
Vision Algorithms for Mobile Robotics

Lecture 06
Point Feature Detection and Matching – Part 2

Davide Scaramuzza

https://rpg.ifi.uzh.ch
1

https://rpg.ifi.uzh.ch/

Lab Exercise 4 – Today

Implement SIFT blob detection and matching

2

Main questions

• What features are repeatable and distinctive?

• How to describe a feature?

• How to establish correspondences, i.e., compute matches?

3

Feature Matching

For each point, how to match its corresponding point in the other image?

• Brute-force Matching: compare each feature descriptor of Image 1 against the descriptor of each
feature in Image 2 and assign as correspondence the feature with closest descriptor (e.g.,
minimum of SSD). If each image contains N features, we need to perform 𝑵𝟐 comparisons.

4

?

Image 1 Image 2

Recall: Patch and Census Descriptors

• Patch descriptor
(i.e., patch of intensity values, integer values)

• Census descriptor (binary values)

5

HOG Descriptor (Histogram of Oriented Gradients)

• The patch is divided into a grid of cells and for each cell a histogram of gradient directions weighted by the
gradient magnitude is compiled.

• The HOG descriptor is the concatenation of these histograms (used in SIFT)

• Differently from the patch and Census descriptors, HOG has float values.

6

Example of gradient histogram with 8 orientation bins.
Each vote is weighted by the gradient magnitude

0 

HOG Descriptor:
(1D vector)

0  0  0 

…

Feature Descriptor Invariance

Are feature descriptors invariant (robust) to geometric and photometric changes?

7

Image 1 Image 2 Image 1 Image 2

Photometric changes: illuminationGeometric changes: scale, rotation, viewpoint

Outline

• How to achieve descriptor invariance to:
• Scale

• Rotation

• Viewpoint

• The SIFT blob detector and descriptor

• Other corner and blob detectors and descriptors

8

Scale changes

How can we match image patches corresponding to the same feature but belonging to
images taken at different scales?

9

Image 2Image 1

Scale changes

How can we match image patches corresponding to the same feature but belonging to
images taken at different scales? Possible solution: rescale the patch

10

Image 1 Image 2

Scale changes

How can we match image patches corresponding to the same feature but belonging to
images taken at different scales? Possible solution: rescale the patch

11

Image 1 Image 2

Scale changes

How can we match image patches corresponding to the same feature but belonging to
images taken at different scales? Possible solution: rescale the patch

12

Image 1 Image 2

Scale changes

• Scale search is time consuming (needs to be done individually for all patches
in one image)

• Complexity is 𝑁2𝑆 assuming 𝑁 features per image and 𝑆 rescalings per
feature

• Solution: automatic scale selection: automatically assign each feature its
own “scale” (i.e., size)

13

Automatic Scale Selection

• Idea: Design a function on the image patch, which is scale invariant (i.e., it has the same
value for corresponding patches, even if they are at different scales)

14

scale = 1/2

f

patch size

Image 1 f

patch size

Image 2

Automatic Scale Selection

• Idea: Design a function on the image patch, which is scale invariant (i.e., it has the same
value for corresponding patches, even if they are at different scales)
• Find local extrema of this function

• The patch size at which the local extremum is reached should be invariant to image rescaling

• Important: this scale invariant patch size is found in each image independently

15

scale = 1/2

f

patch size

Image 1 f

patch size

Image 2

s1 s2

Automatic Scale Selection: Example

16

)),,((yxIf

Image 1 Image 2

𝜎

))',','((yxIf

𝜎′

Automatic Scale Selection: Example

17

Image 1

𝜎 𝜎′

Image 2

)),,((yxIf))',','((yxIf

Automatic Scale Selection: Example

18

Image 1

𝜎 𝜎′

Image 2

)),,((yxIf))',','((yxIf

Automatic Scale Selection: Example

19

Image 1

𝜎 𝜎′

Image 2

)),,((yxIf))',','((yxIf

Automatic Scale Selection: Example

20

Image 1

𝜎 𝜎′

Image 2

)),,((yxIf))',','((yxIf

Automatic Scale Selection: Example

21

Image 1

𝜎 𝜎′s1 s2

Image 2

)),,((yxIf))',','((yxIf

Automatic Scale Selection: Example

22

Image 1

When the right scale is found, the patches must be normalized to
a canonical size so that they can be compared by SSD.

Patch normalization is done via warping.

Image 2

Automatic Scale Selection: Example

23

Image 1 Image 2

Automatic Scale Selection

• A “good” function for scale detection should have a single & sharp peak

• What if there are multiple peaks? Is it really a problem?

• What is a good function?

• Sharp intensity changes are good regions to monitor in order to identify the scale

24

f

patch size

bad

f

patch size

Very good!f

patch size

Good or Bad?

Automatic Scale Selection

• The ideal function for determining the scale is one that highlights sharp discontinuities

• Solution: convolve image with a kernel that highlights edges

• It has been shown that the Laplacian of Gaussian kernel is optimal under certain
assumptions [Lindeberg’94]:

25

Kernel Imagef = 

2

2

2

2
2),(),(

),(),,(
y

yxG

x

yxG
yxGyxLoG




+




== 



Lindeberg, Scale-space theory: A basic tool for analysing structures at different scales, Journal of Applied Statistics, 1994. PDF.

Careful to not confuse it with LOG for edge detection. There we looked for zero
crossings across x,y while now we look for local extrema across scales

https://www.researchgate.net/profile/Tony_Lindeberg/publication/2255734_Scale-Space_Theory_A_Basic_Tool_for_Analysing_Structures_at_Different_Scales/links/09e4150d0557ac8ef8000000/Scale-Space-Theory-A-Basic-Tool-for-Analysing-Structures-at-Different-Scales.pdf

Automatic Scale Selection

The correct scale(s) is (are) found as local extrema across scales

26

Scale
(i.e., 𝜎 of the LoG)

f

Scale (𝜎)

Outline

• How to achieve descriptor invariance to:
• Scale

• Rotation

• Viewpoint

• The SIFT blob detector and descriptor

• Other corner and blob detectors and descriptors

27

How to achieve invariance to Rotation

Derotation:

• Determine patch orientation
e.g., eigenvectors of M matrix of Harris or
dominant gradient direction (see next slide)

• Derotate patch through “patch warping”
This puts the patches into a canonical orientation

28

How to determine the patch orientation?

1. First, multiply the patch by a Gaussian kernel to make the shape circular rather than square

2. Then, compute gradients vectors at each pixel

3. Build a histogram of gradient orientations weighted by the gradient magnitudes. This histogram is a particular case of HOG
descriptor (a grid of 1×1 cells)

4. Extract all local maxima in the histogram: each local maximum above a threshold is a candidate dominant orientation.

5. Construct a different keypoint descriptor for each dominant orientation

29

0 2𝜋

Dominant gradient direction

Outline

• How to achieve descriptor invariance to:
• Scale

• Rotation

• Viewpoint

• The SIFT blob detector and descriptor

• Other corner and blob detectors and descriptors

30

How to achieve invariance to small viewpoint changes?

Affine warping provides invariance to small view-point changes

• The second moment matrix M of the Harris detector can be used to identify the two directions of fastest
and slowest change of SSD around the feature

• Out of these two directions, an elliptic patch is extracted

• The region inside the ellipse is normalized to a canonical circular patch

31

Image 1 Image 2

Recap:
How to achieve Scale, Rotation, and Affine-invariant patch matching

32

Image 1 Image 2

1. Scale assignment: compute the scale using the LoG operator. If mutiple local extrema exist, assign multiple scales

2. Multiply the patch by a Gaussian kernel to make the shape circular rather than square

3. Rotation assignment: use Harris or gradient histogram to find dominant orientation. If multiple local extrema exist,
assign multiple orientations

4. Affine invariance: use Harris eigenvectors to extract affine transformation parameters

5. Warp the patch into a canonical patch

How to warp a patch?

• Start with an “empty” canonical patch (all pixels set to 0)

• For each pixel (𝑥, 𝑦) in the empty patch, apply the warping function 𝑾(𝒙, 𝒚)
to compute the corresponding position in the source image. It will be in
floating point and will fall between the image pixels.

• Interpolate the intensity values of the 4 closest pixels in the detected image
using either of:
• Nearest neighbor interpolation

• Bilinear interpolation

• Bicubic interpolation

33

Example: Similarity Transformation (rotation, translation, rescaling)

• Warping function 𝑊: rotation (𝜃) plus rescaling (𝑠) and translation (𝑎, 𝑏):

34

𝑥’ = 𝑠(𝑥 cos𝜃 – 𝑦 sin𝜃) + 𝑎
𝑦’ = 𝑠(𝑥 sin𝜃 + 𝑦 cos𝜃) + 𝑏

Patch detected in the image

𝑊

Empty canonical patch

(𝑥, 𝑦)

(𝑥’, 𝑦’)

Example: Rescaling

35

Nearest Neighbor vs Bilinear vs Bicubic Interpolation

36

Bilinear Interpolation

• It is an extension of linear interpolation for interpolating functions of two variables (e.g., 𝑥 and 𝑦) on a
rectilinear 2D grid.

• The key idea is to perform linear interpolation first in one direction, and then again in the other direction.

• Although each step is linear in the sampled values and in the position, the interpolation as a whole is not
linear but rather quadratic in the sample location.

37

In this geometric visualization, the value at the black spot is the sum of the value at each
colored spot multiplied by the area of the rectangle of the same color.

𝐼(0,0) 𝐼(1,0)

𝐼(0,1) 𝐼(1,1)

𝑥

𝑦
𝐼 𝑥, 𝑦 = 𝐼 0,0 1 − 𝑥 1 − 𝑦 +

𝐼 0,1 1 − 𝑥 𝑦 +
𝐼 1,0 𝑥 1 − 𝑦 +
𝐼 1,1 𝑥 𝑦

This formula
won’t be asked
at the exam ☺

Disadvantage of Patch Descriptors

• Disadvantage of patch descriptors:
• If the warp is not estimated accurately, very small errors in rotation, scale, and view-

point will affect matching score significantly

• Computationally expensive (need to unwarp every patch)

38

Outline

• Automatic Scale Selection

• The SIFT blob detector and descriptor

• Other corner and blob detectors and descriptors

39

SIFT Descriptor

• Scale Invariant Feature Transform

• Invented by David Lowe in 2004

40Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, Internal Journal of Computer Vision, 2004. PDF

https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

SIFT Descriptor

Descriptor computation:

• Consider a 𝟏𝟔 × 𝟏𝟔 pixel patch

• Multiply the patch by a Gaussian filter, compute dominant orientation, and de-rotate patch

• Compute HOG descriptor

• Divide patch into 4×4 cells

• Use 8 bin histograms (, i.e., 8 directions)

• Concatenate all histograms into a single 1D vector

• Resulting SIFT descriptor: 4×4×8 = 128 float values

• Descriptor Matching: SSD (i.e., Euclidean-distance)

• Why 4×4 cells and why 8 bins? See later

41
Is HOG invariant to additive or affine illumination changes (i.e., 𝐼′(𝑥, 𝑦) = 𝛼𝐼 𝑥, 𝑦 + 𝛽)?

Descriptor Normalization

• The HOG descriptor is invariant to additive illumination because it is based on gradients

• To make it invariant affine illumination changes, the descriptor vector 𝒗 is then
normalized such that its 𝐿2 norm is 1:

ഥ𝒗 =
𝒗

σ𝑖
𝑛 𝑣𝑖

2

• We can conclude that the SIFT descriptor is invariant to affine illumination changes

42

SIFT Matching Robustness

• Can handle severe viewpoint changes (up to 50 degree out-of-plane rotation)

• Can handle even severe non affine changes in illumination (low to bright scenes)

• More computationally expensive than the patch descriptor

• Original SIFT binary files: http://people.cs.ubc.ca/~lowe/keypoints

• OpenCV C/C++ implementation: https://docs.opencv.org/master/da/df5/tutorial_py_sift_intro.html

43

http://people.cs.ubc.ca/~lowe/keypoints
https://docs.opencv.org/master/da/df5/tutorial_py_sift_intro.html

SIFT Detector

• SIFT uses the Difference of Gaussian (DoG) kernel instead of Laplacian of Gaussian (LoG) because
computationally cheaper

• The proof that LoG can be approximated by a difference of Gaussian comes from the Heat Equation:

44

),(),(),(),(yxGyxGyxDoGyxLOG k  −=

𝜕𝐺𝜎

𝜕𝜎
= 𝜎 ∇2𝐺𝜎

SIFT Detector (location + scale)

SIFT keypoints: local extrema in both space and scale of the DoG images

• Each pixel is compared to 26 neighbors (below in green): its 8 neighbors in the current image + 9 neighbors
in the adjacent upper scale + 9 neighbors in the adjacent lower scale

• If the pixel is a global maximum or minimum (i.e., extrema) with respect to its 26 neighbors then it is
selected as SIFT feature

45

For each extrema, the output of the
SIFT detector is the location (𝑥, 𝑦)

and the scale 𝑠

Example

46

DoG Images example

47

Magnitude of (𝐺(𝑘𝜎) − 𝐺(𝜎)) | 𝑠 = 4; 𝜎 = 1.6 |

DoG Images example

48

Magnitude of (𝐺(𝑘2𝜎) − 𝐺 𝑘𝜎)| 𝑠 = 4; 𝜎 = 1.6 |

DoG Images example

49

Magnitude of (𝐺(𝑘3𝜎) − 𝐺 𝑘2𝜎)| 𝑠 = 4; 𝜎 = 1.6 |

DoG Images example

50

Magnitude of (𝐺(𝑘4𝜎) − 𝐺(𝑘3𝜎)) | 𝑠 = 4; 𝜎 = 1.6 |

DoG Images example

51

Magnitude of (𝐺 𝑘5𝜎 − 𝐺 𝑘4𝜎) | 𝑠 = 4; 𝜎 = 1.6 |
(second octave shown at the input resolution for convenience)

DoG Images example

52

Magnitude of (𝐺 𝑘6𝜎 − 𝐺 𝑘5𝜎) | 𝑠 = 4; 𝜎 = 1.6 |
(second octave shown at the input resolution for convenience)

DoG Images example

53

Magnitude of (𝐺 𝑘7𝜎 − 𝐺 𝑘6𝜎) | 𝑠 = 4; 𝜎 = 1.6 |
(second octave shown at the input resolution for convenience)

DoG Images example

54

Magnitude of (𝐺 𝑘8𝜎 − 𝐺 𝑘7𝜎) | 𝑠 = 4; 𝜎 = 1.6 |
(second octave shown at the input resolution for convenience)

DoG Images example

55

Magnitude of (𝐺 𝑘9𝜎 − 𝐺 𝑘8𝜎) | 𝑠 = 4; 𝜎 = 1.6 |
(third octave shown at the input resolution for convenience)

Local extrema of DoG images across Scale and Space

56

What are SIFT features like?
Hint: Remember the definition of filtering as template matching

How it is implemented in practice

1. Build a Space-Scale Pyramid:

• The initial image is incrementally convolved with Gaussians
G(𝑘𝑖𝜎) to produce blurred images separated by a constant
factor 𝑘 in scale space (shown stacked in the left column).

• The initial Gaussian G(𝜎) has 𝜎=1.6

• 𝑘 is chosen: 𝑘 = 2 Τ1
𝑠, where 𝑠 is the number of intervals

into which each octave of scale space is divided

• For efficiency reasons, when 𝑘𝑖 equals 2, the image is
downsampled by a factor of 2 and then the procedure is
repeated again up to 5 octaves (pyramid levels)

• Adjacent blurred images are then subtracted to produce the
Difference-of-Gaussian (DoG) images

2. Scale-Space extrema detection

• Detect local maxima and minima in space-scales (see previous
slide)

57

G(𝑘𝜎)

G(𝑘𝜎)

G(𝑘𝜎)

G(𝑘𝜎)

G(𝑘𝜎)

G(𝜎)

G(k𝜎)

G(𝑘2𝜎)

G(𝑘3𝜎)

G(𝑘4𝜎)

G(𝜎)

G(𝑘𝜎)

G(𝑘2𝜎)

G(𝑘3𝜎)

G(𝑘4𝜎)

Scale 1

Scale 2

Scale 3

Scale 4

58

SIFT: Recap

• SIFT: Scale Invariant Feature Transform

• An approach to detect and describe regions of interest in an image.
• SIFT detector = DoG detector

• SIFT features are invariant to 2D rotation, and reasonably invariant to
rescaling, viewpoint changes (up to 50 degrees), and illumination

• It runs in real-time but expensive (10 Hz on an i7 laptop)
• The expensive steps are the scale detection and descriptor extraction

59

Original SIFT Demo by David Lowe

Download original SIFT binaries and Matlab function from :
http://people.cs.ubc.ca/~lowe/keypoints

60

>>[image1, descriptor1s, locs1] = sift('scene.pgm');

>>showkeys(image1, locs1);

>>[image2, descriptors2, locs2] = sift('book.pgm');

>>showkeys(image2, locs2);

>>match('scene.pgm','book.pgm');

http://people.cs.ubc.ca/~lowe/keypoints

What’s the output of SIFT?

SIFT outputs N features, each one being a data structure containing:

• Descriptor: 4x4x8 = 128-element vector

• Location (pixel coordinates of the center of the patch): 2-element vector

• Scale (i.e., size) of the patch: 1 scalar value

• Orientation (i.e., angle of the patch): 1 scalar value

61

SIFT Repeatability with Viewpoint Changes

62

Repeatability=

correspondences detected

correspondences present

Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, Internal Journal of Computer Vision, 2004. PDF

https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

SIFT Repeatability with Number of Scales per Octave

63

Repeatability=

correspondences detected

correspondences present

Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, Internal Journal of Computer Vision, 2004. PDF

https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Influence of Number of Orientations and Number of Sub-patches

The graph shows that a single orientation histogram (n = 1) is very poor at discriminating.
The results improve with a 4x4 array of histograms with 8 orientations.

64

4x4 HOGs

Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, Internal Journal of Computer Vision, 2004. PDF

https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Application of SIFT to Object recognition

• Can be implemented easily by returning the object with the largest number of
correspondences shared with the template image

• For planar objects, 4-point RANSAC can be used to remove outliers (see Lecture 9).

• For rigid 3D objects, 5-point RANSAC (see Lecture 9).

65

Application of SIFT to Panorama Stitching

66

AutoStitch: http://matthewalunbrown.com/autostitch/autostitch.html
M. Brown and D. G. Lowe. Recognising Panoramas, International Conference on Computer Vision (ICCV), 2003. PDF.

http://matthewalunbrown.com/autostitch/autostitch.html
http://matthewalunbrown.com/papers/iccv2003.pdf

How many parameters can we tune for SIFT and Harris?

SIFT

1. Patch size (e.g., 16x16)

2. Sigma of Gaussian to transform the square
into a circular patch

3. Number of subpatches (e.g., 4x4)

4. Number of histogram bins (e.g., 8)

5. Threshold to choose dominant orientations

6. Number of octaves (e.g., 5)

7. Number of scales per octave (e.g., 3)

8. Sigma_0 (e.g., 1.6)

9. Distance ratio (e.g., 0.8)

67

HARRIS

1. Patch size (the larger the size the smaller the
sensitivity to fine details)

2. Sigma of Gaussian to transform the square into a
circular patch

3. Cornerness response magic number (e.g., 0.04-0.15
for Harris detector)

4. Cornerness response threshold

5. Size of non-maxima suppression: the larger the size
the fewer the local maxima (i.e., corners)

6. grid size (image bucketing)

Main questions

• What features are repeatable and distinctive?

• How to describe a feature?

• How to establish correspondences, i.e., compute matches?

68

Feature Matching

69

?

Feature Matching

• Given a feature in 𝐼1, how to find the best match in 𝐼2?

1. Define distance function that compares two descriptors ((Z)SSD, (Z)SAD, (Z)NCC or Hamming distance for binary
descriptors (e.g., Census, HOG, ORB, BRIEF, BRISK, FREAK)

2. Brute-force matching:

1. Compare each feature in 𝐼1 against all the features in 𝐼2 (𝑁2 comparisons, where 𝑁 is the number of
features in each image)

2. Take the one at minimum distance, i.e., the closest descriptor

70

?
𝐼1 𝐼2

Feature Matching

• Issues with closest descriptor: it returns a match also when the true match is absent

• Better approach: add constraint on the ratio between distances from 1st to 2nd closest
descriptor:

where:

𝑑1 is the distance from the closest descriptor
𝑑2 is the distance from the 2nd closest descriptor

71

𝑑1

𝑑2

 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑢𝑠𝑢𝑎𝑙𝑙𝑦 0.8)

Distance Ratio: Explanation

• In SIFT, the nearest neighbor is defined as the keypoint with minimum Euclidean distance. There can be two
possible issues if we only take the match with closest descriptor:

1. Some features in Image 1 may not have a correct match in Image 2 because they arise from background clutter or were not
detected in Image 1.

2. There are multiple matching features in Image 2. How do we solve these ambiguities? Should we just pick the closest descriptor
or do we discard them a priori.

• An effective measure is obtained by comparing the distance from the closest neighbor to the distance from
the second-closest neighbor. This measure performs well because correct matches need to have the
closest neighbor significantly closer than the closest incorrect match to achieve reliable matching.

• For false matches, there will likely be a number of other false matches within similar distances due to the
high dimensionality of the feature space (this problem is known as curse of dimensionality).

• We can think of the distance from the second-closest match as providing an estimate of the density of
false matches within this portion of the feature space (case 1) and, at the same time, identifying specific
instances of feature ambiguity (case 2).

72

SIFT Feature Matching: Distance Ratio

The SIFT paper recommends to use a threshold on 0.8:

Where does this magic number come from?

73

“A threshold of 0.8 eliminates 90% of the
incorrect matches while discarding less
than 5% of the correct matches.”

“This figure was generated by matching
images following random scale and
orientation change, with viewpoint change
of 30 degrees, and addition of 2% image
noise, against a database of 40,000
keypoints.”

𝑑1

𝑑2

 < 0.8

0.8 separates the areas under the
curves (left to right)

Outline

• Automatic Scale Selection

• The SIFT blob detector and descriptor

• Other corner and blob detectors and descriptors

74

“FAST” Corner Detector

• FAST: Features from Accelerated Segment Test

• Analyses intensities along a ring of 16 pixels centered on
the pixel of interest 𝒑

• 𝒑 is a FAST corner if a set of N contiguous pixels on the
ring are:

• all brighter than the pixel intensity 𝑰(𝒑) + 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅,

• or all darker than 𝑰 𝒑 − 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅

• Common value of N: 12

• A simple classifier is used to check the quality of corners and reject the weak ones

• FAST is the fastest corner detector ever made: can process 100 million pixels per second (<3ms per VGA image)

• Issue: it is very sensitive to image noise (high in low light). This is why Harris is still more common despite a bit slower

• In fact, FAST was initially proposed to find candidate corner regions to scout with the Harris detector

75

Rosten, Drummond, Fusing points and lines for high performance tracking, International Conference on Computer Vision (ICCV), 2005. PDF.

Rosten, Porter, Drummond, “Faster and better: a machine learning approach to corner detection”,
IEEE Trans. Pattern Analysis and Machine Intelligence, 2010. PDF.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiqtOft24zXAhXHWhQKHT3PD_UQFggoMAA&url=http://citeseerx.ist.psu.edu/viewdoc/download?doi%3D10.1.1.451.4631%26rep%3Drep1%26type%3Dpdf&usg=AOvVaw3bqh0ilyVWZw-vDDiSpgJv
https://arxiv.org/pdf/0810.2434

“SURF” Blob Detector & Descriptor

• SURF: Speeded Up Robust Features

• Similar to SIFT but much faster

• Basic idea: approximate Gaussian and LoG filters using box filters

• Results comparable with SIFT, plus:

• Faster computation

• Generally shorter descriptors

76Bay, Tuytelaars, Van Gool, " Speeded Up Robust Features ", European Conference on Computer Vision (ECCV) 2006. PDF.

Original second order partial derivatives of
a Gaussian

SURF Approximation using box filters

𝜕2𝐺(𝑥, 𝑦)

𝜕𝑦2

𝜕2𝐺(𝑥, 𝑦)

𝜕𝑥𝜕𝑦

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjX-vfW24zXAhUKcRQKHSxgANgQFgg3MAE&url=http://www.vision.ee.ethz.ch/~surf/eccv06.pdf&usg=AOvVaw28hygEk-vM5KUqWVEYerq2

“BRIEF” Descriptor (can be applied to corners or blobs)

• BRIEF: Binary Robust Independent Elementary Features

• Goal: high speed description computation and matching

• Binary descriptor formation:
• Smooth image
• for each detected keypoint (e.g. FAST),
• sample 128 intensity pairs (𝑝1

𝑖 , 𝑝2
𝑖) (𝑖 = 1, … , 128)

within a squared patch around the keypoint
• Create an empty 128-element descriptor
• for each 𝑖𝑡ℎpair

• if 𝐼𝑝1
𝑖 < 𝐼𝑝2

𝑖 then set 𝑖𝑡ℎ bit of descriptor to 1
• else to 0

• The pattern is generated randomly (or learned) only once; then, the same pattern is
used for all patches

• Pros: Binary descriptor: allows very fast Hamming distance matching (count of the
number of bits that are different in the descriptors matched)

• Cons: Not scale/rotation invariant

77
Calonder, Lepetit, Strecha, Fua, BRIEF: Binary Robust Independent Elementary Features,

European Conference on Computer Vision (ECCV), 2010. PDF.

Pattern for intensity pair samples –
generated randomly

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiN0daO3IzXAhWGthQKHc7LC4cQFggrMAA&url=https://www.cs.ubc.ca/~lowe/525/papers/calonder_eccv10.pdf&usg=AOvVaw3dZQ_4wdKEof-9tuIO68uB

“ORB” Descriptor (can be applied to corners or blobs)

• ORB: Oriented FAST and Rotated BRIEF

• Keypoint detector originally based on FAST

• Binary descriptor based on BRIEF but adds an
orientation component to make it rotation
invariant

78
Rublee,Rabaud, Konolige, Bradski,“ORB: an efficient alternative to SIFT or SURF".

IEEE International Conference on Computer Vision (ICCV), 2011. PDF.

https://www.researchgate.net/profile/Gary_Bradski/publication/221111151_ORB_an_efficient_alternative_to_SIFT_or_SURF/links/00b4951c369020213a000000/ORB-an-efficient-alternative-to-SIFT-or-SURF.pdf

“BRISK” Descriptor (can be applied to corners or blobs)

• BRISK: Binary Robust Invariant Scalable Keypoints

• Keypoint detector based on FAST

• Binary descriptor

• Both rotation and scale invariant

• Binary descriptor, formed by pairwise intensity comparisons (like
BRIEF) but on a radially symmetric sampling pattern

• Red circles: size of the smoothing kernel applied

• Blue circles: smoothed pixel value used

• Detection and descriptor speed: 10 times faster than SURF

• Slower than BRIEF, but scale- and rotation- invariant

79Leutenegger, Chli, Siegwart. BRISK: Binary Robust invariant scalable keypoints, ICCV 2011. PDF

http://www.margaritachli.com/papers/ICCV2011paper.pdf

“FREAK” Descriptor (can be applied to corners or blobs)

• FREAK: Fast Retina Keypoint

• Rotation and scale invariant

• Binary descriptor

• Sampling pattern similar to BRISK but uses a more pronounced “retinal” (i.e.,
log-polar) sampling pattern inspired by the human retina: higher density of
points near the center

• Pairwise intensity comparisons form binary strings similar to BRIEF

• Pairs are learned (as in ORB)

• Circles indicate size of smoothing kernel

• Coarse-to-fine matching (cascaded approach): first compare the first half of
bits; if distance smaller than threshold, proceed to compare the next bits, etc.

• Faster to compute, less memory and than SIFT, SURF or BRISK

80Alahi, Ortiz, Vandergheynst. FREAK: Fast Retina Keypoint, Conference on Computer Vision and Pattern Recognition (CVPR), 2012. PDF.

Human retina

FREAK sampling pattern

https://infoscience.epfl.ch/record/175537/files/2069.pdf

“LIFT” Detector and Descriptor

• LIFT: Learned Invariant Feature Transform

• Rotation, scale, viewpoint and illumination invariant

• Learned feature detector, orientation, and descriptor (self-supervised via SFM)

• Not learned jointly but disjointly:

1. First, a network predicts a feature location

2. Second, another network predicts the patch orientation which is used to derotate the
patch.

3. Then another neural network is used to generate a patch descriptor (128
dimensional) from the derotated patch.

• Illumination invariance is achieved by randomizing illuminations during training.

• LIFT descriptor beats SIFT in repeatability

81

Keypoints with scales
and orientations

CNN

A CNN predicts descriptor

Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, Pascal Fua,
LIFT: Learned Invariant Feature Transform, European Conference on Computer Vision (ECCV) 2016. PDF.

https://arxiv.org/abs/1603.09114

LIFT vs SIFT

82https://youtu.be/hhxAttChmCo

https://youtu.be/hhxAttChmCo

“SuperPoint” Detector and Descriptor

• Joint learning of keypoint location and descriptor. Self-supervised.

• Trained on synthetic images and fined tuned on real images

• Detector less accurate than SIFT and LIFT, but descriptor outperforms SIFT and LIFT

• But slower than SIFT and LIFT

83
Detone, Malisiewicz, Rabinovich. SuperPoint: Self-Supervised Interest Point Detection and Description. CVPRW 2018. PDF.

https://arxiv.org/abs/1712.07629

Recap Table

84

Detector Localization Accuracy
of the detector

Descriptor that can be used Efficiency Relocalization & Loop closing

Harris ++++ Patch
SIFT/LIFT
BRIEF
ORB
BRISK
FREAK

+++
+
++++
++++
+++
++++

+
+++++
+++
++++
+++
++++

Shi-Tomasi ++++ Patch
SIFT
BRIEF
ORB
BRISK
FREAK

++
+
++++
++++
+++
++++

+
+++++
+++
++++
+++
++++

FAST ++++ Patch
SIFT/LIFT
BRIEF
ORB
BRISK
FREAK

++++
+
++++
++++
+++
++++

+
+++++
+++
++++
+++
++++

SIFT +++ SIFT + ++++

SURF +++ SURF ++ ++++

SuperPoint ++ SuperPoint + +++++

Summary (things to remember)

• Similarity metrics: NCC (ZNCC), SSD (ZSSD), SAD (ZSAD), Census Transform
• Point feature detection

• Properties and invariance to transformations
• Challenges: rotation, scale, view-point, and illumination changes

• Extraction
• Moravec
• Harris and Shi-Tomasi

• Rotation invariance
• Automatic Scale selection
• Descriptor

• Intensity patches
• Canonical representation: how to make them invariant to transformations: rotation, scale, illumination, and view-

point (affine)
• Better solution: Histogram of oriented gradients: SIFT descriptor

• Matching
• (Z)SSD, SAD, NCC, Hamming distance (last one only for binary descriptors)

ratio 1st /2nd closest descriptor
• Depending on the task, you may want to trade off repeatability and robustness for speed: approximated solutions, combinations

of efficient detectors and descriptors.
• Fast corner detector: FAST;
• Keypoint descriptors faster than SIFT: SURF, BRIEF, ORB, BRISK

85

Readings

• Ch. 7.1 of Szeliski book, 2nd Edition

• Chapter 4 of Autonomous Mobile Robots book: link

• Ch. 13.3 of Peter Corke book

86

http://rpg.ifi.uzh.ch/docs/teaching/2023/Ch4_AMRobots.pdf

Understanding Check

Are you able to answer:

• How does automatic scale selection work?

• What are the good and the bad properties that a function for automatic scale selection should have or not
have?

• How can we implement scale invariant detection efficiently? (show that we can do this by resampling the
image vs rescaling the kernel).

• What is a feature descriptor? (patch of intensity value vs histogram of oriented gradients). How do we
match descriptors?

• How is the keypoint detection done in SIFT and how does this differ from Harris?

• How does SIFT achieve orientation invariance?

• How is the SIFT descriptor built?

• What is the repeatability of the SIFT detector after a rescaling of 2? And for a 50 degrees viewpoint change?

• Illustrate the 1st to 2nd closest ratio of SIFT detection: what’s the intuitive reasoning behind it? Where does
the 0.8 factor come from?

• How does the FAST detector work? What are its pros and cons compared with Harris?
87

	Slide 1: Vision Algorithms for Mobile Robotics Lecture 06 Point Feature Detection and Matching – Part 2
	Slide 2: Lab Exercise 4 – Today
	Slide 3: Main questions
	Slide 4: Feature Matching
	Slide 5: Recall: Patch and Census Descriptors
	Slide 6: HOG Descriptor (Histogram of Oriented Gradients)
	Slide 7: Feature Descriptor Invariance
	Slide 8: Outline
	Slide 9: Scale changes
	Slide 10: Scale changes
	Slide 11: Scale changes
	Slide 12: Scale changes
	Slide 13: Scale changes
	Slide 14: Automatic Scale Selection
	Slide 15: Automatic Scale Selection
	Slide 16: Automatic Scale Selection: Example
	Slide 17: Automatic Scale Selection: Example
	Slide 18: Automatic Scale Selection: Example
	Slide 19: Automatic Scale Selection: Example
	Slide 20: Automatic Scale Selection: Example
	Slide 21: Automatic Scale Selection: Example
	Slide 22: Automatic Scale Selection: Example
	Slide 23: Automatic Scale Selection: Example
	Slide 24: Automatic Scale Selection
	Slide 25: Automatic Scale Selection
	Slide 26: Automatic Scale Selection
	Slide 27: Outline
	Slide 28: How to achieve invariance to Rotation
	Slide 29: How to determine the patch orientation?
	Slide 30: Outline
	Slide 31: How to achieve invariance to small viewpoint changes?
	Slide 32: Recap: How to achieve Scale, Rotation, and Affine-invariant patch matching
	Slide 33: How to warp a patch?
	Slide 34: Example: Similarity Transformation (rotation, translation, rescaling)
	Slide 35: Example: Rescaling
	Slide 36: Nearest Neighbor vs Bilinear vs Bicubic Interpolation
	Slide 37: Bilinear Interpolation
	Slide 38: Disadvantage of Patch Descriptors
	Slide 39: Outline
	Slide 40: SIFT Descriptor
	Slide 41: SIFT Descriptor
	Slide 42: Descriptor Normalization
	Slide 43: SIFT Matching Robustness
	Slide 44: SIFT Detector
	Slide 45: SIFT Detector (location + scale)
	Slide 46: Example
	Slide 47: DoG Images example
	Slide 48: DoG Images example
	Slide 49: DoG Images example
	Slide 50: DoG Images example
	Slide 51: DoG Images example
	Slide 52: DoG Images example
	Slide 53: DoG Images example
	Slide 54: DoG Images example
	Slide 55: DoG Images example
	Slide 56: Local extrema of DoG images across Scale and Space
	Slide 57: How it is implemented in practice
	Slide 58
	Slide 59: SIFT: Recap
	Slide 60: Original SIFT Demo by David Lowe
	Slide 61: What’s the output of SIFT?
	Slide 62: SIFT Repeatability with Viewpoint Changes
	Slide 63: SIFT Repeatability with Number of Scales per Octave
	Slide 64: Influence of Number of Orientations and Number of Sub-patches
	Slide 65: Application of SIFT to Object recognition
	Slide 66: Application of SIFT to Panorama Stitching
	Slide 67: How many parameters can we tune for SIFT and Harris?
	Slide 68: Main questions
	Slide 69: Feature Matching
	Slide 70: Feature Matching
	Slide 71: Feature Matching
	Slide 72: Distance Ratio: Explanation
	Slide 73: SIFT Feature Matching: Distance Ratio
	Slide 74: Outline
	Slide 75: “FAST” Corner Detector
	Slide 76: “SURF” Blob Detector & Descriptor
	Slide 77: “BRIEF” Descriptor (can be applied to corners or blobs)
	Slide 78: “ORB” Descriptor (can be applied to corners or blobs)
	Slide 79: “BRISK” Descriptor (can be applied to corners or blobs)
	Slide 80: “FREAK” Descriptor (can be applied to corners or blobs)
	Slide 81: “LIFT” Detector and Descriptor
	Slide 82: LIFT vs SIFT
	Slide 83: “SuperPoint” Detector and Descriptor
	Slide 84: Recap Table
	Slide 85: Summary (things to remember)
	Slide 86: Readings
	Slide 87: Understanding Check

