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Lab Exercise 6 - Today

Implement the 8-point algorithm
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Estimated poses and 3D structure



2-View Geometry: recap

Depth from stereo (i.e., stereo vision): 

• Assumptions: K, T and R are known. 

• Goal: Recover the 3D structure from two images

2-view Structure From Motion: 

• Assumptions: none (K, T,  and R are unknown). 

• Goal: Recover simultaneously 3D scene structure and 
camera poses (up to scale) from two images
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𝐾1, 𝑅1,𝑇1
𝐾2, 𝑅2,𝑇2

𝑃𝑖 =?

𝐾1, 𝑅1,𝑇1 =?
𝐾2, 𝑅2,𝑇2 =?

𝑃𝑖 =?



Structure from Motion (SFM)

Problem formulation: Given a set of 𝑛 point correspondences between two images, {𝑝𝑖
1 = (𝑢𝑖

1, 𝑣𝑖
1), 

 𝑝𝑖
2 = (𝑢𝑖

2, 𝑣𝑖
2)}, where 𝑖 = 1 … 𝑛, the goal is to simultaneously

• estimate the 3D points 𝑷𝑖, 

• the camera relative-motion parameters (𝑹, 𝑻), 

• and the camera intrinsics 𝑲1, 𝑲2 that satisfy:
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𝑅, 𝑇 = ?

𝑷𝑖 = ?
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Structure from Motion (SFM)

Two variants exist:

• Calibrated camera(s) ֜ 𝑲𝟏, 𝑲𝟐 are known

• Uncalibrated camera(s) ֜ 𝑲𝟏, 𝑲𝟐 are unknown
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𝑅, 𝑇 = ?

𝑷𝑖 = ?

𝐶1

𝐶2



Structure from Motion (SFM)

• Let’s study the case in which the cameras are calibrated

• For convenience, let’s use normalized image coordinates  →

• Thus, we want to find 𝑹, 𝑻, 𝑷𝑖 that satisfy:
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Scale Ambiguity

If we rescale the entire scene and camera views by a constant factor (i.e., similarity transformation), the 
projections (in pixels) of the scene points in both images remain exactly the same:
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Scale Ambiguity

• In Structure from Motion, it is therefore not possible to recover the absolute scale of the 
scene!
• What about stereo vision? Is it possible? Why?

• Thus, only 5 degrees of freedom are measurable:
• 3 parameters to describe the rotation

• 2 parameters for the translation up to a scale (we can only compute the direction of translation but 
not its length)
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Structure From Motion (SFM)

• How many knowns and unknowns?

• 𝟒𝒏 knowns:

• 𝑛 correspondences; each one (𝑢𝑖
1

, 𝑣𝑖
1) and (𝑢𝑖

2
, 𝑣𝑖

2), 𝑖 = 1 … 𝑛

• 𝟓 + 𝟑𝒏 unknowns

• 5 for the motion up to a scale (3 for rotation, 2 for translation)

• 3𝑛 = number of coordinates of the 𝑛 3D points

• Does a solution exist?

• If and only if the number of independent equations ≥ number of unknowns
֜ 4𝑛 ≥ 5 + 3𝑛 ֜ n ≥ 𝟓

• First attempt to identify the solutions by Kruppa in 1913 (see historical note on slide 16).

9

E. Kruppa, Zur Ermittlung eines Objektes aus zwei Perspektiven mit Innerer Orientierung, Sitz.-Ber. Akad. Wiss., Wien,
Math. Naturw. Kl., Abt. IIa., 1913. – English Translation plus original paper by Guillermo Gallego, Arxiv, 2017 (”To determine a 3D object 

from two perspective views with known inner orientation”)

https://arxiv.org/pdf/1801.01454


Structure From Motion (SFM)

• Can we solve the estimation of relative motion (𝑅, 𝑇) independently of the 
estimation of the 3D points? Yes! The next couple of slides prove that this is 
possible. 

• Once (𝑅, 𝑇) are known, the 3D points can be triangulated using the 
triangulation algorithm from Lecture 7 (i.e., least square approximation plus 
reprojection error minimization)
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The Epipolar Constraint: Recap from Lecture 07

• The camera centers 𝐶1, 𝐶2 and one image point 𝑝1 (or 𝑝2) determine the so called epipolar plane

• The intersections of the epipolar plane with the two image planes are called epipolar lines

• Corresponding points must therefore lie along the epipolar lines: this constraint is called epipolar 
constraint

• An alternative way to formulate the epipolar constraint is to notice that two corresponding image vectors 
plus the baseline must be coplanar
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epipolar plane epipolar lineepipolar line

C2
C1

𝑝1

𝑝2



Epipolar Constraint
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ഥ𝑝1, ഥ𝑝2, 𝑇 are coplanar: 

ǉ𝑝2
𝑇 ⋅ (𝑇 × ǉ𝑝′1)) = 0

ǉ𝑝′1 =  𝑅𝑝1

֜ ǉ𝑝2
𝑇(𝑇 × (𝑅 ǉ𝑝1)) = 0 ֜ ǉ𝑝2

𝑇 [𝑇×]𝑅 ǉ𝑝1 = 0 ֜ ǉ𝑝2
𝑇 𝐸 ǉ𝑝1 = 0

essential matrix

𝑛

=   02 npT

epipolar constraint

E = [𝑇×]𝑅

𝑝2

C2

C1



Epipolar Constraint
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0  12 =pEpT Epipolar constraint or Longuet-Higgins equation (1981)

RT ][ E = Essential matrix

Normalized image coordinatesǉ𝑝2 =
ǉ𝑢2

ǉ𝑣2

1
ǉ𝑝1 =

ǉ𝑢1

ǉ𝑣1

1

𝑅 and 𝑇 can be computed from 𝐸 recalling that:  (see slide 21)RT ][ E =

Hugh Christopher Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, Nature, 1981, PDF.

NB: Because the skew-symmetric matrix has rank 2 and the rotation is orthonormal, the Essential matrix has also rank 2

https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf


Example: Essential Matrix of a Camera Translating along 𝑥
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=
0 0 0
0 0 𝑏
0 −𝑏 0

𝐸 = T× 𝑅 =
0 0 0
0 0 𝑏
0 −𝑏 0

E = T× R

T× =

0 −𝑡𝑧 𝑡𝑦

𝑡𝑧 0 −𝑡𝑥

−𝑡𝑦 𝑡𝑥 0

T =
−𝑏
0
0

R = I3×3

ǉ𝑝2
𝑇 𝐸 ǉ𝑝1 = 0 → ǉ𝑢2 ǉ𝑣2 1

0 0 0
0 0 𝑏
0 −𝑏 0

ǉ𝑢1

ǉ𝑣1

1
= 0 →  −𝑏 ǉ𝑣1 + ǉ𝑣2𝑏 = 0 →  ǉ𝑣2 = ǉ𝑣1Epipolar constraint:

Essential matrix:



How to compute the Essential Matrix?

• If we don’t know (𝑅, 𝑇) can we estimate 𝐸 from two images?

• Yes, given at least 5 correspondences
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Image 1 Image 2



Historical Note

• Kruppa showed in 1913 that 5 image correspondences is the minimal case and that there can be at up to 
11 solutions

• However, in 1988, Demazure showed that there are actually at most 10 distinct solutions. 

• In 1996, Philipp proposed an iterative algorithm to find these solutions.

• In 2004, Nister proposed the first efficient and non iterative solution. It uses Groebner basis 
decomposition.

• The first popular solution uses 8 points and is called the 8-point algorithm or Longuet-Higgins algorithm 
(1981). Because of its ease of implementation, it is still used today (e.g., NASA rovers).
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[1] E. Kruppa, Zur Ermittlung eines Objektes aus zwei Perspektiven mit Innerer Orientierung, Sitz.-Ber. Akad. Wiss., Wien, Math. Naturw. Kl., Abt. IIa., 1913. –
English Translation plus original paper by Guillermo Gallego, Arxiv, 2017

[2] H. Christopher Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, Nature, 1981, PDF.

[3] D. Nister, An Efficient Solution to the Five-Point Relative Pose Problem, PAMI, 2004, PDF

https://arxiv.org/pdf/1801.01454
https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf
https://ieeexplore.ieee.org/document/1288525


The 8-point algorithm

• Each pair of point correspondences
provides a linear equation:
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H. Christopher Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, Nature, 1981, PDF.

NB: The 8-point algorithm assumes that the entries of E are all independent 
(which is not true since, for the calibrated case, they depend on 5 parameters (R and T))

By contrast, the 5-point algorithm uses the epipolar constraint considering the dependencies among all entries.

https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf


The 8-point algorithm

• For 𝑛 points, we can write 
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The 8-point algorithm

Minimal solution
• 𝑄(𝑛×9) should have rank 8 to have a unique (up to a scale) non-trivial solution ത𝐸

• Each point correspondence provides 1 independent equation
• Thus, 8  point correspondences are needed

Over-determined solution
• n > 8 points
• A solution is to minimize | 𝑄 ത𝐸 |2 subject to the constraint | ത𝐸 |2 = 1.

The solution is the eigenvector corresponding to the smallest eigenvalue of the matrix 𝑄𝑇𝑄  (because it is the unit vector 𝑥 that 
minimizes | 𝑄𝑥 |2 = 𝑥𝑇𝑄𝑇𝑄𝑥). 

• It can be solved through Singular Value Decomposition (SVD).  Matlab instructions:

Degenerate Configurations
• The solution of the 8-point algorithm is degenerate when the 3D points are coplanar. 
• Conversely, the 5-point algorithm works also for coplanar points
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0EQ =

[U,S,V] = svd(Q);

Ev = V(:,9);

E = reshape(Ev,3,3)';



8-point algorithm: Matlab code

A few lines of code. In today’s exercise you will learn how to implement it
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function E = calibrated_eightpoint( p1, p2)

p1 = p1'; % 3xN vector; each column = [u;v;1]

p2 = p2'; % 3xN vector; each column = [u;v;1]

Q = [p1(:,1).*p2(:,1) , ...

     p1(:,2).*p2(:,1) , ...

     p1(:,3).*p2(:,1) , ...

     p1(:,1).*p2(:,2) , ...

     p1(:,2).*p2(:,2) , ...

     p1(:,3).*p2(:,2) , ...

     p1(:,1).*p2(:,3) , ...

     p1(:,2).*p2(:,3) , ...

     p1(:,3).*p2(:,3) ] ;

[U,S,V] = svd(Q);

Eh = V(:,9);

E = reshape(Eh,3,3)';



Extract R and T from E

• Singular Value Decomposition: 𝐸 = 𝑈𝑆𝑉𝑇

• Because of noise, E may not have rank 2, so we must enforce this as a constraint

• Enforcing rank-2 constraint: set the smallest singular value of 𝑆 to 0:
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Won’t be asked 
at the exam

☺

𝑆 =
𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

=
𝜎1 0 0
0 𝜎2 0
0 0 0

෠𝑇 = 𝑈
0 ∓1 0

±1 0 0
0 0 0

𝑆𝑈𝑇 ෠𝑇 =

0 −𝑡𝑧 𝑡𝑦

𝑡𝑧 0 𝑡𝑥

−𝑡𝑦 𝑡𝑥 0
֜ Ƹ𝑡 =

𝑡𝑥

𝑡𝑦

𝑡𝑧

𝑅 = 𝑈
0 ∓1 0

±1 0 0
0 0 1

𝑉𝑇



4 possible solutions of R and T

There exists only one solution where points are in front of both cameras (cheirality constraint)
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These two views are flipped by 180  ͦ around the optical axis



Structure from Motion (SFM)

Two variants exist:

• Calibrated camera(s) ֜ 𝑲𝟏, 𝑲𝟐 are known

• Uses the Essential matrix

• Uncalibrated camera(s) ֜ 𝑲𝟏, 𝑲𝟐 are unknown

• Uses the Fundamental matrix
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𝑅, 𝑇 = ?

𝑷𝑖 = ?

𝐶1
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The Fundamental Matrix

24

0 p  E p 12 =T

















=
















−

1

 K  

1

1

1

1

11

1

i

i

i

i

v

u

v

u

















=
















−

1

 K  

1

2

2

1

22

2

i

i

i

i

v

u

v

u

0  

1

  E 

1

1

1

T

2

2

=
































i

i

i

i

v

u

v

u

So far, we have assumed to know the camera intrinsic parameters and we have used normalized image 
coordinates to get the epipolar constraint for calibrated cameras:
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The Fundamental Matrix

So far, we have assumed to know the camera intrinsic parameters and we have used normalized image 
coordinates to get the epipolar constraint for calibrated cameras:
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1

-T

2 K  E K  =F

Fun thing: check out the Fundamental Matrix song, 
https://youtu.be/DgGV3l82NTk :-)

The Fundamental Matrix

So far, we have assumed to know the camera intrinsic parameters and we have used normalized image 
coordinates to get the epipolar constraint for calibrated cameras:

https://youtu.be/DgGV3l82NTk


The 8-point Algorithm for the Fundamental Matrix

• The same 8-point algorithm to compute the essential matrix from a set of normalized 
image coordinates can also be used to determine the Fundamental matrix:

• However, now the key advantage is that we work directly in pixel coordinates
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Problem with 8-point algorithm
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Problem with 8-point algorithm

• Poor numerical conditioning, which makes results very sensitive to noise

• Can be fixed by rescaling the data: Normalized 8-point algorithm
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Normalized 8-point algorithm (1/3)

• This can be fixed using a normalized 8-point algorithm [Hartley, 1997], which estimates the Fundamental 
matrix on a set of Normalized correspondences (with better numerical properties) and then unnormalizes 
the result to obtain the fundamental matrix for the given (unnormalized) correspondences

• Idea: Transform image coordinates so that they are in the range ~[−1,1] × [−1,1]

• One way is to apply the following rescaling and shift
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Normalized 8-point algorithm (3/3)

The Normalized 8-point algorithm can be summarized in three steps:

1. Normalize the point correspondences:  ෞ𝑝1 = 𝐵1𝑝1 ,    ෞ𝑝2 = 𝐵2𝑝2

2. Estimate normalized ෠𝐹 with 8-point algorithm using normalized coordinates ෞ 𝑝1, ෞ𝑝2

3. Compute unnormalized F from ෠𝐹:    
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Normalized 8-point algorithm (2/3)

• In the original 1997 paper, Hartley proposed to rescale the two point sets such that the centroid of each set 
is 0 and the mean standard deviation 2 (equivalent to having the points distributed around a circle passing 
through the four corners of the [−1,1] × [−1,1] square).

• This can be done for every point as follows:

    where 𝜇 = (𝜇𝑥, 𝜇𝑦) =
1

𝑁
σ𝑖=1

𝑛 𝑝𝑖 is the centroid and  𝜎 =
1

𝑁
σ𝑖=1

𝑛 𝑝𝑖 − 𝜇 2 is the standard deviation

    of the point set

• This transformation can be expressed in matrix form using homogeneous coordinates:

32Hartley, In defense of the eight-point algorithm, IEEE Transactions of Pattern Analysis and Machine Intelligence, 1997. PDF

෡𝑝𝑖 =
2

𝜎
(𝑝𝑖 − 𝜇)

෡𝑝𝑖 =

2

𝜎
0 −

2

𝜎
𝜇𝑥

0
2

𝜎
−

2

𝜎
𝜇𝑦

0 0 1

𝑝𝑖

https://www.cse.unr.edu/~bebis/CS485/Handouts/hartley.pdf


Can 𝑅, 𝑇, 𝐾1, 𝐾2 be extracted from F?

• In general no: infinite solutions exist

• However, if the coordinates of the principal points of each camera are known 
and the two cameras have the same focal length 𝑓 in pixels, then 𝑅, 𝑇, 𝑓 can 
determined uniquely
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Comparison between Normalized and non-normalized algorithm
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8-point Normalized 8-point Nonlinear refinement

Avg. Ep. Line Distance 2.33 pixels 0.92 pixel 0.86 pixel



Error Measures

• The quality of the estimated Essential or Fundamental matrix can be measured using different error 
metrics:

• Algebraic error

• Directional Error

• Epipolar Line Distance

• Reprojection Error

• When is the error exactly 0?

• These errors will be exactly 0 only if 𝑬 (or 𝑭) is 
computed from just 8 points (because in this 
case a non-overdetermined solution exists). 

• For more than 8 points, the 8-point algorithm is 
overdetermined and the error will only be 0 
if there is no noise or outliers in the data 
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Algebraic Error

• It follows directly from the 8-point algorithm, which seeks to minimize the algebraic error (see slide 19):

• From the proof of the epipolar constraint and using the definition of dot product, it can be observed that:

• We can see that this product depends on the 
angle 𝜃 between ഥ𝒑2 

and the vector 𝑬𝒑1 
which is

parallel to the normal 𝒏 of the epipolar plane. 
It is nonzero when ഥ𝒑1,ഥ𝒑2, and 𝑻 are not coplanar

• What is the drawback of this error measure?
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Directional Error

• Sum of squared cosines of the angle from the epipolar plane:

• It is obtained by normalizing the algebraic error:
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Epipolar Line Distance

• Sum of Squared Epipolar-Line-to-point Distances:
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Reprojection Error

• Sum of the Squared Reprojection Errors:

• More expensive than the previous three errors because it requires to first triangulate the 3D points!

• However, it is the most popular because more accurate. The reason is that the error is computed directly 
with the respect the raw input data, which is ideal for 
robotics and AR/VR applications, where the goal is
to achieve visually accurate alignment in the image space.
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𝑝2 − 𝜋 𝑃, 𝐾2, 𝑅, 𝑇



Things to remember

• SFM from 2 view
• Calibrated and uncalibrated case

• Proof of Epipolar Constraint

• 8-point algorithm and algebraic error

• Normalized 8-point algorithm

• Algebraic, directional, Epipolar line distance, Reprojection error
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Readings

• CH. 11.3 of Szeliski book, 2nd edition

• Ch. 14.2 of Corke book
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Understanding Check

Are you able to answer the following questions?
• What's the minimum number of correspondences required for calibrated SFM and why?
• Are you able to derive the epipolar constraint?
• Are you able to define the essential matrix?
• Are you able to derive the 8-point algorithm?
• How many rotation-translation combinations can the essential matrix be decomposed into?
• Are you able to provide a geometrical interpretation of the epipolar constraint?
• Are you able to describe the relation between the essential and the fundamental matrix?
• Why is it important to normalize the point coordinates in the 8-point algorithm?
• Describe one or more possible ways to achieve this normalization.
• Are you able to describe the normalized 8-point algorithm?
• Are you able to provide quality metrics and their interpretation for the essential and fundamental matrix estimation?
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