
Vision Algorithms for Mobile Robotics

Lecture 03 
Camera Calibration

Davide Scaramuzza

https://rpg.ifi.uzh.ch
1

https://rpg.ifi.uzh.ch/


Lab Exercise 2 – Today

Implement your first camera motion estimator using the DLT algorithm
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Goal of today’s lecture

• Learn how to calibrate a camera

• Study the foundational algorithms for camera localization
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Two applications of the camera localization algorithms covered in this lecture: drone navigation & Meta Quest



Today’s Outline

• Camera calibration

• Camera localization

• Non conventional camera models: fisheye and catadioptric cameras
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Camera Calibration

• Calibration is the process to determine the intrinsic parameters (𝐾 plus lens distortion) and extrinsic parameters 
(𝑅, 𝑇) of a camera. For now, we will neglect the lens distortion and see later how it can be determined. 

• 𝐾, 𝑅, 𝑇 can be determined by applying the perspective projection equation to known 3D-2D point 
correspondences:

• There are two popular methods:

• Tsai’s method: uses 3D objects

• Zhang’s method: uses planar grids
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Today’s Outline

• Camera calibration
• Tsai’s method: From 3D objects

• Zhang’s method: from planar grids

• Camera localization

• Non conventional camera models: fisheye and catadioptric cameras
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Tsai’s Method: Calibration from 3D Objects

• This method was proposed in 1987 by Tsai and consists of measuring the 3D position of 𝒏 ≥ 𝟔 control 
points on a 3D calibration target and the 2D coordinates of their projection in the image.
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World frame

Zw

Yw Xw

Tsai, Roger Y. (1987) “A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses,’’ 
IEEE Journal of Robotics and Automation, 1987. PDF.

https://ieeexplore.ieee.org/document/1087109


Applying the Direct Linear Transform (DLT) algorithm

The idea of the DLT is to rewrite the perspective projection equation as a homogeneous linear equation and 
solve it by standard methods. Let’s write the perspective equation for a generic 3D-2D point correspondence:
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Applying the Direct Linear Transform (DLT) algorithm

The idea of the DLT is to rewrite the perspective projection equation as a homogeneous linear equation and 
solve it by standard methods. Let’s write the perspective equation for a generic 3D-2D point correspondence:
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Applying the Direct Linear Transform (DLT) algorithm

where 𝑚𝑖
T is the 𝑖-th row of M
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Applying the Direct Linear Transform (DLT) algorithm
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Applying the Direct Linear Transform (DLT) algorithm

• By re-arranging the terms, we obtain

• For 𝑛 points, we can stack all these equations into a big matrix:
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Applying the Direct Linear Transform (DLT) algorithm
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Applying the Direct Linear Transform (DLT) algorithm

Minimal solution

• 𝑄(2𝑛×12) should have rank 11 to have a unique (up to a scale) non-zero solution 𝑀

• Because each 3D-to-2D point correspondence provides 2 independent equations, then  5+
1

2
  point correspondences are 

needed (in practice 6 point correspondences!)

Over-determined solution

• For 𝑛 ≥ 6 points, a solution is the Least Square solution, which minimizes the sum of squared residuals, | 𝑄𝑀 |2, 
subject to the constraint | 𝑀 |2 = 1. It can be solved through Singular Value Decomposition (SVD). The solution is the 
eigenvector corresponding to the smallest eigenvalue of the matrix 𝑄𝑇𝑄  (because it is the unit vector 𝑥 that minimizes 
| 𝑄𝑥 |2 = 𝑥𝑇𝑄𝑇𝑄𝑥. 

• Matlab instructions:

• [U,S,V] = SVD(Q);

• M = V(:,12);
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Degenerate configurations

1. Points lying on a plane and/or along a single line passing through the center of projection

2. Camera and points on a twisted cubic (i.e., smooth curve in 3D space of degree 3)

Applying the Direct Linear Transform (DLT) algorithm
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Applying the Direct Linear Transform (DLT) algorithm

• Once we have determined M, we can recover the intrinsic and extrinsic parameters by remembering that:
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Applying the Direct Linear Transform (DLT) algorithm

• Once we have determined M, we can recover the intrinsic and extrinsic parameters by remembering that:

• However, notice that we are not enforcing the constraint that 𝑹 is orthogonal, i.e., 𝑹 ∙ 𝑹𝑻= 𝑰

• To do this, we can use the so-called QR factorization of 𝑴, which decomposes 𝑀 into a 𝑅 (orthogonal), T, 
and an upper triangular matrix (i.e., 𝐾)

• What if 𝐾 is known (calibrated camera)?
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Example of Tsai’s Calibration Results

Recommendation: use many more than 6 points (ideally more than 20) and non coplanar
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𝜶𝒖 𝜶𝒖/𝜶𝒗 𝑲𝟏𝟐 𝒖𝟎 𝒗𝟎 Average 
Reprojection 

error

1673.3 1.0063 1.39 379.96 305.78 0.365

Why is this 
ratio not 1?

What is this?

Corners can be detected with accuracy < 0.1 pixels 
(see Lecture 5)

How can we estimate the lens distortion parameters?
How can we enforce 𝛼𝑢 = 𝛼𝑣 and 𝐾12 = 0 ?

What is this?



Reprojection Error

• The reprojection error is the Euclidean distance (in pixels) between an observed image point and the 
corresponding 3D point reprojected onto the camera frame according to the estimated K, R, T. 

• The reprojection error gives us a quantitative measure of the accuracy of the calibration (ideally it should 
be zero).
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Reprojection Error

• The reprojection error can be used to assess the quality of the camera calibration

• What reprojection error is acceptable?

• What are the sources of the reprojection error?

• Can the reprojection error ever be perfectly 0?

• How can we further improve the calibration parameters?
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Non-Linear Calibration Refinement

• The calibration parameters 𝐾, 𝑅, 𝑇 determined by the DLT can be refined by minimizing the following cost:

• This time we also include the lens distortion 𝑘1 
parameter(can be set to 0 for initialization)

• Can be minimized using Levenberg–Marquardt 
(more robust than Gauss-Newton to local minima)
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Non-Linear Calibration Refinement

• The calibration parameters 𝐾, 𝑅, 𝑇 determined by the DLT can be refined by minimizing the following cost:

• This time we also include the lens distortion 𝑘1 
parameter(can be set to 0 for initialization)

• Can be minimized using Levenberg–Marquardt 
(more robust than Gauss-Newton to local minima)
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Non-Linear Calibration Refinement

• The calibration parameters 𝐾, 𝑅, 𝑇 determined by the DLT can be refined by minimizing the following cost:

• This time we also include the lens distortion 𝑘1 
parameter(can be set to 0 for initialization)

• Can be minimized using Levenberg–Marquardt 
(more robust than Gauss-Newton to local minima)
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Non-Linear Calibration Refinement

• The calibration parameters 𝐾, 𝑅, 𝑇 determined by the DLT can be refined by minimizing the following cost:

• This time we also include the lens distortion 𝑘1 
parameter(can be set to 0 for initialization)

• Can be minimized using Levenberg–Marquardt 
(more robust than Gauss-Newton to local minima)
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Today’s Outline

• Camera calibration
• Tsai’s method: From 3D objects

• Zhang’s method: from planar grids

• Camera localization

• Non conventional camera models: fisheye and catadioptric cameras
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Zhang’s Algorithm: Calibration from Planar Grids

• Tsai’s calibration requires that the world’s 3D points are non-coplanar, which is not very practical

• Today’s camera calibration toolboxes (Matlab, OpenCV) use multiple views of a planar grid (e.g., a checker 
board)

• They are based on a method developed in 2000 by Zhang (Microsoft Research)

26
Zhang, A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000. PDF.

http://www.vision.caltech.edu/bouguetj/calib_doc/
https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr98-71.pdf


Zhang’s Algorithm: Calibration from Planar Grids

• Tsai’s calibration requires that the world’s 3D points are non-coplanar, which is not very practical

• Today’s camera calibration toolboxes (Matlab, OpenCV) use multiple views of a planar grid (e.g., a checker 
board)

• They are based on a method developed in 2000 by Zhang (Microsoft Research)
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Applying the Direct Linear Transform (DLT) algorithm

As in Tsai’s method, we start by writing the perspective projection equation (again, we neglect the radial 
distortion). However, in Zhang’s method the points are all coplanar, i.e., 𝒁𝒘 = 𝟎, and thus we can write:
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Applying the Direct Linear Transform (DLT) algorithm

As in Tsai’s method, we start by writing the perspective projection equation (again, we neglect the radial 
distortion). However, in Zhang’s method the points are all coplanar, i.e., 𝒁𝒘 = 𝟎, and thus we can write:
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Applying the Direct Linear Transform (DLT) algorithm

where ℎ𝑖
T is the i-th row of 𝐻
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Conversion back from homogeneous coordinates to pixel coordinates leads to:

Applying the Direct Linear Transform (DLT) algorithm
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Applying the Direct Linear Transform (DLT) algorithm

• By re-arranging the terms, we obtain:

• For 𝑛 points (from a single view), we can stack all these equations into a big matrix:
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Applying the Direct Linear Transform (DLT) algorithm

Minimal solution

• 𝑄(2𝑛×9) should have rank 8 to have a unique (up to a scale) non-trivial solution 𝐻

• Each point correspondence provides 2 independent equations

• Thus, a minimum of 4 non-collinear points is required (otherwise it is a degenerate configuration)

Solution for 𝒏 ≥ 𝟒 points

• It can be solved through Singular Value Decomposition (SVD) (same considerations as before)
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How to recover 𝐾, 𝑅, 𝑇

• 𝐻 can be decomposed by recalling that:

• Differently from Tsai’s, the 
decomposition of 𝐻 into 𝐾, 𝑅, 𝑇
requires at least two views if we assume 
𝛼𝑢 ≠ 𝛼𝑣, or 1 view if 𝛼𝑢 = 𝛼𝑣

• In practice the more views the better, e.g., 20-50 views spanning the entire field of view 
of the camera for the best calibration results!

• Notice that now each view 𝑗 has a different homography 𝐻𝑗 (and so a different 𝑅𝑗 and 
𝑇𝑗). However, 𝑲 is the same for all views:
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How to recover 𝐾, 𝑅, 𝑇 from 𝐻 and from multiple views?

1. Estimate the homography 𝐻𝑖 for each 𝑖-th view using the DLT algorithm.

2. Determine the intrinsics 𝐾 of the camera from a set of homographies:

1. Each homography 𝐻𝑖 ∼ 𝐾 𝒓1, 𝒓2, 𝒕  provides two linear equations in the 6 entries of the matrix B ≔ 𝐾−⊤𝐾−1. 
Letting 𝒘1 ≔ 𝐾𝒓1, 𝒘2 ≔ 𝐾𝒓2, the rotation constraints 𝒓1

⊤𝒓1 = 𝒓2
⊤𝒓2 = 1  and  𝒓1

⊤𝒓2 = 0  become
𝒘1

⊤𝐵𝒘1 − 𝒘2
⊤𝐵𝒘2 = 0 and 𝒘1

⊤𝐵𝒘2 = 0.

2. Stack 2N equations from N views, to yield a linear system 𝐴𝒃 = 𝟎. Solve for b (i.e., B) using the Singular Value 
Decomposition (SVD).

3. Use Cholesky decomposition to obtain K from B.

3. The extrinsic parameters for each view can be computed using K:
𝒓1 ∼ 𝜆𝐾−1𝐻𝑖 : , 1 ,  𝒓2 ∼ 𝜆𝐾−1𝐻𝑖 : , 2 , 𝒓3 = 𝒓1 × 𝒓2 and 𝑇𝑖 = 𝜆𝐾−1𝐻𝑖 : , 3 , with 𝜆 = 1/𝐾−1𝐻𝑖 : , 1 . 
Finally, build 𝑅𝑖  =  (𝒓1, 𝒓2, 𝒓3) and enforce rotation matrix constraints.
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Types of 2D Transformations 
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Projective Transformation (Homography)

• A point (𝑥, 𝑦) is transformed into 𝑥′, 𝑦′  via:

• Homogeneous coordinates:
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Application to Augmented Reality

• Today, there are thousands of application of Zhang’s algorithm, e.g. Augmented Reality (AR)

• See AprilTag or ARuco Markers

38

https://april.eecs.umich.edu/software/apriltag
https://docs.opencv.org/trunk/d5/dae/tutorial_aruco_detection.html


Application to Robotics

• Do we need to know the size of the tag? 
• For Augmented Reality?

• For Control?

39

Marc Pollefeys’ lab. Video.My lab. Video.

https://youtu.be/83YR15vf718
https://www.youtube.com/watch?v=1GXQjrmLeX4


Today’s Outline

• Camera calibration

• Camera localization

• Non conventional camera models: fisheye and catadioptric cameras

40



Camera Localization (or Perspective from 𝑛 Points: PnP)

• This is the problem of determining the 6DoF pose of a calibrated camera (position and orientation) with 
respect to the world frame from a set of 3D-2D point correspondences. 

• It assumes that the camera is already calibrated (i.e., we know its intrinsic parameters)

• The DLT can be used to solve this problem but is suboptimal. We want to study algebraic solutions to the 
problem.
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How Many Points are Enough?

• 1 Point: 
• infinite solutions

• 2 Points: 
• infinitely many solutions, but bounded

• 3 Points (non collinear):
• up to 4 solution

• 4 Points:
• Unique solution

42



1 Point

• 1 Point: 
• infinite solutions
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2 Points

• 2 Points: 
• infinite solutions, but bounded
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3 Points (P3P problem)

• 3 Points (non collinear):
• up to 4 solution
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https://en.wikipedia.org/wiki/Law_of_cosines


Algebraic Approach: reduce to 4th order equation

• It is known that 𝒏 independent polynomial equations, in 𝒏 unknowns, can have no more solutions than 
the product of their respective degrees. Thus, the system can have a maximum of 8 solutions. However, 
because every term in the system is either a constant or of second degree, for every real positive solution 
there is a negative solution. 

• Thus, with 3 points, there are at most 4 valid (positive) solutions. 
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M. A.Fischler and R. C.Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. 
Graphics and Image Processing, 1981. PDF.
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https://dl.acm.org/doi/10.1145/358669.358692


Algebraic Approach: reduce to 4th order equation

solvePnP_P3P

• By defining 𝒙 = 𝑳𝑩/𝑳𝑨, it can be shown that the system can be reduced to a 4th order equation:

How can we disambiguate the 4 solutions? How do we determine 𝑅 and 𝑇? 

• A 4th point can be used to disambiguate the solutions. A  classification of the four solutions and the 
determination of 𝑅 and 𝑇 from the point distances was given by Gao’s algorithm, implemented in OpenCV 
(solvePnP_P3P)
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Gao, Hou, Tang, Cheng. Complete Solution Classification for the Perspective-Three-Point Problem. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003. PDF.
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https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#ga357634492a94efe8858d0ce1509da869
http://www.mmrc.iss.ac.cn/~xgao/paper/ieee.pdf


Modern Solution to P3P

A more modern version of P3P was developed by Kneip in 2011 and directly solves for the camera’s pose 
(not distances from the points). This solution inspired the algorithm currently used in OpenCV 
(solvePnP_AP3P), by Ke’17, which consists of two steps:

1. Eliminate the camera’s position and the features’ 
distances to yield a system of 3 equations 
 in the camera’s orientation alone.

2. Successively eliminate two of the unknown 
3-DOFs (angles) algebraically and arrive 
at a quartic polynomial equation.

• Outperforms previous methods in terms of 
speed, accuracy, and robustness 
to close-to-singular cases.

48

Kneip, Scaramuzza, Siegwart. A Novel Parameterization of the Perspective-Three-Point Problem for a Direct Computation of 
Absolute Camera Position and Orientation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011. PDF.

Ke, Roumeliotis. An Efficient Algebraic Solution to the Perspective-Three-Point Problem. CVPR’17. PDF.

Won’t be asked 
at the exam
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https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#ga357634492a94efe8858d0ce1509da869
http://rpg.ifi.uzh.ch/docs/CVPR11_kneip.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Ke_An_Efficient_Algebraic_CVPR_2017_paper.pdf


Solution to PnP for 𝑛 ≥ 4

solvePnP_EPnP

An efficient algebraic solution to the PnP problem for 𝑛 ≥ 4 was developed by Lepetit in 2009 and was named 
EPnP (Efficient PnP) and can be found in OpenCV (solvePnP_EPnP)

• EPnP expresses the n world’s points as a weighted sum of four virtual control points

• The coordinates of these virtual control points become the unknowns of the problem, which can be solved 
in 𝑂(𝑛) time by solving a constant number of quartic polynomial equations

• The final pose of the camera is then solved from the control points

49Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, International Journal of Computer Vision. PDF.

https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#ga357634492a94efe8858d0ce1509da869
https://infoscience.epfl.ch/record/160138/files/top.pdf


Application to Monocular Localization

Localization: Given a 3D point cloud (map), determine the pose of the camera

50

Video of Oculus Insight (the VIO used in Meta Quest) built by former Zurich-Eye team, today Meta Zurich. 
The story from Zurich-Eye to Meta Quest.

https://www.youtube.com/watch?v=nrj3JE-NHMw
https://www.blick.ch/news/wirtschaft/virtual-reality-facebook-kauft-10-forscher-der-eth-zuerich-id5733517.html
https://tech.fb.com/the-story-behind-oculus-insight-technology/


Application to Multi-Robot mutual Localization

Here, the drone carries 5 LEDs that are used by the ground robot to control the drone’s position relative to it
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Faessler, Mueggler, Schwabe, Scaramuzza. A Monocular Pose Estimation System based on Infrared LEDs. 
IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014. PDF. Video. Code.

http://rpg.ifi.uzh.ch/docs/ICRA14_Faessler.pdf
https://youtu.be/8Ui3MoOxcPQ
https://github.com/uzh-rpg/rpg_monocular_pose_estimator


Application to Monocular Visual Odometry
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Keyframe 1 Keyframe 2

Initial point cloud New triangulated points

Current frame
New keyframe



Robust Estimation in Presence of Outliers

• All PnP problems (solved by DLT, EPnP, or P3P algorithms) assume that the 3D-2D point 
correspondences are correct. If the correspondences are incorrect (i.e., they contain 
outliers), then the output of these algorithms may be incorrect. 

• The RANSAC algorithm (Lecture 09) can be used, in conjunction with the PnP algorithm, 
to remove the outliers (we will do this in Exercise 07). 

• PnP with RANSAC can be found in OpenCV's (solvePnPRansac)
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https://docs.opencv.org/master/d9/d0c/group__calib3d.html#ga50620f0e26e02caa2e9adc07b5fbf24e


EPnP vs. DLT

If a camera is calibrated, only 𝑅 and 𝑇 need to be determined. In this case, 
should we use DLT or EPnP for localization?

54



EPnP vs. DLT: Accuracy vs. noise

EPnP is up to 𝟏𝟎 times more robust to noise than DLT
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Plots from
Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, International Journal of Computer Vision. PDF.

DLT

EPnP EPnP

DLT

EPnP+ Gauss Newton

https://infoscience.epfl.ch/record/160138/files/top.pdf


EPnP vs. DLT: Accuracy vs. number of points

EPnP is up to 𝟏𝟎 times more accurate than DLT
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Plots from
Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, International Journal of Computer Vision. PDF.

DLT

EPnP
EPnP

DLT

EPnP+ Gauss Newton

https://infoscience.epfl.ch/record/160138/files/top.pdf


EPnP vs. DLT: Timing

EPnP is up to 𝟏𝟎 times more efficient than DLT
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Plots from
Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, International Journal of Computer Vision. PDF.

DLT
EPnP

https://infoscience.epfl.ch/record/160138/files/top.pdf


PnP problem: Recap
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Uncalibrated camera 
(i.e., intrinsic parameters are NOT known)

Calibrated camera
(i.e., instrinc parameters are known)

Only DLT can be used Either DLT or EPnP can be used

EPnP: minimum number of points: 3 (P3P) +1 for disambiguation
DLT: Minimum number of points: 4 if coplanar, 6 if non-coplanar

The output of both DLT and EPnP can be refined via non-linear optimization 
by minimizing the sum of squared reprojection errors. 

NB: Neither EPnP or DLT compute the lens distortion parameters, 
these can be estimate via reprojection error minimization



Today’s Outline

• Camera calibration

• Camera localization
• Case study: Vision-based Autonomous Drone Racing

• Non conventional camera models: fisheye and catadioptric cameras

59



60

Kaufmann et al., Champion-Level Drone Racing using Deep Reinforcement Learning, Nature, 2023
Song et al., Reaching the Limit in Autonomous Racing: Optimal Control versus Reinforcement Learning, Science Robotics, 2023



Human pilot: Marvin, Swiss champion. Age: 15
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Fully autonomous, vision based, and onboard computation!

2018: autonomous drone race in Madrid

Maximum speed 3 km/h
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2019: autonomous drone race in Austin

Maximum speed 30km/h
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The eyes
Intel RealSense camera

The brain
NVIDIA Jetson TX2

From 0 to 100 km/h in 1 second
Weight:              0.8kg
Max acceleration:     5 G

Our AI Drone, named SWIFT
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Song et al., Reaching the Limit in Autonomous Racing: Optimal Control versus Reinforcement Learning, Science Robotics, 2023

Neural-Network controller trained with Reinforcement Learning
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Can we outrace the best human pilot?

After 7 years of work, in June 2022, we invited the world champions of drone racing

Alex Vanover

DRL World 
Champion

Thomas 
Bitmatta

MultiGP 
International 

World Champion

Marvin 
Schaepper

Swiss Drone 
League

Champion

AI Drone

Both human and AI drones 
were identical

Kaufmann, Bauersfeld, Loquercio, Mueller, Koltun, Scaramuzza, 
Champion-Level Drone Racing using Deep Reinforcement Learning, Nature, 2023. PDF. Datasets. Our video. Video by Nature

https://www.nature.com/articles/s41586-023-06419-4.pdf
https://zenodo.org/record/7955278
https://youtu.be/fBiataDpGIo
https://youtu.be/pq53uCDZelQ
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Kaufmann, Bauersfeld, Loquercio, Mueller, Koltun, Scaramuzza, 
Champion-Level Drone Racing using Deep Reinforcement Learning, Nature, 2023. PDF. Datasets. Our video. Video by Nature

https://www.nature.com/articles/s41586-023-06419-4.pdf
https://zenodo.org/record/7955278
https://youtu.be/fBiataDpGIo
https://youtu.be/pq53uCDZelQ
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Kaufmann, Bauersfeld, Loquercio, Mueller, Koltun, Scaramuzza, 
Champion-Level Drone Racing using Deep Reinforcement Learning, Nature, 2023. PDF. Datasets. Our video. Video by Nature

https://www.nature.com/articles/s41586-023-06419-4.pdf
https://zenodo.org/record/7955278
https://youtu.be/fBiataDpGIo
https://youtu.be/pq53uCDZelQ
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Kaufmann, Bauersfeld, Loquercio, Mueller, Koltun, Scaramuzza, 
Champion-Level Drone Racing using Deep Reinforcement Learning, Nature, 2023. PDF. Datasets. Our video. Video by Nature

Compute Drone Pose via Gate Detection and P3P

https://www.nature.com/articles/s41586-023-06419-4.pdf
https://zenodo.org/record/7955278
https://youtu.be/fBiataDpGIo
https://youtu.be/pq53uCDZelQ
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Calculate Uncertainty of Drone Position

The uncertainty of the estimation distance 

increases quadratically with the distance. 

Can you prove it mathematically?



Calculate Uncertainty of Drone Position



Today’s Outline

• Camera calibration

• Camera localization

• Non conventional camera models: fisheye and catadioptric cameras
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Overview on Omnidirectional Cameras

73

Fisheye Catadioptric

360º all around

Catadioptric cameras (e.g. 
cameras and mirror systems)

FOV > 130º 

Wide FOV dioptric 
cameras (e.g. fisheye)

FOV = Field of View



Camera View Comparison
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Perspective Fisheye
(highest resolution is achieved around the 

optical axis)

Catadioptric
(highest resolution is achieved 

perpendicularly to the 
optical axis

Zhang, Rebecq, Forster, Scaramuzza. Benefit of Large Field-of-View Cameras for Visual Odometry. 
IEEE International Conference on Robotics and Automation (ICRA), 2016. PDF.

http://rpg.ifi.uzh.ch/docs/ICRA16_Zhang.pdf


Central vs Noncentral Omnidirectional Cameras
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Non-Central projection system
Rays do not intersect in a single point

Central projection system
Rays intersect in a single point

single effective 
viewpoint



Central Omnidirectional Cameras
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Hyperbola + Perspective camera Parabola + Orthographic lens

F1

F2

F1

NB: one of the foci of the hyperbola must lie in the 
camera’s center of projection



Why do we prefer central cameras?

Because we can:

• Apply standard algorithms valid for perspective geometry.

• Unwarp parts of an image into a perspective one

• Transform image points into normalized vectors on the unit sphere
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http://www.cis.upenn.edu/~kostas/omni/ceiling.jpg

http://www.cis.upenn.edu/~kostas/omnigrasp.html


Recall: Normalized Image Coordinates (Lecture 2, slide 62)

If we pre-multiply both terms of the perspective projection equation in camera frame by 𝐾−1, we get:
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𝑃2

How do we model 3D points that are behind the camera?

The standard pinhole model is not enough. We need a distortion model.
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𝑝1

𝑃1

1
Xc

Zc

C

ത𝑢 1

Wide FOV dioptric 
cameras (e.g. fisheye)

𝜆
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𝛼
𝑣 − 𝑣0

𝛼

1

=

𝑋𝑐

𝑌𝑐

𝑍𝑐The red line is the x-y plane 
passing through C



Unified Omnidirectional Camera Model 
(for Fisheye and Catadioptric cameras)

• We model the focal length as polynomial function, whose coefficients are the parameters to be estimated

• The coefficients of the polynomial, the intrinsic parameters, and extrinsics are then found via DLT
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Scaramuzza, Martinelli, Siegwart. A Flexible Technique for Accurate Omnidirectional Camera Calibration and Structure from Motion. ICVS’06. PDF.
Scaramuzza, Omnidirectional Camera, chapter of Encyclopedia of Computer Vision, Springer, 2014. PDF

1
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When 𝑎1, 𝑎2, … , 𝑎𝑁 = 0 then we get a pinhole camera
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http://rpg.ifi.uzh.ch/docs/ICVS06_scaramuzza.pdf
http://rpg.ifi.uzh.ch/docs/omnidirectional_camera.pdf


OCamCalib: Omnidirectional Camera Calibration  Toolbox

• Released in 2006, OCamCalib is the standard toolbox for calibrating wide 
angle cameras (fisheye and catadioptric)

• Since 2015, included in the Matlab Computer Vision Toolbox

81
Scaramuzza, Martinelli, Siegwart, A toolbox for easily calibrating omnidirectional cameras, IROS’06. PDF

Example calibration images of a catadioptric camera Example calibration images of a fisheye camera

https://sites.google.com/site/scarabotix/ocamcalib-omnidirectional-camera-calibration-toolbox-for-matlab?authuser=0
https://ch.mathworks.com/help/vision/ug/fisheye-calibration-basics.html
http://rpg.ifi.uzh.ch/docs/IROS06_scaramuzza.pdf


Projection of Image Points on the Unit Sphere

• Always possible after the camera has been calibrated
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Pc

C

p


Zc

Spherical 

image plane of radius =  1



Projection of Image Points on the Unit Sphere

• Always possible after the camera has been calibrated
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Summary (things to remember)

• Calibration from 3D objects: DLT algorithm

• Calibration from planar grids: DLT algorithm using homography projection

• Reprojection Error and non linear optimization

• P3P algorithm

• DLT vs EPNP comparison

• Omnidirectional cameras

• Central vs non central projection 

• Unified (spherical) model for perspective and omnidirectional cameras
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Readings

• Ch. 2.1 of Szeliski book, 2nd Edition

• Chapter 4 of Autonomous Mobile Robots book: link
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http://rpg.ifi.uzh.ch/docs/teaching/2024/Ch4_AMRobots.pdf


Understanding Check

Are you able to:
• Describe the differences between Tsai’s and Zhang’s calibration methods

• Explain and derive the DLT in both Tsai’s and Zhang’s methods? What is the minimum number of 
point correspondences they require?

• Describe the general PnP problem and derive the behavior of its solutions?

• Explain the working principle of the P3P algorithm? Why do we need 4 points? What’s the key 
difference between P3P and EPnP?

• What is the reprojection error and how is it used for refining the calibration?

• What are the key technical differences between DLT and EPnP their differences in terms of 
robustness to noise, number of points, and computational efficiency?

• Prove mathematically that the uncertainty of the distance estimated by PnP increases 
quadratically with the distance. 

• Define central and noncentral omnidirectional cameras?

• What kind of mirrors ensure central projection?
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