™ Uni ity of 7 ROBOTICS &
A = PERCEPTION
i o) UNIVErsity o & GROUP

> - Z
Z M £ . UZH
< Zurich

Vision Algorithms for Mobile Robotics

Lecture 03
Camera Calibration

Davide Scaramuzza
https://rpg.ifi.uzh.ch



https://rpg.ifi.uzh.ch/

Lab Exercise 2 — Today

Implement your first camera motion estimator using the DLT algorithm

N



Goal of today’s lecture

e Learn how to calibrate a camera

e Study the foundational algorithms for camera localization

Two applications of the camera localization algorithms covered in this lecture: drone navigation & Meta Quest



Today’s Outline

e Camera calibration

* Camera localization
* Non conventional camera models: fisheye and catadioptric cameras



Camera Calibration

* Calibration is the process to determine the intrinsic parameters (K plus lens distortion) and extrinsic parameters
(R, T) of a camera. For now, we will neglect the lens distortion and see later how it can be determined.

* K,R, T can be determined by applying the perspective projection equation to known 3D-2D point
correspondences:

- X,
iy Y
Alv|=K[R|T] ;
1 w
- 1

* There are two popular methods:
* Tsai’s method: uses 3D objects

* Zhang’s method: uses planar grids



Today’s Outline

e Camera calibration
* Tsai’s method: From 3D objects
e Zhang’s method: from planar grids

 Camera localization
* Non conventional camera models: fisheye and catadioptric cameras



Tsai’s Method: Calibration from 3D Objects

* This method was proposed in 1987 by Tsai and consists of measuring the 3D position of n = 6 control
points on a 3D calibration target and the 2D coordinates of their projection in the image.

Tsai, Roger Y. (1987) “A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses,”
IEEE Journal of Robotics and Automation, 1987. PDF. 7


https://ieeexplore.ieee.org/document/1087109

Applying the Direct Linear Transform (DLT) algorithm

The idea of the DLT is to rewrite the perspective projection equation as a homogeneous linear equation and
solve it by standard methods. Let’s write the perspective equation for a generic 3D-2D point correspondence:
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Applying the Direct Linear Transform (DLT) algorithm

The idea of the DLT is to rewrite the perspective projection equation as a homogeneous linear equation and
solve it by standard methods. Let’s write the perspective equation for a generic 3D-2D point correspondence:
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Applying the Direct Linear Transform (DLT) algorithm
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Applying the Direct Linear Transform (DLT) algorithm
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ul |m' YW
= Mvi|=|m, ZW —> P
1 mT w
|3 1]
—

Conversion back from homogeneous coordinates to pixel coordinates leads to:
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Applying the Direct Linear Transform (DLT) algorithm

* By re-arranging the terms, we obtain
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* For n points, we can stack all these equations into a big matrix:
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Applying the Direct Linear Transform (DLT) algorithm

Xy z1 000 0 -uX -uwY -uZ

0000 X Y Z 1 -—vx —-vy -vZ

' M| :Q-M:O

X"Y Z' 1000 0 —uX" -uy -uz' -ul|™| |0
0000 X' Y Z' 1 —vX' —vY" —vz' —v J|™Ms| |0

Q (this matrix is known)
M (this matrix is unknown)



Applying the Direct Linear Transform (DLT) algorithm

Q-M=0

Minimal solution

*  Qnx12) should have rank 11 to have a unique (up to a scale) non-zero solution M

: : : : 1.
* Because each 3D-to-2D point correspondence provides 2 independent equations, then 5+E point correspondences are
needed (in practice 6 point correspondences!)

Over-determined solution

 Forn = 6 points, a solution is the Least Square solution, which minimizes the sum of squared residuals, ||QM| |2,
subject to the constraint ||[M||? = 1. It can be solved through Singular Value Decomposition (SVD). The solution is the
eigenvector corresponding to the smallest eigenvalue of the matrix QT Q (because it is the unit vector x that minimizes

11Qx||? = x" Q" Qx.
 Matlab instructions:

[UISIV] = SVD(Q);
e M =V(:,12);



Applying the Direct Linear Transform (DLT) algorithm

Degenerate configurations Q . M — O

1. Points lying on a plane and/or along a single line passing through the center of projection
® \

2. Camera and points on a twisted cubic (i.e., smooth curve in 3D space of degree 3)




Applying the Direct Linear Transform (DLT) algorithm

* Once we have determined M, we can recover the intrinsic and extrinsic parameters by remembering that:

M =K(R|T)
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Applying the Direct Linear Transform (DLT) algorithm

* Once we have determined M, we can recover the intrinsic and extrinsic parameters by remembering that:

M =K(R|T)

m, my, m;5 my, an, +ugly,  On, tUgl, Oy HUgl;  OF) Ul
My My My My, |=| Oy TVl Oy + VoI, QFy TVl O, + Vil
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« However, notice that we are not enforcing the constraint that R is orthogonal, i.e., R - RT=1

* To do this, we can use the so-called QR factorization of M, which decomposes M into a R (orthogonal), T,
and an upper triangular matrix (i.e., K)

 What if K is known (calibrated camera)?



Example of Tsai’s Calibration Results

Recommendation: use many more than 6 points (ideally more than 20) and non coplanar

a, a,/a, Ko Uy Vo Average
Reprojection
error

1673.3 /1.0063\ 1.39\ 379.96 | 305.78 0.365

Why is this What is this?
ratio not 1?

What is this?

Corners can be detected with accuracy < 0.1 pixels How can we estimate the lens distortion parameters?

(see Lecture 5) How can we enforce a, = @y and K1, =07



Reprojection Error

* The reprojection error is the Euclidean distance (in pixels) between an observed image point and the
corresponding 3D point reprojected onto the camera frame according to the estimated K, R, T.

* The reprojection error gives us a quantitative measure of the accuracy of the calibration (ideally it should
be zero).
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Reprojection Error

The reprojection error can be used to assess the quality of the camera calibration
What reprojection error is acceptable?

What are the sources of the reprojection error?
Can the reprojection error ever be perfectly 0?

How can we further improve the calibration parameters?

® Control points ® Reprojected points
(observed points) n(PViV, K,R, T)
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Non-Linear Calibration Refinement

* The calibration parameters K, R, T determined by the DLT can be refined by minimizing the following cost:

K,R, T, lens distortion =

n
argming . gt znpi - 7T(P1fv: K, ki, R, T)”Z
i=1

 This time we also include the lens distortion k,
parameter(can be set to O for initialization)

e Can be minimized using Levenberg—Marquardt
(more robust than Gauss-Newton to local minima)

® Control points ® Reprojected points
(observed points) n(PViV, K,R, T)
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Non-Linear Calibration Refinement

* The calibration parameters K, R, T determined by the DLT can be refined by minimizing the following cost:

K,R, T, lens distortion =

n
argming . gt znpi - 7T(P1fv: K, ki, R, T)”Z
i=1

 This time we also include the lens distortion k,
parameter(can be set to O for initialization)

e Can be minimized using Levenberg—Marquardt
(more robust than Gauss-Newton to local minima)

® Control points ® Reprojected points
(observed points) n(PViV, K,R, T)
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Non-Linear Calibration Refinement

* The calibration parameters K, R, T determined by the DLT can be refined by minimizing the following cost:

K,R, T, lens distortion =

n
argming . gt znpi - 7T(P1fv: K, ki, R, T)”Z
i=1

 This time we also include the lens distortion k,
parameter(can be set to O for initialization)

e Can be minimized using Levenberg—Marquardt
(more robust than Gauss-Newton to local minima)

® Control points ® Reprojected points
(observed points) n(PViV, K,R, T)
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Non-Linear Calibration Refinement

* The calibration parameters K, R, T determined by the DLT can be refined by minimizing the following cost:

K,R, T, lens distortion =

n
argming . gt znpi - 7T(P1fv: K, ki, R, T)”Z
i=1

 This time we also include the lens distortion k,
parameter(can be set to O for initialization)

e Can be minimized using Levenberg—Marquardt
(more robust than Gauss-Newton to local minima)

® Control points ® Reprojected points
(observed points) n(PViV, K,R, T)
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Today’s Outline

e Camera calibration

* Tsai’s method: From 3D objects
e Zhang’s method: from planar grids
 Camera localization
* Non conventional camera models: fisheye and catadioptric cameras

25



/hang’s Algorithm: Calibration from Planar Grids

* Tsai’s calibration requires that the world’s 3D points are non-coplanar, which is not very practical

* Today’s camera calibration toolboxes (Matlab, OpenCV) use multiple views of a planar grid (e.g., a checker
board)

* They are based on a method developed in 2000 by Zhang (Microsoft Research)

200

[

A" F

Zhang, A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000. PDF.
26


http://www.vision.caltech.edu/bouguetj/calib_doc/
https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr98-71.pdf

/hang’s Algorithm: Calibration from Planar Grids

* Tsai’s calibration requires that the world’s 3D points are non-coplanar, which is not very practical

* Today’s camera calibration toolboxes (Matlab, OpenCV) use multiple views of a planar grid (e.g., a checker
board)

* They are based on a method developed in 2000 by Zhang (Microsoft Research)

Zhang, A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000. PDF.
27


http://www.vision.caltech.edu/bouguetj/calib_doc/
https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr98-71.pdf

Applying the Direct Linear Transform (DLT) algorithm

As in Tsai’s method, we start by writing the perspective projection equation (again, we neglect the radial
distortion). However, in Zhang’s method the points are all coplanar, i.e., Z,, = 0, and thus we can write:
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Applying the Direct Linear Transform (DLT) algorithm

As in Tsai’s method, we start by writing the perspective projection equation (again, we neglect the radial
distortion). However, in Zhang’s method the points are all coplanar, i.e., Z,, = 0, and thus we can write:
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Applying the Direct Linear Transform (DLT) algorithm

= Mv|=|hy hy hyl||7Y

= Avi=H-Y

| \ |
L - This matrix is called

Homography

= Mv|=|h || Y
where h! is the i-th row of H ! ;




Applying the Direct Linear Transform (DLT) algorithm

e

] (A Tx,

= AYvi=|h [i|Y, |—>pP
1| A || 1
R ECH I

Conversion back from homogeneous coordinates to pixel coordinates leads to:

Au h'-P
U= T T T _
AP (W -uwhi)-R=0
v:ﬁv:hg-P (hf —vhT)-P =0
A h P



Applying the Direct Linear Transform (DLT) algorithm

* By re-arranging the terms, we obtain:

()
(W ~uh)-B=0  _ B"h+0-h —up -n=0 _ (B 0" —upB") | (0
(h) —vh!)-P =0 0-h"+P" -hf —vP"-hl =0 o' PT —ypP") | 0
l l l l \h3/

* For n points (from a single view), we can stack all these equations into a big matrix:

BT 0" —uP 0)
0" R" —wR[h) |0
h, |= N — Q-H:O

T AT T 0
P 0 -ulP hy )

n n n

\OT PT —VPT/ \O

n n - n

Q (this matrix is known) H (this matrix is unknown)



Applying the Direct Linear Transform (DLT) algorithm
Q-H=0

Minimal solution
*  Qnxo) should have rank 8 to have a unique (up to a scale) non-trivial solution H

* Each point correspondence provides 2 independent equations

* Thus, a minimum of 4 non-collinear points is required (otherwise it is a degenerate configuration)

Solution for n = 4 points

* It can be solved through Singular Value Decomposition (SVD) (same considerations as before)



How to recover K, R, T

* H can be decomposed by recalling that:

 Differently from Tsai’s, the
decomposition of H into K, R, T
requires at least two views if we assume
a, * a,, orlviewifa, = a,

* In practice the more views the better, e.g., 20-50 views spanning the entire field of view

of the camera for the best calibration results!

Ny

11

=

21

Ny

31

hlZ
h22
h32

hl 3
Moy

h33 1

* Notice that now each view j has a different homography H/ (and so a different R/ and

T7). However, K is the same for all views:

J
hl 1
J
h21
J
h31

J
hl2
J
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h33
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How to recover K, R, T from H and from multiple views?

Won'’t be asked
1. Estimate the homography H; for each i-th view using the DLT algorithm. at the exam
©

2. Determine the intrinsics K of the camera from a set of homographies:

1. Each homography H; ~ K(r{,7,,t) provides two linear equations in the 6 entries of the matrix B:= K~ TK 1.
Letting w, :== K1y, w, := KT, the rotation constraintsr{r; = r.r, =1 and r{r, = 0 become
w!Bw; — wJ,Bw, = 0 and w{ Bw, = 0.

2. Stack 2N equations from N views, to yield a linear system Ab = 0. Solve for b (i.e., B) using the Singular Value
Decomposition (SVD).

3. Use Cholesky decomposition to obtain K from B.

3. The extrinsic parameters for each view can be computed using K:
r, ~AK1H;(:,1), r, ~AK'H;(:,2), 713 =1 Xry,and T; = AK " H;(:,3), withA = 1/K~1H;(:, 1).
Finally, build R; = (rq,7r,,13) and enforce rotation matrix constraints.



Types of 2D Transformations

Yy /tumlallt}
translation

Q projective E

—7
SE—
Euclidean qiflue
>

Name Matrix # D.O.F. | Preserves: Icon
translation [ 1 ‘ t ] _ 2 orientation + - - -

2x3
rigid (Euclidean) [ R ‘ t |, 3 lengths + - - - Q
similarity [ sR ‘ t ] 4 angles 4 - - - O

2x3
affine [ A ] parallelism +--- | / |

2x3

projective [ H straight lines L‘

This matrix is called Homography
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Projective Transformation (Homography)

* A point (x,y) is transformed into (x', y") via:

o = a|x +ayy + as

a;x +agy +1

y’ _ a,x + asy + ag

a;x +agy +1

 Homogeneous coordinates:

x' a; 4z az\rx
Aly'| = lazt as dg Iy ‘
1 a7 a8 1 1
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Application to Augmented Reality

* Today, there are thousands of application of Zhang’s algorithm, e.g. Augmented Reality (AR)
* See AprilTag or ARuco Markers

38


https://april.eecs.umich.edu/software/apriltag
https://docs.opencv.org/trunk/d5/dae/tutorial_aruco_detection.html

Application to Robotics

Do we need to know the size of the tag?
* For Augmented Reality?

* For Control?

My lab. Video. Marc Pollefeys’ lab. Video.

39


https://youtu.be/83YR15vf718
https://www.youtube.com/watch?v=1GXQjrmLeX4

Today’s Outline

e Camera calibration

e Camera localization

* Non conventional camera models: fisheye and catadioptric cameras

40



Camera Localization (or Perspective from n Points: PnP)

This is the problem of determining the 6DoF pose of a calibrated camera (position and orientation) with
respect to the world frame from a set of 3D-2D point correspondences.

* |t assumes that the camera is already calibrated (i.e., we know its intrinsic parameters)

problem.

Camera

=

(@)

=

o
b’,

v

The DLT can be used to solve this problem but is suboptimal. We want to study algebraic solutions to the

Image plane
°
°
o o

3D points



How Many Points are Enough?

1 Point:
 infinite solutions

* 2 Points:
* infinitely many solutions, but bounded

3 Points (non collinear):
* up to 4 solution

* 4 Points:
* Unique solution



1 Point:
 infinite solutions

1 Point

Image plane




2 Points

e 2 Points:
* infinite solutions, but bounded

Image plane

B / B’
AI




3 Points (P3P problem)

* 3 Points (non collinear):
* up to 4 solution

From the law of cosines:

512 = LZB + Lgl — ZLBLA COS HAB
§%=1%+4 L% — 2LsL; cos B¢
s =1%+ L% —2LgL. cosBg,

Image plane

CI



https://en.wikipedia.org/wiki/Law_of_cosines

Algebraic Approach: reduce to 4™ order equation

s¢ =14+ 15— 2LgL,cosB,p
522 = Li + L%- — ZLALC COS QAC

s =1%+ L% — 2LgL. cos Bg

* Itis known that n independent polynomial equations, in n unknowns, can have no more solutions than
the product of their respective degrees. Thus, the system can have a maximum of 8 solutions. However,
because every term in the system is either a constant or of second degree, for every real positive solution

there is a negative solution.
* Thus, with 3 points, there are at most 4 valid (positive) solutions.

M. A.Fischler and R. C.Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography.
Graphics and Image Processing, 1981. PDF.


https://dl.acm.org/doi/10.1145/358669.358692

Algebraic Approach: reduce to 4™ order equation

s¢ =14+ 15— 2LgL,cosB,p
522 = Lx%l + L%' — ZLALC COS HAC

s =1%+ L% — 2LgL. cos Bg

By defining x = Lg/L,, it can be shown that the system can be reduced to a 4" order equation:

G,+Gx+Gx"+Gx +G,x* =0

How can we disambiguate the 4 solutions? How do we determine R and T?

* A4t point can be used to disambiguate the solutions. A classification of the four solutions and the
determination of R and T from the point distances was given by Gao’s algorithm, implemented in OpenCV

(solvePnP P3P)

Gao, Hou, Tang, Cheng. Complete Solution Classification for the Perspective-Three-Point Problem. -
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003. PDF.


https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#ga357634492a94efe8858d0ce1509da869
http://www.mmrc.iss.ac.cn/~xgao/paper/ieee.pdf

Won’t be asked

Modern Solution to P3P at the exam

©

A more modern version of P3P was developed by Kneip in 2011 and directly solves for the camera’s pose
(not distances from the points). This solution inspired the algorithm currently used in OpenCV
(solvePnP _AP3P), by Ke’17, which consists of two steps:

1. Eliminate the camera’s position and the features’
distances to yield a system of 3 equations
in the camera’s orientation alone.

2. Successively eliminate two of the unknown
3-DOFs (angles) algebraically and arrive
at a quartic polynomial equation.

e Qutperforms previous methods in terms of
speed, accuracy, and robustness
to close-to-singular cases.

Kneip, Scaramuzza, Siegwart. A Novel Parameterization of the Perspective-Three-Point Problem for a Direct Computation of
:] Absolute Camera Position and Orientation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011. PDF.
SWISS
MADE

Ke, Roumeliotis. An Efficient Algebraic Solution to the Perspective-Three-Point Problem. CVPR’17. PDF. 48


https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#ga357634492a94efe8858d0ce1509da869
http://rpg.ifi.uzh.ch/docs/CVPR11_kneip.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Ke_An_Efficient_Algebraic_CVPR_2017_paper.pdf

Solution to PnP forn = 4

An efficient algebraic solution to the PnP problem for n = 4 was developed by Lepetit in 2009 and was named
EPnP (Efficient PnP) and can be found in OpenCV (solvePnP EPnP)

* EPnP expresses the n world’s points as a weighted sum of four virtual control points

* The coordinates of these virtual control points become the unknowns of the problem, which can be solved
in O(n) time by solving a constant number of quartic polynomial equations

* The final pose of the camera is then solved from the control points

RSAVXIDSSE Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, International Journal of Computer Vision. PDF.


https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#ga357634492a94efe8858d0ce1509da869
https://infoscience.epfl.ch/record/160138/files/top.pdf

Application to Monocular Localization

Localization: Given a 3D point cloud (map), determine the pose of the camera

Video of Oculus Insight (the VIO used in Meta Quest) built by former Zurich-Eye team, today Meta Zurich.
The story from Zurich-Eye to Meta Quest.



https://www.youtube.com/watch?v=nrj3JE-NHMw
https://www.blick.ch/news/wirtschaft/virtual-reality-facebook-kauft-10-forscher-der-eth-zuerich-id5733517.html
https://tech.fb.com/the-story-behind-oculus-insight-technology/

Application to Multi-Robot mutual Localization

Here, the drone carries 5 LEDs that are used by the ground robot to control the drone’s position relative to it

Faessler, Mueggler, Schwabe, Scaramuzza. A Monocular Pose Estimation System based on Infrared LEDs.
IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014. PDF. Video. Code.

51


http://rpg.ifi.uzh.ch/docs/ICRA14_Faessler.pdf
https://youtu.be/8Ui3MoOxcPQ
https://github.com/uzh-rpg/rpg_monocular_pose_estimator

Application to Monocular Visual Odometry

Keyframe 1 Keyframe 2 Currenﬁlgv?/rpgyframe

Initial point cloud New triangulated points
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Robust Estimation in Presence of Outliers

 All PnP problems (solved by DLT, EPnP, or P3P algorithms) assume that the 3D-2D point
correspondences are correct. If the correspondences are incorrect (i.e., they contain
outliers), then the output of these algorithms may be incorrect.

 The RANSAC algorithm (Lecture 09) can be used, in conjunction with the PnP algorithm,
to remove the outliers (we will do this in Exercise 07).

* PnP with RANSAC can be found in OpenCV's (solvePnPRansac)



https://docs.opencv.org/master/d9/d0c/group__calib3d.html#ga50620f0e26e02caa2e9adc07b5fbf24e

EPNP vs. DLT

If a camera is calibrated, only R and T need to be determined. In this case,
should we use DLT or EPnP for localization?



EPNP vs. DLT: Accuracy vs. noise

EPnP is up to 10 times more robust to noise than DLT

DLT

AD

—+—Clamped DLT DLT 4
[| —e—LHM / '

AD
—— Clamped DLT
501 —e—LHM
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|~ — ~EPnP+LHM »
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£
o

201

=
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Rotation Error (%)
=
P
Translation Error (%)
w
o

o

=]

15
aussian image noise (pixels)

Gaussian image noise (pixels)

EPnP+ Gauss Newton

Plots from
Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, International Journal of Computer Vision. PDF.


https://infoscience.epfl.ch/record/160138/files/top.pdf

EPNP vs. DLT: Accuracy vs. number of points

EPnP is up to 10 times more accurate than DLT

60 . 60 ;
—&— Clamped DLT —4— Clamped DLT
—e— LHM i —o— LHM
50 —A— EPnP 1 < 0 —A— EPNP
32 - — -EPnP+LHM < - — -EPnP+LHM
T 40} —— EPnP+GN S 40} —— EPnP+GN
o =
I.ItJ Ll
c
- 30 DLT s 30
£ 5
..6 20F g 20+
o ©
10 EPnP P 10}
0 [ - . — = I T 0— f.—- - N N L ]
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Plots from
Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, International Journal of Computer Vision. PDF.
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https://infoscience.epfl.ch/record/160138/files/top.pdf

EPNP vs. DLT: Timing

EPnP is up to 10 times more efficient than DLT
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Plots from
Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, International Journal of Computer Vision. PDF.
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https://infoscience.epfl.ch/record/160138/files/top.pdf

PnP problem: Recap

Uncalibrated camera Calibrated camera
(i.e., intrinsic parameters are NOT known) (i.e., instrinc parameters are known)
Only DLT can be used Either DLT or EPnP can be used

EPnP: minimum number of points: 3 (P3P) +1 for disambiguation
DLT: Minimum number of points: 4 if coplanar, 6 if non-coplanar

The output of both DLT and EPnP can be refined via non-linear optimization
by minimizing the sum of squared reprojection errors.

NB: Neither EPnP or DLT compute the lens distortion parameters,
these can be estimate via reprojection error minimization



Today’s Outline

e Camera calibration
e Camera localization

Case study: Vision-based Autonomous Drone Racing

* Non conventional camera models: fisheye and catadioptric cameras
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The international journal of science / 31 August 2023

nature Science ~ «
Robotics
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Alpilot beats
human champions
inaerial contest
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Kaufmann et al., Champion-Level Drone Racing using Deep Reinforcement Learning, Nature, 2023

Song et al., Reaching the Limit in Autonomous Racing: Optimal Control versus Reinforcement Learning, Science Robotics, 2023



Human pilot: Marvin, Swiss champion. Age: 15



autonomous drone race in Madrid

Maximum speed 3 km/h



2019: autonomous drone race in Austin

Maximum speed 30km/h



Our Al-Drone, named SWIFT

The brain
NVIDIA Jetson TX2

The eyes o B I From 0 to 100 km/h in 1 second
Intel RealSense camera Weight: 0.8kg

Max acceleration: 5G




Neural-Network controller trained with Reinforcement Learning

Iteration 0

Song et al., Reaching the Limit in Autonomous Racing: Optimal Control versus Reinforcement Learning, Science Robotics, 2023
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Can we outrace the best human pilot?

After 7 years of work, in June 2022, we invited the world champions of drone racing

Alex Vanover Thomas Marvin Al Drone
Bitmatta Schaepper
DRL World
Champion MultiGP Swiss Drone Both human and Al drones
International League . .
World Champion Champion were identical

Kaufmann, Bauersfeld, Loquercio, Mueller, Koltun, Scaramuzza,
Champion-Level Drone Racing using Deep Reinforcement Learning, Nature, 2023. PDF. Datasets. Our video. Video by Nature



https://www.nature.com/articles/s41586-023-06419-4.pdf
https://zenodo.org/record/7955278
https://youtu.be/fBiataDpGIo
https://youtu.be/pq53uCDZelQ

Kaufmann, Bauersfeld, Loquercio, Mueller, Koltun, Scaramuzza,

Champion-Level Drone Racing using Deep Reinforcement Learning, Nature, 2023. PDF. Datasets. Our video. Video by Nature
1 Wi



https://www.nature.com/articles/s41586-023-06419-4.pdf
https://zenodo.org/record/7955278
https://youtu.be/fBiataDpGIo
https://youtu.be/pq53uCDZelQ

Drone Racing

Autonomous
Drone

"Swift"

Kaufmann, Bauersfeld, Loquercio, Mueller, Koltun, Scaramuzza,

Champion-Level Drone Racing using Deep Reinforcement Learning, Nature, 2023. PDF. Datasets. Our video. Video by Nature
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https://www.nature.com/articles/s41586-023-06419-4.pdf
https://zenodo.org/record/7955278
https://youtu.be/fBiataDpGIo
https://youtu.be/pq53uCDZelQ

Compute Drone Pose via Gate Detection and P3P

Kaufmann, Bauersfeld, Loquercio, Mueller, Koltun, Scaramuzza,
Champion-Level Drone Racing using Deep Reinforcement Learning, Nature, 2023. PDF. Datasets. Our video. Video by Nature



https://www.nature.com/articles/s41586-023-06419-4.pdf
https://zenodo.org/record/7955278
https://youtu.be/fBiataDpGIo
https://youtu.be/pq53uCDZelQ

Calculate Uncertainty of Drone Position
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Calculate Uncertainty of Drone Position




Today’s Outline

e Camera calibration
e Camera localization

* Non conventional camera models: fisheye and catadioptric cameras
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FOV = Field of View

Overview on Omnidirectional Cameras

Fisheye Catadioptric

36092 all around

FOV > 130¢ AN

/

Catadioptric cameras (e.g.
cameras and mirror systems)

Wide FOV dioptric
cameras (e.g. fisheye)
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Camera View Comparison

Perspective Fisheye Catadioptric
(highest resolution is achieved around the (highest resolution is achieved
optical axis) perpendicularly to the
optical axis

Zhang, Rebecq, Forster, Scaramuzza. Benefit of Large Field-of-View Cameras for Visual Odometry.
IEEE International Conference on Robotics and Automation (ICRA), 2016. PDF. 74


http://rpg.ifi.uzh.ch/docs/ICRA16_Zhang.pdf

Central vs Noncentral Omnidirectional Cameras

Non-Central projection system Central projection system
Rays do not intersect in a single point Rays intersect in a single point

single effective
viewpoint




Central Omnidirectional Cameras

Hyperbola + Perspective camera Parabola + Orthographic lens

F1

FZ%
T

NB: one of the foci of the hyperbola must lie in the

camera’s center of projection 76



Why do we prefer central cameras?

Because we can:

Apply standard algorithms valid for perspective geometry.
Unwarp parts of an image into a perspective one
Transform image points into normalized vectors on the unit sphere

77


http://www.cis.upenn.edu/~kostas/omnigrasp.html

Recall: Normalized Image Coordinates (Lecture 2, slide 62)

If we pre-multiply both terms of the perspective projection equation in camera frame by K1, we get:

U — Up Zc
u Xe up 4 v Vo Ye &7
/ [v] =K YC = A K~ [ ] — YC = A a — YC — 1
1 Z, 1 Z, Zc /p. 1
1 . ce X,
u — uO'
u a
vI=1|V—7
1 a
1




How do we model 3D points that are behind the camera?

The standard pinhole model is not enough. We need a distortion model.

_u — uO_
) a X,
JREILL . < aRLE ... V—v
‘‘‘‘‘‘ I e \ A 0 = YC
a
The red line is the x-y plane Zc

Wide FOV dioptric passing through C 1
cameras (e.g. fisheye)
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Unified Omnidirectional Camera Model
(for Fisheye and Catadioptric cameras)

* We model the focal length as polynomial function, whose coefficients are the parameters to be estimated

* The coefficients of the polynomial, the intrinsic parameters, and extrinsics are then found via DLT

ZC
U — U
Pl
(% _CZ Vo X c 7, 172 .
A a =Y.
Z, .

L g(p)

g(p) =1+ ap+ ap +..+ ayp" ® p2

p ==y +(v—v,)’

When a4, a,, ..., ay = 0 then we get a pinhole camera

:] Scaramuzza, Martinelli, Siegwart. A Flexible Technique for Accurate Omnidirectional Camera Calibration and Structure from Motion. ICVS’06. PDF.
SWISS Scaramuzza, Omnidirectional Camera, chapter of Encyclopedia of Computer Vision, Springer, 2014. PDF
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http://rpg.ifi.uzh.ch/docs/ICVS06_scaramuzza.pdf
http://rpg.ifi.uzh.ch/docs/omnidirectional_camera.pdf

OCamcCalib: Omnidirectional Camera Calibration Toolbox

* Released in 2006, OCamCalib is the standard toolbox for calibrating wide
angle cameras (fisheye and catadioptric)

* Since 2015, included in the Matlab Computer Vision Toolbox

Example calibration images of a catadioptric camera  Example calibration images of a fisheye camera

Scaramuzza, Martinelli, Siegwart, A toolbox for easily calibrating omnidirectional cameras, IROS’06. PDF -
SWISS


https://sites.google.com/site/scarabotix/ocamcalib-omnidirectional-camera-calibration-toolbox-for-matlab?authuser=0
https://ch.mathworks.com/help/vision/ug/fisheye-calibration-basics.html
http://rpg.ifi.uzh.ch/docs/IROS06_scaramuzza.pdf

Projection of Image Points on the Unit Sphere

* Always possible after the camera has been calibrated

Spherical
image plane of radius = 1



Projection of Image Points on the Unit Sphere

* Always possible after the camera has been calibrated

Points Rays

83



Summary (things to remember)

Calibration from 3D objects: DLT algorithm

Calibration from planar grids: DLT algorithm using homography projection
Reprojection Error and non linear optimization

P3P algorithm

DLT vs EPNP comparison

Omnidirectional cameras
* Central vs non central projection
* Unified (spherical) model for perspective and omnidirectional cameras



Readings

e Ch. 2.1 of Szeliski book, 2" Edition
* Chapter 4 of Autonomous Mobile Robots book: link


http://rpg.ifi.uzh.ch/docs/teaching/2024/Ch4_AMRobots.pdf

Understanding Check

Are you able to:

Describe the differences between Tsai’s and Zhang’s calibration methods

Explain and derive the DLT in both Tsai’s and Zhang’s methods? What is the minimum number of
point correspondences they require?

Describe the general PnP problem and derive the behavior of its solutions?

Explain the working principle of the P3P algorithm? Why do we need 4 points? What’s the key
difference between P3P and EPnP?

What is the reprojection error and how is it used for refining the calibration?

What are the key technical differences between DLT and EPnP their differences in terms of
robustness to noise, number of points, and computational efficiency?

Prove mathematically that the uncertainty of the distance estimated by PnP increases
guadratically with the distance.

Define central and noncentral omnidirectional cameras?
What kind of mirrors ensure central projection?
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