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Lab Exercise 4 – Today

Implement SIFT blob detection and matching
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Main questions

• What features are repeatable and distinctive?

• How to describe a feature?

• How to establish correspondences, i.e., compute matches?
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Feature Matching

For each point, how to match its corresponding point in the other image?

• Brute-force Matching: compare each feature descriptor of Image 1 against the descriptor of each 
feature in Image 2 and assign as correspondence the feature with closest descriptor (e.g., 
minimum of SSD). If each image contains N features, we need to perform 𝑵𝟐 comparisons.
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Recall: Patch and Census Descriptors

• Patch descriptor 
(i.e., patch of intensity values, integer values)

• Census descriptor (binary values)
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HOG Descriptor (Histogram of Oriented Gradients)

• The patch is divided into a grid of cells and for each cell a histogram of gradient directions weighted by the 
gradient magnitude is compiled. 

• The HOG descriptor is the concatenation of these histograms (used in SIFT)

• Differently from the patch and Census descriptors, HOG has float values.
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Example of gradient histogram with 8 orientation bins.
Each vote is weighted by the gradient magnitude

0 

HOG Descriptor: 
(1D vector)

0  0  0 

… 



Feature Descriptor Invariance

Are feature descriptors invariant (robust) to geometric and photometric changes?
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Photometric changes: illuminationGeometric changes: scale, rotation, viewpoint



Outline

• How to achieve descriptor invariance to:
• Scale

• Rotation

• Viewpoint

• The SIFT blob detector and descriptor

• Other corner and blob detectors and descriptors

8



Scale changes

How can we match image patches corresponding to the same feature but belonging to 
images taken at different scales? 
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Scale changes

How can we match image patches corresponding to the same feature but belonging to 
images taken at different scales? Possible solution: rescale the patch
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Scale changes

How can we match image patches corresponding to the same feature but belonging to 
images taken at different scales? Possible solution: rescale the patch
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Scale changes

How can we match image patches corresponding to the same feature but belonging to 
images taken at different scales? Possible solution: rescale the patch
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Scale changes

• Scale search is time consuming (needs to be done individually for all patches 
in one image)

• Complexity is 𝑁2𝑆 assuming 𝑁 features per image and 𝑆 rescalings per 
feature 

• Solution: automatic scale selection: automatically assign each feature its 
own “scale” (i.e., size)
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Automatic Scale Selection

• Idea: Design a function on the image patch, which is scale invariant (i.e., it has the same 
value for corresponding patches, even if they are at different scales)
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scale = 1/2
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Automatic Scale Selection

• Idea: Design a function on the image patch, which is scale invariant (i.e., it has the same 
value for corresponding patches, even if they are at different scales)
• Find local extrema of this function

• The patch size at which the local extremum is reached should be invariant to image rescaling

• Important: this scale invariant patch size is found in each image independently
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scale = 1/2
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Automatic Scale Selection: Example
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Automatic Scale Selection: Example
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Automatic Scale Selection: Example
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Automatic Scale Selection: Example
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Automatic Scale Selection: Example
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Automatic Scale Selection: Example
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Automatic Scale Selection: Example
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Image 1

When the right scale is found, the patches must be normalized to 
a canonical size so that they can be compared by SSD. 

Patch normalization is done via warping.

Image 2



Automatic Scale Selection: Example
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Automatic Scale Selection

• A “good” function for scale detection should have a single & sharp peak

• What if there are multiple peaks? Is it really a problem?

• What is a good function? 

• Sharp intensity changes are good regions to monitor in order to identify the scale
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Automatic Scale Selection

• The ideal function for determining the scale is one that highlights sharp discontinuities

• Solution: convolve image with a kernel that highlights edges

• It has been shown that the Laplacian of Gaussian kernel is optimal under certain 
assumptions [Lindeberg’94]:
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Lindeberg, Scale-space theory: A basic tool for analysing structures at different scales, Journal of Applied Statistics, 1994. PDF.

Careful to not confuse it with LOG for edge detection. There we looked for zero 
crossings across x,y while now we look for local extrema across scales

https://www.researchgate.net/profile/Tony_Lindeberg/publication/2255734_Scale-Space_Theory_A_Basic_Tool_for_Analysing_Structures_at_Different_Scales/links/09e4150d0557ac8ef8000000/Scale-Space-Theory-A-Basic-Tool-for-Analysing-Structures-at-Different-Scales.pdf


Automatic Scale Selection

The correct scale(s) is (are) found as local extrema across scales
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Scale
(i.e., 𝜎 of the LoG)

f

Scale (𝜎)



Outline

• How to achieve descriptor invariance to:
• Scale

• Rotation

• Viewpoint

• The SIFT blob detector and descriptor

• Other corner and blob detectors and descriptors
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How to achieve invariance to Rotation

Derotation:

• Determine patch orientation
e.g., eigenvectors of M matrix of Harris or 
dominant gradient direction (see next slide)

• Derotate patch through “patch warping”
This puts the patches into a canonical orientation

28



How to determine the patch orientation?

1. First, multiply the patch by a Gaussian kernel to make the shape circular rather than square

2. Then, compute gradients vectors at each pixel

3. Build a histogram of gradient orientations weighted by the gradient magnitudes. This histogram is a particular case of HOG 
descriptor (a grid of 1×1 cells)

4. Extract all local maxima in the histogram: each local maximum above a threshold is a candidate dominant orientation. 

5. Construct a different keypoint descriptor for each dominant orientation
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0 2𝜋

Dominant gradient direction



Outline

• How to achieve descriptor invariance to:
• Scale

• Rotation

• Viewpoint

• The SIFT blob detector and descriptor

• Other corner and blob detectors and descriptors
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How to achieve invariance to small viewpoint changes?

Affine warping provides invariance to small view-point changes

• The second moment matrix M of the Harris detector can be used to identify the two directions of fastest 
and slowest change of SSD around the feature

• Out of these two directions, an elliptic patch is extracted

• The region inside the ellipse is normalized to a canonical circular patch

31
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Recap: 
How to achieve Scale, Rotation, and Affine-invariant patch matching

32

Image 1 Image 2

1. Scale assignment: compute the scale using the LoG operator. If mutiple local extrema exist, assign multiple scales

2. Multiply the patch by a Gaussian kernel to make the shape circular rather than square

3. Rotation assignment: use Harris or gradient histogram to find dominant orientation. If multiple local extrema exist, 
assign multiple orientations

4. Affine invariance: use Harris eigenvectors to extract affine transformation parameters

5. Warp the patch into a canonical patch



How to warp a patch?

• Start with an “empty” canonical patch (all pixels set to 0)

• For each pixel (𝑥, 𝑦) in the empty patch, apply the warping function 𝑾(𝒙, 𝒚) 
to compute the corresponding position in the source image. It will be in 
floating point and will fall between the image pixels.

• Interpolate the intensity values of the 4 closest pixels in the detected image 
using either of:
• Nearest neighbor interpolation

• Bilinear interpolation

• Bicubic interpolation
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Example: Similarity Transformation (rotation, translation, rescaling)

• Warping function 𝑊: rotation (𝜃) plus rescaling (𝑠) and translation (𝑎, 𝑏):
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𝑥’ = 𝑠(𝑥 cos𝜃 –  𝑦 sin𝜃) + 𝑎
𝑦’ = 𝑠(𝑥 sin𝜃 +  𝑦 cos𝜃) + 𝑏

Patch detected in the image

𝑊

Empty canonical patch

(𝑥, 𝑦)

(𝑥’, 𝑦’)



Example: Rescaling
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Nearest Neighbor vs Bilinear vs Bicubic Interpolation
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Bilinear Interpolation

• It is an extension of linear interpolation for interpolating functions of two variables (e.g., 𝑥 and 𝑦) on a 
rectilinear 2D grid.

• The key idea is to perform linear interpolation first in one direction, and then again in the other direction.

• Although each step is linear in the sampled values and in the position, the interpolation as a whole is not 
linear but rather quadratic in the sample location.
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In this geometric visualization, the value at the black spot is the sum of the value at each 
colored spot multiplied by the area of the rectangle of the same color.

𝐼(0,0) 𝐼(1,0)

𝐼(0,1) 𝐼(1,1)

𝑥

𝑦
𝐼 𝑥, 𝑦 = 𝐼 0,0 1 − 𝑥 1 − 𝑦 +

𝐼 0,1 1 − 𝑥 𝑦 +
𝐼 1,0 𝑥 1 − 𝑦 +
𝐼 1,1 𝑥 𝑦

This formula 
won’t be asked 
at the exam ☺



Disadvantage of Patch Descriptors

• Disadvantage of patch descriptors: 
• If the warp is not estimated accurately, very small errors in rotation, scale, and view-

point will affect matching score significantly

• Computationally expensive (need to unwarp every patch)
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Outline

• Automatic Scale Selection

• The SIFT blob detector and descriptor

• Other corner and blob detectors and descriptors
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SIFT Descriptor

• Scale Invariant Feature Transform

• Invented by David Lowe in 2004

40Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, Internal Journal of Computer Vision, 2004. PDF

https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


SIFT Descriptor

Descriptor computation:

• Consider a 𝟏𝟔 × 𝟏𝟔 pixel patch

• Multiply the patch by a Gaussian filter, compute dominant orientation, and de-rotate patch

• Compute HOG descriptor

• Divide patch into 4×4 cells

• Use 8 bin histograms (, i.e., 8 directions) 

• Concatenate all histograms into a single 1D vector

• Resulting SIFT descriptor: 4×4×8 = 128 float values

• Descriptor Matching: SSD (i.e., Euclidean-distance)

• Why 4×4 cells and why 8 bins? See later

41
Is HOG invariant to additive or affine illumination changes (i.e., 𝐼′(𝑥, 𝑦) = 𝛼𝐼 𝑥, 𝑦 + 𝛽 )?



Descriptor Normalization

• The HOG descriptor is invariant to additive illumination because it is based on gradients

• To make it invariant affine illumination changes, the descriptor vector 𝒗  is then 
normalized such that its 𝐿2 norm is 1:

ഥ𝒗 =
𝒗

σ𝑖
𝑛 𝑣𝑖

2

• We can conclude that the SIFT descriptor is invariant to affine illumination changes
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SIFT Matching Robustness

• Can handle severe viewpoint changes (up to 50 degree out-of-plane rotation)

• Can handle even severe non affine changes in illumination (low to bright scenes) 

• More computationally expensive than the patch descriptor

• Original SIFT binary files: http://people.cs.ubc.ca/~lowe/keypoints 

• OpenCV C/C++ implementation: https://docs.opencv.org/master/da/df5/tutorial_py_sift_intro.html

43

http://people.cs.ubc.ca/~lowe/keypoints
https://docs.opencv.org/master/da/df5/tutorial_py_sift_intro.html


SIFT Detector

• SIFT uses the Difference of Gaussian (DoG) kernel instead of Laplacian of Gaussian (LoG) because 
computationally cheaper

• The proof that LoG can be approximated by a difference of Gaussian comes from the Heat Equation:
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SIFT Detector (location + scale)

SIFT keypoints: local extrema in both space and scale of the DoG images

• Each pixel is compared to 26 neighbors (below in green): its 8 neighbors in the current image + 9 neighbors 
in the adjacent upper scale +  9 neighbors in the adjacent lower scale 

• If the pixel is a global maximum or minimum (i.e., extrema) with respect to its 26 neighbors then it is 
selected as SIFT feature
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For each extrema, the output of the 
SIFT detector is the location (𝑥, 𝑦) 

and the scale 𝑠



Example
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DoG Images example
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Magnitude of (𝐺(𝑘𝜎) − 𝐺(𝜎)) | 𝑠 = 4; 𝜎 = 1.6 |



DoG Images example
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Magnitude of (𝐺(𝑘2𝜎) − 𝐺 𝑘𝜎 )| 𝑠 = 4; 𝜎 = 1.6 |



DoG Images example
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Magnitude of (𝐺(𝑘3𝜎) − 𝐺 𝑘2𝜎 )| 𝑠 = 4; 𝜎 = 1.6 |



DoG Images example
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Magnitude of (𝐺(𝑘4𝜎) − 𝐺(𝑘3𝜎)) | 𝑠 = 4; 𝜎 = 1.6 |



DoG Images example
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Magnitude of (𝐺 𝑘5𝜎 − 𝐺 𝑘4𝜎 ) | 𝑠 = 4; 𝜎 = 1.6 | 
(second octave shown at the input resolution for convenience)



DoG Images example
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Magnitude of (𝐺 𝑘6𝜎 − 𝐺 𝑘5𝜎 ) | 𝑠 = 4; 𝜎 = 1.6 |
(second octave shown at the input resolution for convenience)



DoG Images example
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Magnitude of (𝐺 𝑘7𝜎 − 𝐺 𝑘6𝜎 ) | 𝑠 = 4; 𝜎 = 1.6 |
(second octave shown at the input resolution for convenience)



DoG Images example
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Magnitude of (𝐺 𝑘8𝜎 − 𝐺 𝑘7𝜎 ) | 𝑠 = 4; 𝜎 = 1.6 |
(second octave shown at the input resolution for convenience)



DoG Images example
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Magnitude of (𝐺 𝑘9𝜎 − 𝐺 𝑘8𝜎 ) | 𝑠 = 4; 𝜎 = 1.6 |
(third octave shown at the input resolution for convenience)



Local extrema of DoG images across Scale and Space
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What are SIFT features like? 
Hint: Remember the definition of filtering as template matching



How it is implemented in practice

1. Build a Space-Scale Pyramid:

• The initial image is incrementally convolved with Gaussians 
G(𝑘𝑖𝜎) to produce blurred images separated by a constant 
factor 𝑘 in scale space (shown stacked in the left column). 

• The initial Gaussian G(𝜎) has 𝜎=1.6

•  𝑘 is chosen: 𝑘 = 2 Τ1
𝑠, where 𝑠 is the number of intervals 

into which each octave of scale space is divided 

• For efficiency reasons, when 𝑘𝑖 equals 2, the image is 
downsampled by a factor of 2 and then the procedure is 
repeated again up to 5 octaves (pyramid levels)

• Adjacent blurred images are then subtracted to produce the 
Difference-of-Gaussian (DoG) images

2. Scale-Space extrema detection

• Detect local maxima and minima in space-scales (see previous 
slide)
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SIFT: Recap

• SIFT: Scale Invariant Feature Transform

• An approach to detect and describe regions of interest in an image. 
• SIFT detector = DoG detector

• SIFT features are invariant  to 2D rotation, and reasonably invariant to 
rescaling, viewpoint changes (up to 50 degrees), and illumination

• It runs in real-time but expensive (10 Hz on an i7 laptop)
• The expensive steps are the scale detection and descriptor extraction
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Original SIFT Demo by David Lowe

Download original SIFT binaries and Matlab function from : 
http://people.cs.ubc.ca/~lowe/keypoints 
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>>[image1, descriptor1s, locs1] = sift('scene.pgm'); 

>>showkeys(image1, locs1); 

>>[image2, descriptors2, locs2] = sift('book.pgm'); 

>>showkeys(image2, locs2); 

>>match('scene.pgm','book.pgm');

http://people.cs.ubc.ca/~lowe/keypoints


What’s the output of SIFT?

SIFT outputs N features, each one being a data structure containing:

• Descriptor: 4x4x8 = 128-element vector

• Location (pixel coordinates of the center of the patch): 2-element vector

• Scale (i.e., size) of the patch: 1 scalar value

• Orientation (i.e., angle of the patch): 1 scalar value
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SIFT Repeatability with Viewpoint Changes

62

Repeatability=

# correspondences detected

# correspondences present

Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, Internal Journal of Computer Vision, 2004. PDF

https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


SIFT Repeatability with Number of Scales per Octave
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Repeatability=

# correspondences detected

# correspondences present

Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, Internal Journal of Computer Vision, 2004. PDF

https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Influence of Number of Orientations and Number of Sub-patches

The graph shows that a single orientation histogram (n = 1) is very poor at discriminating. 
The results improve with a 4x4 array of histograms with 8 orientations. 
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4x4 HOGs

Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, Internal Journal of Computer Vision, 2004. PDF

https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Application of SIFT to Object recognition

• Can be implemented easily by returning the object with the largest number of 
correspondences shared with the template image

• For planar objects, 4-point RANSAC can be used to remove outliers (see Lecture 9).

• For rigid 3D objects, 5-point RANSAC (see Lecture 9).
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Application of SIFT to Panorama Stitching
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AutoStitch: http://matthewalunbrown.com/autostitch/autostitch.html 
M. Brown and D. G. Lowe. Recognising Panoramas, International Conference on Computer Vision (ICCV), 2003. PDF.

http://matthewalunbrown.com/autostitch/autostitch.html
http://matthewalunbrown.com/papers/iccv2003.pdf


How many parameters can we tune for SIFT and Harris?

SIFT

1. Patch size (e.g., 16x16)

2. Sigma of Gaussian to transform the square 
into a circular patch

3. Number of subpatches (e.g., 4x4)

4. Number of histogram bins (e.g., 8)

5. Threshold to choose dominant orientations

6. Number of octaves (e.g., 5)

7. Number of scales per octave (e.g., 3)

8. Sigma_0 (e.g., 1.6)

9. Distance ratio (e.g., 0.8)
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HARRIS

1. Patch size (the larger the size the smaller the 
sensitivity to fine details)

2. Sigma of Gaussian to transform the square into a 
circular patch

3. Cornerness response magic number (e.g., 0.04-0.15 
for Harris detector)

4. Cornerness response threshold

5. Size of non-maxima suppression: the larger the size 
the fewer the local maxima (i.e., corners)

6. grid size (image bucketing)



Main questions

• What features are repeatable and distinctive?

• How to describe a feature?

• How to establish correspondences, i.e., compute matches?
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Feature Matching

69

?



Feature Matching

• Given a feature in 𝐼1, how to find the best match in 𝐼2?

1. Define distance function that compares two descriptors ((Z)SSD, (Z)SAD, (Z)NCC or Hamming distance for binary 
descriptors (e.g., Census, HOG, ORB, BRIEF, BRISK, FREAK)

2. Brute-force matching: 

1. Compare each feature in 𝐼1 against all the features in 𝐼2 (𝑁2 comparisons, where 𝑁 is the number of 
features in each image)

2. Take the one at minimum distance, i.e., the closest descriptor

70

?
𝐼1 𝐼2



Feature Matching

• Issues with closest descriptor: it returns a match  also when the true match is absent

• Better approach:  add constraint on the ratio between distances from 1st to 2nd closest 
descriptor: 

where:

𝑑1 is the distance from the closest descriptor
𝑑2 is the distance from the 2nd closest descriptor
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𝑑1

𝑑2

 <  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑢𝑠𝑢𝑎𝑙𝑙𝑦 0.8)



Distance Ratio: Explanation

• In SIFT, the nearest neighbor is defined as the keypoint with minimum Euclidean distance. There can be two 
possible issues if we only take the match with closest descriptor:

1. Some features in Image 1 may not have a correct match in Image 2 because they arise from background clutter or were not 
detected in Image 1.

2. There are multiple matching features in Image 2. How do we solve these ambiguities? Should we just pick the closest descriptor 
or do we discard them a priori.

• An effective measure is obtained by comparing the distance from the closest neighbor to the distance from 
the second-closest neighbor. This measure performs well because correct matches need to have the 
closest neighbor significantly closer than the closest incorrect match to achieve reliable matching. 

• For false matches, there will likely be a number of other false matches within similar distances due to the 
high dimensionality of the feature space (this problem is known as curse of dimensionality). 

• We can think of the distance from the second-closest match as providing an estimate of the density of 
false matches within this portion of the feature space (case 1) and, at the same time, identifying specific 
instances of feature ambiguity (case 2).
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SIFT Feature Matching: Distance Ratio

The SIFT paper recommends to use a threshold on 0.8: 

Where does this magic number come from?

73

“A threshold of 0.8 eliminates 90% of the 
incorrect matches while discarding less 
than 5% of the correct matches.”

“This figure was generated by matching 
images following random scale and 
orientation change, with viewpoint change 
of 30 degrees, and addition of 2% image 
noise, against a database of 40,000 
keypoints.”

𝑑1

𝑑2

 <  0.8

0.8 separates the areas under the 
curves (left to right)



Outline

• Automatic Scale Selection

• The SIFT blob detector and descriptor

• Other corner and blob detectors and descriptors
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“FAST” Corner Detector

• FAST: Features from Accelerated Segment Test 

• Analyses intensities along a ring of 16 pixels centered on 
the pixel of interest 𝒑

• 𝒑 is a FAST corner if a set of N contiguous pixels on the 
ring are: 

• all brighter than the pixel intensity  𝑰(𝒑) + 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅, 

• or all darker than 𝑰 𝒑 − 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 

• Common value of N: 12

• A simple classifier is used to check the quality of corners and reject the weak ones

• FAST is the fastest corner detector ever made: can process 100 million pixels per second (<3ms per VGA image)

• Issue: it is very sensitive to image noise (high in low light). This is why Harris is still more common despite a bit slower

• In fact, FAST was initially proposed to find candidate corner regions to scout with the Harris detector

75

Rosten, Drummond, Fusing points and lines for high performance tracking, International Conference on Computer Vision (ICCV), 2005. PDF.

Rosten, Porter, Drummond, “Faster and better: a machine learning approach to corner detection”, 
IEEE Trans. Pattern Analysis and Machine Intelligence, 2010. PDF.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiqtOft24zXAhXHWhQKHT3PD_UQFggoMAA&url=http://citeseerx.ist.psu.edu/viewdoc/download?doi%3D10.1.1.451.4631%26rep%3Drep1%26type%3Dpdf&usg=AOvVaw3bqh0ilyVWZw-vDDiSpgJv
https://arxiv.org/pdf/0810.2434


“SURF” Blob Detector & Descriptor

• SURF: Speeded Up Robust Features

• Similar to SIFT but much faster

• Basic idea: approximate Gaussian and LoG filters using box filters

• Results comparable with SIFT, plus:

• Faster computation

• Generally shorter descriptors

76Bay, Tuytelaars, Van Gool, " Speeded Up Robust Features ", European Conference on Computer Vision (ECCV) 2006. PDF.

Original second order partial derivatives of 
a Gaussian

SURF Approximation using box filters

𝜕2𝐺(𝑥, 𝑦)

𝜕𝑦2

𝜕2𝐺(𝑥, 𝑦)

𝜕𝑥𝜕𝑦

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjX-vfW24zXAhUKcRQKHSxgANgQFgg3MAE&url=http://www.vision.ee.ethz.ch/~surf/eccv06.pdf&usg=AOvVaw28hygEk-vM5KUqWVEYerq2


“BRIEF” Descriptor (can be applied to corners or blobs)

• BRIEF: Binary Robust Independent Elementary Features 

• Goal: high speed description computation and matching

• Binary descriptor formation: 
• Smooth image 
• for each detected keypoint (e.g. FAST), 
• sample 128 intensity pairs (𝑝1

𝑖 , 𝑝2
𝑖) (𝑖 = 1, … , 128) 

within a squared patch around the keypoint 
• Create an empty 128-element descriptor
• for each 𝑖𝑡ℎpair

• if 𝐼𝑝1
𝑖 < 𝐼𝑝2

𝑖  then set 𝑖𝑡ℎ bit of descriptor to 1 
• else to 0 

• The pattern is generated randomly (or learned) only once; then, the same pattern is 
used for all patches

• Pros: Binary descriptor: allows very fast Hamming distance matching (count of the 
number of bits that are different in the descriptors matched)

• Cons: Not scale/rotation invariant 

77
Calonder, Lepetit, Strecha, Fua, BRIEF: Binary Robust Independent Elementary Features, 

European Conference on Computer Vision (ECCV), 2010. PDF.

Pattern for intensity pair samples – 
generated randomly 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiN0daO3IzXAhWGthQKHc7LC4cQFggrMAA&url=https://www.cs.ubc.ca/~lowe/525/papers/calonder_eccv10.pdf&usg=AOvVaw3dZQ_4wdKEof-9tuIO68uB


“ORB” Descriptor (can be applied to corners or blobs)

• ORB: Oriented FAST and Rotated BRIEF

• Keypoint detector originally based on FAST

• Binary descriptor based on BRIEF but adds an 
orientation component to make it rotation 
invariant

78
Rublee,Rabaud, Konolige, Bradski,“ORB: an efficient alternative to SIFT or SURF". 

IEEE International Conference on Computer Vision (ICCV), 2011. PDF.

https://www.researchgate.net/profile/Gary_Bradski/publication/221111151_ORB_an_efficient_alternative_to_SIFT_or_SURF/links/00b4951c369020213a000000/ORB-an-efficient-alternative-to-SIFT-or-SURF.pdf


“BRISK” Descriptor (can be applied to corners or blobs)

• BRISK: Binary Robust Invariant Scalable Keypoints 

• Keypoint detector based on FAST

• Binary descriptor

• Both rotation and scale invariant 

• Binary descriptor, formed by pairwise intensity comparisons (like 
BRIEF)  but on a radially symmetric sampling pattern

• Red circles: size of the smoothing kernel applied 

• Blue circles: smoothed pixel value used 

• Detection and descriptor speed:  10 times faster than SURF

• Slower than BRIEF, but scale- and rotation- invariant

79Leutenegger, Chli, Siegwart. BRISK: Binary Robust invariant scalable keypoints, ICCV 2011. PDF

http://www.margaritachli.com/papers/ICCV2011paper.pdf


“FREAK” Descriptor (can be applied to corners or blobs)

• FREAK: Fast Retina Keypoint 

• Rotation and scale invariant 

• Binary descriptor

• Sampling pattern similar to BRISK but uses a more pronounced “retinal” (i.e., 
log-polar) sampling pattern inspired by the human retina: higher density of 
points near the center

• Pairwise intensity comparisons form binary strings similar to BRIEF

• Pairs are learned (as in ORB)

• Circles indicate size of smoothing kernel

• Coarse-to-fine matching (cascaded approach): first compare the first half of 
bits; if distance smaller than threshold, proceed to compare the next bits, etc.

• Faster to compute, less memory and than SIFT, SURF or BRISK

80Alahi, Ortiz, Vandergheynst. FREAK: Fast Retina Keypoint, Conference  on Computer Vision and Pattern Recognition (CVPR), 2012. PDF.

Human retina

FREAK sampling pattern

https://infoscience.epfl.ch/record/175537/files/2069.pdf


“LIFT” Detector and Descriptor

• LIFT: Learned Invariant Feature Transform

• Rotation, scale, viewpoint and illumination invariant 

• Learned feature detector, orientation, and descriptor (self-supervised via SFM)

• Not learned jointly but disjointly:

1. First, a network predicts a feature location

2. Second, another network predicts the patch orientation which is used to derotate the 
patch.

3. Then another neural network is used to generate a patch descriptor (128 
dimensional) from the derotated patch.

• Illumination invariance is achieved by randomizing illuminations during training.

• LIFT descriptor beats SIFT in repeatability

81

Keypoints with scales 
and orientations 

CNN

A CNN predicts descriptor

Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, Pascal Fua, 
LIFT: Learned Invariant Feature Transform, European Conference on Computer Vision (ECCV) 2016. PDF.

https://arxiv.org/abs/1603.09114


LIFT vs SIFT

82https://youtu.be/hhxAttChmCo 

https://youtu.be/hhxAttChmCo


“SuperPoint” Detector and Descriptor

• Joint learning of keypoint location and descriptor. Self-supervised.

• Trained on synthetic images and fined tuned on real images

• Detector less accurate than SIFT and LIFT, but descriptor outperforms SIFT and LIFT

• But slower than SIFT and LIFT

83
Detone, Malisiewicz, Rabinovich. SuperPoint: Self-Supervised Interest Point Detection and Description. CVPRW 2018. PDF.

https://arxiv.org/abs/1712.07629


Recap Table

84

Detector Localization Accuracy 
of the detector

Descriptor that can be used Efficiency Relocalization & Loop closing

Harris ++++ Patch
SIFT/LIFT
BRIEF
ORB
BRISK
FREAK

+++
+
++++
++++
+++
++++

+
+++++
+++
++++
+++
++++

Shi-Tomasi ++++ Patch
SIFT
BRIEF
ORB
BRISK
FREAK

++
+
++++
++++
+++
++++

+
+++++
+++
++++
+++
++++

FAST ++++ Patch
SIFT/LIFT
BRIEF
ORB
BRISK
FREAK

++++
+
++++
++++
+++
++++

+
+++++
+++
++++
+++
++++

SIFT +++ SIFT + ++++

SURF +++ SURF ++ ++++

SuperPoint ++ SuperPoint + +++++



Summary (things to remember)

• Similarity metrics: NCC (ZNCC), SSD (ZSSD), SAD (ZSAD), Census Transform
• Point feature detection

• Properties and invariance to transformations
• Challenges: rotation, scale, view-point, and illumination changes

• Extraction
• Moravec
• Harris and Shi-Tomasi

• Rotation invariance
• Automatic Scale selection
• Descriptor

• Intensity patches
• Canonical representation: how to make them invariant to transformations: rotation, scale, illumination, and view-

point (affine)
• Better solution: Histogram of oriented gradients: SIFT descriptor

• Matching
• (Z)SSD, SAD, NCC, Hamming distance (last one only for binary descriptors)

ratio 1st /2nd closest descriptor
• Depending on the task, you may want to trade off repeatability and robustness for speed: approximated solutions, combinations 

of efficient detectors and descriptors.
• Fast corner detector: FAST; 
• Keypoint descriptors faster than SIFT: SURF, BRIEF, ORB, BRISK

85



Readings

• Ch. 7.1 of Szeliski book, 2nd Edition 

• Chapter 4 of Autonomous Mobile Robots book: link

• Ch. 13.3 of Peter Corke book

86

http://rpg.ifi.uzh.ch/docs/teaching/2023/Ch4_AMRobots.pdf


Understanding Check

Are you able to answer:

• How does automatic scale selection work?

• What are the good and the bad properties that a function for automatic scale selection should have or not 
have?

• How can we implement scale invariant detection efficiently? (show that we can do this by resampling the 
image vs rescaling the kernel).

• What is a feature descriptor? (patch of intensity value vs histogram of oriented gradients). How do we 
match descriptors?

• How is the keypoint detection done in SIFT and how does this differ from Harris?

• How does SIFT achieve orientation invariance?

• How is the SIFT descriptor built?

• What is the repeatability of the SIFT detector after a rescaling of 2? And for a 50 degrees viewpoint change?

• Illustrate the 1st to 2nd closest ratio of SIFT detection: what’s the intuitive reasoning behind it? Where does 
the 0.8 factor come from?

• How does the FAST detector work? What are its pros and cons compared with Harris?
87
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