to the scene distance, 3D points will exibit large 
uncertainty

• One way to avoid this consists of skipping frames until the average uncertainty of the 3D points, normalized 
by the average distance from the scene, falls below a certain threshold. The selected frames are called 
keyframes

• Rule of the thumb: add a keyframe when 

24

. . . 

average-depth

keyframe distance
> threshold (usually 10-20 %)

• Where does this come from?
• What about pure rotations?



Case Study: Monocular VO (i.e., single camera VO)

3. Localization (i.e., pose estimation from a given point cloud)

• Given a 3D point cloud (map), determine the pose of each additional view

• What algorithm is used?

• How far from the last keyframe can we use it for?

25

Keyframe 1 Keyframe 2

Initial pointcloud

Current frame

Motion estimation

2D-2D 3D-2D 3D-3D



Case Study: Monocular VO (i.e., single camera VO)

3. Localization (i.e., pose estimation from a given point cloud)

• Given a 3D point cloud (map), determine the pose of each additional view

26Video of Oculus Insight (the VIO used in Oculus Quest): built by former Zurich-Eye team, today Meta Zurich. 

Motion estimation

2D-2D 3D-2D 3D-3D

https://www.youtube.com/watch?v=nrj3JE-NHMw
https://www.blick.ch/news/wirtschaft/virtual-reality-facebook-kauft-10-forscher-der-eth-zuerich-id5733517.html


Case Study: Monocular VO (i.e., single camera VO)

4. Extend Structure (i.e., mapping)

• Extract and triangulate new features

• Is it necessary to do this at every frame or can we just do it at keyframes?

• What are the pros and cons?

• What about pure rotations? 

27

Keyframe 1 Keyframe 2

Initial pointcloud New triangulated points

New keyframe



VO: putting all pieces together

• Let the relative motion between image 𝐼𝑘−1 and image 𝐼𝑘 be:   𝑡𝑘−1,𝑘 =
𝑅𝑘−1,𝑘 𝑇𝑘−1,𝑘

0 1

• Let 𝐶𝑘−1 be the previous camera pose in the world reference frame

• Then, the current pose 𝑪𝒌 in the world frame is given by:   𝐶𝑘 = 𝐶𝑘−1𝑡𝑘−1,𝑘

28

time

...

𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏

𝒕𝟎,𝟏 𝒕𝟏,𝟐 𝒕𝟐,𝟑
𝒕𝒏−𝟏,𝒏

Ck-1

Ck

Ck+1

Rk,k+1,k , Tk,k+1

Rk-1,k , Tk-1,k 𝑊



Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

Local optimization

Local Optimization

VO flowchart:
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time

Sliding-window bundle adjustment
or Pose-Graph Optimization (see next slide)

...

𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏

𝒕𝟎,𝟏 𝒕𝟏,𝟐 𝒕𝟐,𝟑
𝒕𝒏−𝟏,𝒏



Pose-Graph Optimization

g2o GTSAM SLAM++ Google Ceres

• So far we assumed that the transformations are between consecutive frames

• However, transformations can also be computed between non-adjacent frames: 𝒕𝒋,𝒊 (e.g., when features 
from previous keyframes are still observed). They can be used as additional constraints to improve camera 
poses by solving:

• For efficiency, only the last 𝑚 keyframes are used (Sliding-Window Pose Graph Optimization)

• Gauss-Newton or Levenberg-Marquadt are typically used to minimize it. For large graphs, efficient open-
source tools exist: g2o, GTSAM, SLAM++, Google Ceres
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{𝐶1, … , 𝐶𝑛} = 𝑎𝑟𝑔𝑚𝑖𝑛{𝐶1,…,𝐶𝑛}, σ𝑖 σ𝑗 𝐶𝑖 − 𝐶𝑗𝑡𝑗,𝑖
2

...

𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏

𝒕𝟎,𝟏 𝒕𝟏,𝟐 𝒕𝟐,𝟑
𝒕𝒏−𝟏,𝒏

𝒕𝟎,𝟐
𝒕𝟎,𝟑 𝒕𝟐,𝒏−𝟏

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjPvtCoqYjYAhWEmBoKHVP-BjMQFggoMAA&url=https://github.com/RainerKuemmerle/g2o&usg=AOvVaw3y-4PBhdQSQuCxLfEjdyTi
https://gtsam.org/
https://sourceforge.net/p/slam-plus-plus/wiki/Home/
http://ceres-solver.org/


Bundle Adjustment (BA)

g2o GTSAM SLAM++ Google Ceres

• Similar to pose-graph optimization but it also optimizes 3D points:

• 𝜌() is the Huber or Tukey norm

• Gauss-Newton or Levenberg-Marquadt are typically used to minimize it. For large graphs, efficient open-
source tools exist: g2o, GTSAM, SLAM++, Google Ceres
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...

𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏

𝒕𝟎,𝟏 𝒕𝟏,𝟐 𝒕𝟐,𝟑

𝒕𝟎,𝟐
𝒕𝟎,𝟑 𝒕𝟐,𝒏−𝟏

𝑃𝑖 , 𝐶1, … , 𝐶𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑃𝑖,𝐶1,…,𝐶𝑛, ෍

𝑘=1

𝑛

෍

𝑖=1

𝑁

𝜌 𝑝𝑘
𝑖 − 𝜋 𝑃𝑖 , 𝐾𝑘 , 𝐶𝑘

𝒕𝒏−𝟏,𝒏

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjPvtCoqYjYAhWEmBoKHVP-BjMQFggoMAA&url=https://github.com/RainerKuemmerle/g2o&usg=AOvVaw3y-4PBhdQSQuCxLfEjdyTi
https://gtsam.org/
https://sourceforge.net/p/slam-plus-plus/wiki/Home/
http://ceres-solver.org/


Bundle Adjustment vs Pose-graph Optimization

• BA is more precise than pose-graph optimization because it adds additional constraints (landmark 
constraints)

• But more costly: 𝑂 𝑞𝑁 + 𝑙𝑚 3 with 𝑁 being the number of points, 𝑚 the number of cameras poses and 
𝑞 and 𝑙 the number of parameters for points and camera poses. Workarounds: 

• Sliding-window BA: A small window size limits the number of parameters for the optimization and thus makes 
real-time bundle adjustment possible. 

• Motion-only BA: It is possible to reduce the computational complexity by just optimizing over the camera 
parameters and keeping the 3-D landmarks fixed

32

More efficient BA algoritms have recently been developed:
[1] Demmel, Schubert, Sommer, Cremers, Usenko, Square Root Marginalization for Sliding-Window Bundle Adjustment, IEEE International Conference on 
Computer Vision (ICCV), 2021. Paper, Video, Code.
[2] Demmel, Sommer, Cremers, Usenko, Square Root Bundle Adjustment for Large-Scale Reconstruction, IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR), 2021. Paper, Video, Code.

https://vision.in.tum.de/research/vslam/rootba
https://vision.in.tum.de/research/vslam/rootba


Place Recognition

During VO, two problems can occur:

• Relocalization problem: camera pose estimation can fail due to:
1. Feature tracking can be lost (due to occlusions, low texture, quick motion, illumination change)

2. In case of monocular VO: pure rotation followed by translation (why?)

→ Solution: Re-localize camera pose and continue or use other sensors (more cameras or inertial sensors)

• Loop closing problem

• When you go back to a previously mapped area:

• Loop closure detection: to avoid map duplication

• Loop correction (or loop closing): to compensate the accumulated drift

• In both cases you need a place recognition technique

33

We will address place recognition in Lecture 12



VO vs. Visual SLAM (recap from Lecture 01)

• Visual Odometry

• Focuses on incremental motion estimation

• Guarantees local consistency (i.e., estimated trajectory 
is locally correct, but not globally, i.e. from the start to the end)

• Visual SLAM (Simultaneous Localization And Mapping)

• SLAM = visual odometry + loop detection & loop closing

• Guarantees global consistency (the estimated trajectory is 
globally correct, i.e. from the start to the end)

34

Visual SLAM

Image courtesy of [Clemente et al., RSS’07]

Visual odometry



Open Source Monocular VO and SLAM algorithms

• PTAM

• ORB-SLAM

• SVO

• LSD-SLAM

• DSO

35

Indirect methods: Minimize the feature reprojection error

Direct methods: Minimize the feature photometric error



PTAM: Parallel Tracking and Mapping

• Monocular only

• Feature based
• FAST corners + patch descriptors

• Minimizes reprojection error

• Jointly optimizes poses  & structure (sliding window BA)

• First to propose keyframe-based VO

• First to propose localization (i.e., camera tracking) and 
mapping running in two independent threads: updated map 
is used by localization thread asynchronously, as soon as it 
becomes available

• Includes:
• Relocalization only in a small neighborhood 

• No global optimization, only local

• Real-time (30Hz), however global optimization is not done in 
real time but asynchronously every once in a while

36
Klein, Murray, Parallel Tracking and Mapping for Small AR Workspaces, International Symposium on Mixed and Augmented Reality (ISMAR), 2007.

PDF, code, videos. Best paper award

http://www.robots.ox.ac.uk/~gk/PTAM/
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• Monocular only
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• Minimizes reprojection error

• Jointly optimizes poses  & structure (sliding window BA)

• First to propose keyframe-based VO

• First to propose localization (i.e., camera tracking) and 
mapping running in two independent threads: updated map 
is used by localization thread asynchronously, as soon as it 
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• Relocalization only in a small neighborhood 

• No global optimization, only local

• Real-time (30Hz), however global optimization is not done in 
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37
Klein, Murray, Parallel Tracking and Mapping for Small AR Workspaces, International Symposium on Mixed and Augmented Reality (ISMAR), 2007.

PDF, code, videos. Best paper award

http://www.robots.ox.ac.uk/~gk/PTAM/


ORB-SLAM

• Supports both monocular and stereo cameras

• Feature based
• FAST corners + ORB descriptors (recall: ORB is a binary descriptor, thus 

very fast to compute and match (Hamming distance))

• Minimizes reprojection error

• Jointly optimizes poses  & structure (sliding window BA)

• Same workflow as PTAM (keyframe based, parallel 
localization and mapping as independent threads)

• Includes:
• Relocalization

• Final optimization

• Real-time (30Hz), however global optimization is not done in 
real time but asynchronously every once in a while

38
Mur-Artal, Montiel, Tardos, ORB-SLAM: Large-scale Feature-based SLAM, IEEE Transactions on Robotics (T-RO), 2015. PDF, code, videos.

http://webdiis.unizar.es/~raulmur/orbslam/


Indirect vs Direct Methods

• Indirect methods
1. Extract & match features + 3-point RANSAC

2. Bundle Adjust by minimizing the Reprojection Error:

• Direct methods
1. No feature extraction, no matching, no RANSAC needed

Instead, directly minimize Photometric Error:

39

𝑃𝑖 , 𝑅, 𝑇 = arg min
𝑃𝑖,𝑅,𝑇

෍

𝑖=1

𝑁

ρ 𝑝𝑘
𝑖 − 𝜋 𝑃𝑖 , 𝐾, 𝑅, 𝑇  

𝑅, 𝑇 = ?

𝑃𝑖

𝑝𝑘
𝑖

𝑝𝑘−1
𝑖

𝑃𝑖 , 𝑅, 𝑇 = arg min
𝑃𝑖,𝑅,𝑇
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ρ 𝐼𝑘−1 𝑝𝑘−1
𝑖 − 𝐼𝑘 𝜋 𝑃𝑖 , 𝐾, 𝑅, 𝑇  

𝑅, 𝑇 = ?

𝐼𝑘
𝒖′𝑖

𝑃𝑖

𝒖𝑖

𝐼𝑘−1

Irani, Anandau, All about direct methods, Springer’99. PDF

What are their pros and cons?

http://pages.cs.wisc.edu/~dyer/ai-qual/irani-visalg00.pdf


Indirect vs Direct Methods

• Indirect methods
1. Extract & match features + 3-point RANSAC

2. Bundle Adjust by minimizing the Reprojection Error:

• Direct methods
1. No feature extraction, no matching, no RANSAC needed

Instead, directly minimize Photometric Error:
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𝑃𝑖 , 𝑅, 𝑇 = arg min
𝑃𝑖,𝑅,𝑇

෍

𝑖=1

𝑁

ρ 𝑝𝑘
𝑖 − 𝜋 𝑃𝑖 , 𝐾, 𝑅, 𝑇  

𝑃𝑖 , 𝑅, 𝑇 = arg min
𝑃𝑖,𝑅,𝑇

෍

𝑖=1

𝑁

ρ 𝐼𝑘−1 𝑝𝑘−1
𝑖 − 𝐼𝑘 𝜋 𝑃𝑖 , 𝐾, 𝑅, 𝑇  

Irani, Anandau, All about direct methods, Springer’99. PDF

✓ Can cope with large frame-to-frame motions (large basin 
of convergence)

 Slow due to costly feature extraction, matching, and 
outlier removal (e.g., RANSAC)

✓ All image pixels can in prnciple be used (higher accuracy, 
higher robustness to motion blur and weak texture (i.e., 
weak gradients))

✓ Increasing the camera frame-rate reduces computational 
cost per frame (no RANSAC needed)

 Very sensitive to intial value → limited frame-to-frame 
motion (small basin of convergence)

http://pages.cs.wisc.edu/~dyer/ai-qual/irani-visalg00.pdf


Direct Methods: Dense, Semi-dense, Sparse

41

In a VGA image: 300’000+ pixels In a VGA image: ~10,000 pixels

Dense methods
track every pixel

Semi-Dense methods
track only edges

Sparse methods
track sparse pixels

Forster, Zhang, Gassner, Werlberger, Scaramuzza, SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, 
IEEE Transactions on Robotics (T-RO), 2017. PDF.]

In a VGA image: ~2,000 pixels

http://rpg.ifi.uzh.ch/docs/TRO17_Forster-SVO.pdf


Direct Methods: Dense, Semi-dense, Sparse
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Dense methods
track every pixel

Semi-Dense methods
track only edges

Sparse methods
track sparse pixels

In a VGA image: 300’000+ pixels

DTAM [Newcombe ‘11], REMODE [Pizzoli’14]

In a VGA image: ~10,000 pixels

LSD-SLAM  [Engel’14]

In a VGA image: ~2,000 pixels
e.g., 120 feature patches × (4×4 pixels per patch)  

SVO [Forster’14], DSO [Engel’17]



Direct Methods: Dense, Semi-dense, Sparse

• What is the influence of the motion baseline on the convergence rate of direct methods?

43

Forster, Zhang, Gassner, Werlberger, Scaramuzza, SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, 
IEEE Transactions on Robotics (T-RO), 2017. PDF.]

For small motion baselines, 𝑇 , 
the photometric error is usually small

𝐼𝑘
𝒖′𝑖

𝑃𝑖

𝒖𝑖

𝐼𝑘−1

For large motion baselines, 𝑇 , 
the photometric error is usually large 

(due to large geometric and illumination changes)

𝐼𝑘
𝒖′𝑖

𝑃𝑖

𝒖𝑖

𝐼𝑘−1

𝑇
𝑇

http://rpg.ifi.uzh.ch/docs/TRO17_Forster-SVO.pdf


What is the influence of the motion baseline 
on the convergence rate of direct methods?

We can use photorealistic simulation to answer this question by generating thousands of data

• Findings:
• Dense and Semi-dense behave similarly, thus weak gradients 

are not informative for the optimization

• Dense methods are only useful with motion blur, defocus, and weak- texture regions

• Sparse methods behave equally well as dense or semi-dense methods for small motion baselines

44

Forster, Zhang, Gassner, Werlberger, Scaramuzza, SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, 
IEEE Transactions on Robotics (T-RO), 2017. PDF.]

Distance 𝑇 between frames 
(when the two images have 0 motion baseline, we say their overlap is 100%; 

as the baseline increases, their overlap decreases)

C
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 [

%
] 100

0

Dense
Semi-dense
Sparse

Simulated dataset from here

http://rpg.ifi.uzh.ch/docs/TRO17_Forster-SVO.pdf
http://rpg.ifi.uzh.ch/fov.html


LSD-SLAM

• Supports both monocular and stereo cameras

• Direct (photometric error) + Semi-Dense formulation
• 3D structure represented as semi-dense depth map

• Minimizes photometric error

• Separateley optimizes poses & structure (sliding window)

• Same workflow as PTAM (keyframe based, alternation of 
localization and mapping as independent threads)

• Includes:
• Loop closing

• Relocalization

• Final optimization

• Real-time (30Hz), however global optimization is not done in 
real time but asynchronously every once in a while

45
Engel, Schoeps, Cremers, LSD-SLAM: Large-scale Semi-Dense SLAM, European Conference on Computer Vision (ECCV), 2014. PDF, code, videos.

https://vision.in.tum.de/research/vslam/lsdslam


DSO

• Supports both monocular and stereo cameras

• Direct (photometric error) + Sparse formulation
• 3D structure represented as sparse large gradients’ depth map

• Minimizes photometric error

• Jointly optimizes poses  & structure (sliding window)

• Incorporates photometric correction to compensate exposure time 
change (∆𝑡𝑘−1, ∆𝑡𝑘)

• Same workflow as PTAM (keyframe based, alternation of 
localization and mapping as independent threads)

• Real-time (30Hz), however global optimization is not done in 
real time but asynchronously every once in a while
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𝑃𝑖 , 𝑅, 𝐾 = arg min
𝑃𝑖,𝑅,𝐾

෍

𝑖=1

𝑁

ρ 𝐼𝑘−1 𝑝𝑘−1
𝑖 −

∆𝑡𝑘−1

∆𝑡𝑘
𝐼𝑘 𝜋 𝑃𝑖 , 𝐾, 𝑅, 𝑇  

Engel, Koltun, Cremers, DSO: Direct Sparse Odometry, IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2017. PDF, code, and videos.

https://vision.in.tum.de/research/vslam/dso


SVO

• Supports both monocular, stereo, multi-camera systems as 
well as omnidirectional models (fisheye and catadioptric)

• Combines indirect + direct methods 
• Direct methods for frame-to-frame motion estimation

• Indirect methods for frame-to-keyframe pose refinement

• Mapping
• Probabilistic depth estimation (heavy-tail Gaussian distribution)

• Includes: 
• Loop closing, 

• Relocalization, 

• Final optimization

• Same workflow as PTAM (keyframe based, alternation of 
localization and mapping as independent threads)

• Faster than real-time: up to 400 fps on i7 laptops and 100 fps 
on smartphone PCs (Odroid (ARM)) or NVIDIA Jetson

47
Forster, Zhang, Gassner, Werlberger, Scaramuzza, SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, 

First published in ICRA’14 and extended in IEEE Transactions on Robotics (T-RO), 2017. PDF, code, videos.

Edgelet                          Corner     

http://rpg.ifi.uzh.ch/svo_pro.html


SVO

• Supports both monocular, stereo, multi-camera systems as 
well as omnidirectional models (fisheye and catadioptric)

• Combines indirect + direct methods 
• Direct methods for frame-to-frame motion estimation

• Indirect methods for frame-to-keyframe pose refinement

• Mapping
• Probabilistic depth estimation (heavy-tail Gaussian distribution)

• Includes: 
• Loop closing, 

• Relocalization, 

• Final optimization

• Same workflow as PTAM (keyframe based, alternation of 
localization and mapping as independent threads)

• Faster than real-time: up to 400 fps on i7 laptops and 100 fps 
on smartphone PCs (Odroid (ARM)) or NVIDIA Jetson

48
Forster, Zhang, Gassner, Werlberger, Scaramuzza, SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, 

First published in ICRA’14 and extended in IEEE Transactions on Robotics (T-RO), 2017. PDF, code, videos.

Edgelet                          Corner     

Probabilistic Depth Estimation

http://rpg.ifi.uzh.ch/svo_pro.html


Processing times of ORB-SLAM, LSD-SLAM, DSO, SVO

49
Forster, Zhang, Gassner, Werlberger, Scaramuzza, SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems, 

IEEE Transactions on Robotics (T-RO), 2017. PDF, code, videos.

Processing time 
in milliseconds

CPU load (100% = 1 core)

http://rpg.ifi.uzh.ch/svo_pro.html


SVO and its derivatives are used today in many of products…

• DJI drones

• Magic Leap AR headsets

• Oculus VR headsets

• Huawei phones

• Nikon cameras

• …

50



51More videos here: http://rpg.ifi.uzh.ch/svo_pro.html 

Throw-and-go (2015)
(inspired many products, like DJI Tello drone)

Autonomous quadrotor navigation in dynamic scenes (down-looking camera)
(running on Odroid U3 board (ARM Cortex A9 at 90fps)

20 m/s obstacle free autonomous quadrotor flight at DARPA FLA  (2015)

Virtual Reality with SVO running on an iPhone 6 at CES Las Vegas

http://rpg.ifi.uzh.ch/svo_pro.html
https://www.youtube.com/watch?v=ZSVE73N5LXs


Startup: “Zurich-Eye” – Today: Facebook-Oculus Zurich

• Vision-based Localization and Mapping systems for mobile robots 

• Born in Sep. 2015, became Facebook-Oculus Zurich in Sep. 2016. Today, 200 employees.
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Startup: “Zurich-Eye” – Today: Facebook-Oculus Zurich

• Vision-based Localization and Mapping systems for mobile robots 

• Born in Sep. 2015, became Facebook-Oculus Zurich in Sep. 2016. Today, 200 employees.

• In 2018, Zurich-Eye launched Oculus Quest (25 million units sold so far)

• Christian Forster (Meta Zurich & co-founder of Zurich-Eye)’s previous seminar in this 
course will be shared on OLAT.

53



Latest and greatest ☺
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DROID-SLAM

• DROID: “Differentiable Recurrent Optimization-Inspired 
Design” (DROID

• Leverages a deep recurrent network to perform dense 
optical flow (i.e., dense pixel tracking)

• Estimates the pose of the incoming frames in a sliding 
window in the local BA

• Estimates the entire history of keyframes in the global 
BA

• Selects keyframes based on heuristics

• Trained only on simulated monocular videos and 
generalizes to real scenes

• Also accepts stereo or RGB-D videos  as input
• Supports loop closing

• Can be considered the state-of-the-art SLAM system in 
terms of accuracy but requires powerful GPU/-s

55Teed, Deng, Droid-SLAM: Deep Visual Slam for Monocular, Stereo, and RGB-D Cameras, Advances in neural information processing systems (NeurIPS), 2021, 
PDF, Code

https://proceedings.neurips.cc/paper_files/paper/2021/file/89fcd07f20b6785b92134bd6c1d0fa42-Paper.pdf
https://github.com/princeton-vl/DROID-SLAM


DPVO: Deep Patch Visual SLAM

• Sparsified variant of DROID-SLAM
• Estimates optical flow for a sparse set of patches 

randomly selected

• Achieves accuracy on-pair with DROID-SLAM but it 
requires 1/3 of the memory and runs 3x faster

• Still requires a powerful GPU

• Trained only on simulated monocular videos (TartanAir 
Dataset)

• Generalizes to real scenes

• Can be extended to a SLAM system with loop closing 
and place recognition, DPV-SLAM

56

Teed, Lipson, Deng, Deep Patch Visual Odometry, Advances in neural information processing systems (NeurIPS), 2023, PDF, Code

Lipson, Teed, Deng, Deep Patch Visual SLAM, European Conference on Computer Vision (ECCV), 2024, PDF, Code

https://proceedings.neurips.cc/paper_files/paper/2023/file/7ac484b0f1a1719ad5be9aa8c8455fbb-Paper-Conference.pdf
https://github.com/princeton-vl/DPVO
https://arxiv.org/pdf/2408.01654
https://github.com/princeton-vl/DPVO


How can we evaluate the accuracy of VO/SLAM algorithms?

• Idea: compare the estimated trajectory against ground truth trajectory (from GPS, motion tracking 
systems), but the key question is what error metric should be used?

• Issues:
• Different reference frames
• Different scale

• Naïve solution (not used anymore): Maybe align the first poses and measure the end-pose error?

• Not repeatable: 
• Most VIOs are non-deterministic (e.g., RANSAC, multithreading) → every time you run your VIO on the same dataset, you get 

different results

• Not meaningful: 
• sensitive to the trajectory shape 

(the number of turns of a trajectory greatly 
affects the end-pose error)

• does not capture the error statistics

57

groundtruth estimate

𝑒



Metric 1: Absolute Trajectory Error (ATE)

• Step 1: align the estimated trajectory to the ground truth from the start to the end using a similarity transformation 
(i.e., 𝑅, 𝑇, 𝑠) by minimizing the sum of square position errors 

• Step 2: compute Root Mean Square Error (RMSE) after alignment:

• Pros and cons:

✓ Single-number metric

✓ Captures the global error (accuracy of the global trajectory)

 Does not capture the relative error (accuracy of the local trajectory  estimate)

58
Zhang, Scaramuzza, A Tutorial on Quantitative Trajectory Evaluation for Visual(-Inertial) Odometry, 

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018. PDF.  PPT.  Toolbox.

𝑅, 𝑇, 𝑠 = argmin
𝑅,𝑇,𝑠

෍

𝑘=0

𝑛

መ𝐶𝑘 − 𝑠𝑅𝐶𝑘 − 𝑇
2

estimated positions

groundtruth positions

Parameters of the similarity transformation 
that we want to find

𝑅𝑀𝑆𝐸 =
σ𝑘=1

𝑛 መ𝐶𝑘 − 𝑠𝑅𝐶𝑘 − 𝑇
2

𝑛

http://rpg.ifi.uzh.ch/docs/IROS18_Zhang.pdf
http://rpg.ifi.uzh.ch/docs/IROS18_Zhang.pptx
https://github.com/uzh-rpg/rpg_trajectory_evaluation


Metric 2: Relative Trajectory Error (RTE)

• Computes error statistics of sub-trajectories of specified lengths

• Pros and cons:
✓ Informative statistics: captures the relative error (accuracy of the local trajectory  estimate)

 Complicated to compute and rank, but the good news is that there is code for it ☺ 
(toolbox, link below)

59
Zhang, Scaramuzza, A Tutorial on Quantitative Trajectory Evaluation for Visual(-Inertial) Odometry, 

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018. PDF.  PPT.  Toolbox.

Boxplots are good to visualize error statistics via 
interquartile ranges (link)

http://rpg.ifi.uzh.ch/docs/IROS18_Zhang.pdf
http://rpg.ifi.uzh.ch/docs/IROS18_Zhang.pptx
https://github.com/uzh-rpg/rpg_trajectory_evaluation
https://en.wikipedia.org/wiki/Interquartile_range


Things to remember

• Hierarchical SFM

• VO flowchart
• Monocular VO

• Stereo VO

• Keyframe selection

• Bundle adjustment vs pose-graph optimization

• Indirect vs direct methods

• Direct methods: Dense, semi-dense, and sparse formulations

• Popular open-source VO algorithms

• ATE and RTE trajectory evaluation metrics

60



Readings

• Scaramuzza, D., Fraundorfer, F., Visual Odometry: Part I - The First 30 Years and Fundamentals, IEEE 
Robotics and Automation Magazine, Volume 18, issue 4, 2011. PDF

• Fraundorfer, F., Scaramuzza, D., Visual Odometry: Part II - Matching, Robustness, and Applications, IEEE 
Robotics and Automation Magazine, Volume 19, issue 1, 2012. PDF

• C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I.D. Reid, J.J. Leonard, Past, Present, and 
Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age, IEEE Transactions 
on Robotics, Vol. 32, Issue 6, 2016. PDF
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http://rpg.ifi.uzh.ch/docs/VO_Part_I_Scaramuzza.pdf
http://rpg.ifi.uzh.ch/docs/VO_Part_II_Scaramuzza.pdf
http://rpg.ifi.uzh.ch/docs/TRO16_cadena.pdf


Understanding Check

Are you able to answer the following questions:

• Bundle Adjustment and Pose Graph Optimization. Mathematical expressions and illustrations. Pros and cons.

• Are you able to describe hierarchical and sequential SFM for monocular VO?

• What are the building blocks of visual odometry and SLAM?

• What are keyframes? Why do we need them and how can we select them?

• Are you able to define loop closure detection? Why do we need loops? How can we detect loop closures? (make 
link to other lectures)

• Are you able to describe the differences between feature-based methods and direct methods?

• Sparse vs semi-dense vs dense. What are their pros and cons?

• Are you able to provide a list of the most popular open source VO and VSLAM algorithms?

• Difference between SFM, VO, SLAM (see also lecture 01)

• How do we evaluate the accuracy of visual odometry? What are ATE and RTE, how are they computed and what 
do they capture?
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