
Smartphone Quadrotor Flight Controllers and Algorithms for
Autonomous Flight

Tyler Ryan1 and H. Jin Kim2

I. INTRODUCTION

Some of the most interesting recent research in quadrotor
flight is related to fully autonomous systems, i.e. only using
onboard processing and sensing. Many researchers have
demonstrated different aspects needed for autonomy and
within the last couple of years some have even demonstrated
fully autonomous flight. [1], [2] One of the biggest chal-
lenges is finding powerful lightweight mobile processors,
along with the state estimation and control algorithms that
are fast enough to be run on those processors.

In this paper we present some of the results of our use of
a smartphone as a quadrotor flight controller. Modern smart-
phones have all the necessary sensors needed for quadro-
tor flight and also provide a powerful mobile computing
environment. Additionally, smartphone vendors are rapidly
increasing the computation performance and, since our work
uses the standard Android operating system, software is
easily transferred to new phones as they are released.

The contributions of this paper are twofold. First, we
describe the algorithms used towards the goal of fully
autonomous flight. While many of the algorithms are not
new, we have demonstrated that they are suitable for use
on our smartphone flight controller. Secondly, this paper
presents the first online implementation of a velocity esti-
mation algorithm we recently proposed, [3] which generates
image-space feature location prior distributions and then uses
Bayesian inference to create “soft” point correspondences
and calculate the maximum a posteriori velocity and height.

II. SYSTEM DESCRIPTION

The UAV used in this work is a quadrotor, for which the
dynamics have been well studied. In this section we just lay
out the model used with respect to the rest of the paper.

ṗ = v (1a)
v̇ = Rfe3 (1b)

Ṙ = Rω× (1c)
Jω̇ = −ω×Jω + τ (1d)

where x is the position, v is the velocity, R is the rotation
matrix representing the attitude of the quadrotor with respect
to inertial coordinates, J is the rotational inertia matrix, and
ω is the angular velocity in body fixed coordinates. The
·× operator is used to denote the skew symmetric matrix

1PhD candidate, Dept of Mech and Aero Engineering, Seoul National
University, ryantr@gmail.com

2Associate Professor, Dept of Mech and Aero Engineering, Seoul Na-
tional University, hjinkim@snu.ac.kr

representing the cross product and the inverse operation is
denoted by vex, i.e. vex(ω×) = ω.

Image kinematics are assumed, for a sufficiently small
timestep dt, to follow

q(t+ dt)− q(t) ' Lω(t)ω(t)dt+ Lv(t)
v(t)

z(t)
dt (2)

Lω ,

[
f−1qxqy −(f + f−1q2x) qy
f + f−1q2y −f−1qxqy −qx

]
Lv ,

[
−f 0 qx
0 −f qy

]
where q(t) ∈ R2 is a feature point’s image coordinate and
f is the camera focal length.

III. HARDWARE

The quadrotor used in our experiments is a Mikrokopter
[4] with the flight controller replaced by a Galaxy SIII
smartphone. Use of the smartphone as the flight controller
has some unique benefits as well as challenges (table I).
The biggest benefits are twofold: 1) smartphones provide
powerful computation power relative to their size, with
upgraded versions regularly being released and requiring
minimal, if any, software changes, and 2) the sensor and
communication hardware comes prepackaged so the UAV
engineer does not have to take the time to integrate several
separate subsystems. To communicate with the motors we
connect an arduino, which generates the commanded motor
control signals, to the phone. In the future this board can
also serve to communicate with other external systems, such
sonar or laser scanners.

Smarphones also have unique challenges, but these are
manageable when properly considered. The potentially most
difficult challenge is the lack of a real-time operating system.
In our experience, though, the sensor updates happen fast
enough that this is not a major problem. Additionally, we
label all data with the time that it is generated so time
dependent tasks, such as integration or differentiation, are
still accurate. The other challenge is lack of control over
hardware selection or layout. We have not been limited by
this so far, but if there are problems in the future external
units can be integrated via the USB port.

IV. STATE ESTIMATION AND CONTROL

In this section we describe the estimation and control
algorithms used for flight. Algorithms commonly found in
the quadrotor literature are only introduced without detail,
but algorithms with significant modifications or not common
in the literature are described in more detail.

Benefits Challenges
• Powerful portable comput-

ing environment
• Easily upgraded to new

phones
• Integrated hardware

– Fast communication
between sensors and
logic

– Globally synced
timestamps

• Not real-time
• Sensor events are some-

times delivered late
– Event timestamps

are still accurate
• No control over individual

hardware items
– e.g. Rolling shuttter

cameras

TABLE I: Benefits and challenges with smartphone flight
controllers

A. Attitude State Estimation

For attitude estimation we have implemented the SO3
observer described in [5], running at approximately 200Hz,
which is designed specifically for the sensors commonly used
by quadrotors: gyroscopes provide high speed updates and
accelerometers provide noisy inertial measurements which
can be used to compensate for gyroscope bias. Using just
these two sensors there is still one undetermined dimension
(in the yaw angle for hover flight). If flying outdoors, a
magnetometer can be used to correct this since the observer
of [5] is able to filter out the high frequency magnetic
disturbance caused by the motors. But in our indoor flight
environment the iron used in the building construction causes
low frequency distortion in the magnetic field making the
magnetometer too unreliable. Currently we are using the
Vicon system to correct this last bit of ambiguity, but in
the future we will use onboard vision measurements.

Since we are using a smartphone, we also have the option
of using the phone’s own attitude estimation algorithm. In our
case, the Galaxy SIII uses a sensor fusion algorithm provided
by iNEMO which is based on an adaptive extended Kalman
filter (EKF). While many researchers have reported success
using their own EKFs, the iNEMO algorithm is not tuned for
quadrotor flight so produces poor results. Figure 1 compares
the SO3 observer performance with the Android (iNEMO)
observer performance.

B. Attitude State Control

The attitude controller is derived from Lyapunov theory.
First, define the rotation error metric, R̃, as

R̃ = (Rd)ᵀR (3)

where Rd is the rotation matrix associated with the desired
attitude. For Rd = R we have R̃ = I so the control law
needs to drive R̃ to the identity matrix. Before proceeding
with the control derivation we need to define the symmetric
and anti-symmetric parts of a matrix.

Γs(R̃) =
1

2
(R̃+ R̃ᵀ) (4a)

Γa(R̃) =
1

2
(R̃− R̃ᵀ) (4b)

R̃ = Γs(R̃) + Γa(R̃) (4c)

10 20 30 40 50 60

−0.2

−0.1

0

0.1

0.2

Time [s]

ro
ll

[r
ad

]

10 20 30 40 50 60

−0.2

−0.1

0

0.1

0.2

Time [s]

pi
tc

h
[r

ad
]

10 20 30 40 50 60
−0.2

−0.1

0

0.1

0.2

Time [s]

ya
w

 [r
ad

]

Vicon

SO3 Observer

iNEMO Observer

Fig. 1: Observer comparison. “Vicon” is the ground truth
data. Bias offsets in the yaw angle are due to different origins.
In this data, the magnometer is used for yaw angle, but due
to large variation in the bias caused by the environment we
currently do most flights with the Vicon yaw angle.

To derive the attitude control law, we use the Lyapunov
function

V , kR tr(I − R̃) +
1

2
ωᵀJω (5)

Since R̃ is the product of two rotation matrices, R̃ is also a
rotation matrix which ensures that the tr(I − R̃) ≥ 0 with
equality occurring if and only if R̃ = I . Looking at the time
derivative,

V̇ = kR tr(− ˙̃
R) + ωᵀJω̇

= kR tr(−(Ṙd)ᵀR− (Rd)ᵀṘ) + ωᵀJω̇ (6)

Now substitute in the quadrotor dynamics of eqn 1

V̇ = −kR tr((Ṙd)ᵀR)− kR tr(RdRω×) + ωᵀ(−ω×Jω + τ)

= −kR tr((Ṙd)ᵀR)− kR tr(R̃ω×) + ωᵀτ

= −kR tr((Ṙd)ᵀR)− kR tr((Γs(R̃) + Γa(R̃))ω×) + ωᵀτ
(7)

Taking advantage of the structure of Γs(R̃), Γa(R̃), and ω×,
we know tr(Γs(R̃)ω×) = 0 and
Γa(R̃)ω× = −2ωᵀ vex(Γa(R̃)), where the vex() operator
is defined in section II. This gives the time derivative,

V̇ = −kR tr((Ṙd)ᵀR) + ωᵀ
(
kR vex(R̃− R̃ᵀ) + τ

)
(8)

From this, define the control law

τ ≡ −kR vex(R̃− R̃ᵀ)− Sω (9)

V̇ = −kR tr((Ṙd)ᵀR)− ωᵀSω (10)

where S is a positive definite weighting matrix. If we assume
Ṙd = 0, then V̇ is negative semi-definite. Using the control

law defined in eqn 9, the only invariant set on V̇ = 0 is
R̃ = I and ω = 0 so by LaSalle’s invariance principle we
can state that the system is asymptotically stable.

In practice, Ṙd is defined by the outer loop controller
and is generally not zero. We could adjust the outer loop
controller gain to ensure eqn 9 is negative definite but in our
experiments eqn 9 is almost always negative, with only small,
brief deviations where it is above zero, so for simplicity no
checks are made on Ṙd with respect to eqn 10.

C. Translation State Estimation

The translation state observer uses a standard Kalman filter
with time updates running at 200Hz. For measurements,
we have separated velocity and position as two separate
measurements. Velocity measurements are estimated using
the procedure described in section V. Currently, we use a
Vicon system for position measurements at 10Hz with 1cm
standard deviation noise artificially added. We are in the
process of implementing algorithms to use the onboard vision
system for position measurement.

D. Translation State Control

For control we follow the common practice of assuming
attitude commands are tracked perfectly and, combined with
thrust, can be treated as an input. More precisely, the net
acceleration vector is considered the input,[

ṗ
v̇

]
=
[
I 0

] [p
v

]
+

[
0
I

]
â+

[
0
I

]
d (11)

where â is the acceleration command and d is acceleration
due to disturbances, including tracking error by the attitude
controller. To improve system robustness, both to distur-
bances and to measurement noise, we use an H∞ controller
modified to allow for user tuning. This controller is described
in [6].

V. VELOCITY ESTIMATION

In this section we summarize the velocity estimation
algorithm we developed in [3], which can be run very quickly
and is independent of any position estimation routines. The
algorithm transforms prior distributions for the velocity and
height to an image-space prior distribution for each feature
location found in the previous image and then computes the
maximum a posteriori estimate for the velocity and height
based on the feature points found in the current image. Note
that no feature descriptors or explicit feature matching are
used. In [3], we showed that the algorithm described in
this section was both faster and more accurate than explicit
feature matching.

A. Establishing Correspondence Probabilities

In this section we describe how we determine the prob-
abilistic, or “soft,” correspondence between points in image
1, Q1 = {q1,i}

N1
i=1, and points in image 2, Q2 = {q2,j}

N2
j=1,

where N1 and N2 are the total number of points found in
the respective images. To reduce notational clutter, we will
assume ω = 0 throughout this section; the extension to an
arbitrary ω is obvious.

The correspondence matrix C is the matrix with individual
entries cij defined as the probability that point q1,i in image
1 corresponds to point q2,j in image 2. Mathematically this
is written as

cij = pcij

(
q2,j − q1,j + nij = Lv

v

z
dt
)

(12)

where nij is measurement noise. Since there are finitely
many possible correspondences for q2,j (one of the points in
Q1 or no correspondence), pcij defines a discrete distribution.
To find the MAP velocity we need to find a way to efficiently
compute pcij using only the prior distributions of v and z.

1) Distribution of the Change in Position - 1D case:
Defining d = Lvdtvz

−1, we need to find its distribution.
First consider the 1D case:

dx =
δx
z

(13)

δx , qxvzdt− fvxdt

From this we see that dx is distributed as the ratio of
normally distributed random variables, which does not result
in another normally distributed random variable.

Instead we use a normal approximation. The random
variable ∆xZ

−1, from which δxz
−1 is drawn, does not

have well-defined moments so we use a two step method to
produce the normal approximation: 1) define a new variable
ẑ such that δxẑ−1 ' δxz−1 and ẑ has well-defined moments,
and 2) compute the moments of δxẑ−1 to make the normal
distribution approximation. First, assuming |µz − z| < |µz|
we can write δxz−1 using a Taylor series expansion about
µδx and µz .

δx
z

=
µδx + (δx − µδx)

µz + (z − µz)

=

∞∑
k=0

µδx(µz − z)k

µk+1
z

+

∞∑
k=1

∂k{δxz−1}
∂δx∂kz−1

(δx − µδx)(z − µz)k

(k + 1)!
(14)

Proof of convergence for this approximation is given in [3].
Trying to take the expectation of eqn 14 directly would

result in a divergent infinite sum. Instead, to create a new
random variable with well-defined moments that closely ap-
proximates δxz−1, we truncate the Taylor series in equation
14 to the first k′ terms.

δx
ẑ

=

k′∑
k=0

µδx(µz − z)k

µk+1
z

+

k′∑
k=1

∂k{δxz−1}
∂x∂kz−1

(δx − µδx)(z − µz)k

(k + 1)!
(15)

Since this is now a finite sum, the expectation is well-defined

and computed by

E
(

∆x

Ẑ

)
=

k′
2∑

k=0

µδxE
(
(µz − z)k

)
µk+1
z

=
µδx
µz

+

k′
2∑
j=1

µδxσ
2j
z (2j − 1)!!

µ2j+1
z

(16)

If σz � µz the summands in eqn 16 will quickly approach
zero and k′ can be chosen to give both an accurate and stable1

approximation.
We also need to repeat this for the second moment, for

which it is easiest to first look at z−2 and then use, by
independence, E(∆2

xẐ
−2) = E(∆2

x)E(Ẑ−2).

1

z2
=

1

(µz + (z − µz))2

=
1

µ2
z

− 2(z − µz)
µ3
z

+
3!(z − µz)2

µ4
z2

− . . .

=

∞∑
k=0

(k + 1)(µz − z)k

µk+2
z

(17)

E
(

1

Ẑ2

)
=

k′∑
k=0

(k + 1)E
(
(µz − z)k

)
µk+2
z

=
1

µ2
z

+

k′
2∑
j=1

(2j + 1)σ2j
z (2j − 1)!!

µ2j+2
z

(18)

Proof of convergence for eqn 17 is also given in [3].
The normal distribution approximation for dx is then

defined by

pdx ∼ N
(
µdx , σ

2
dx

)
(19)

µdx = E(∆xZ
−1)

σ2
dx = E(∆2

xZ
−2)− E2(∆xZ

−1)

2) Distribution of the Change in Position - 2D case:
Extending the results of the previous section to the 2D case
is straightforward. The marginal distributions pdx and pdy
are directly calculated using eqn 19, which just leaves the
covariance to be determined. To calculate this we first need
to find E(δxδy). From eqn 13,

δxδy = qxqydt
2v2z − qxfdtvyvz−

qyfdtvxvz + f2vxvydt
2

E(∆x∆y) = qxqydt
2σ2
vz + µδxµδy (20)

Using this and the assumption of independence between
∆x∆y and Z−1, the covariance is

cov(Dx, Dy) = E(∆x∆yZ
−2)− E(∆xZ

−1)E(∆yZ
−1)

= (qxqydt
2σ2
vz + µδxµδy)µz−2 − µδxµδyµ2

z−1

= qxqydt
2σ2
vzµz−2 + µδxµδy (µz−2 − µ2

z−1)
(21)

1Stable in the sense that the value is locally nearly independent of the
specific choice of k′

and the normal approximation for the joint distribution is

pd ∼ N (µd,Σd) (22)

µd =
[
µdx µdy

]ᵀ
Σd =

[
σ2
dx

cov(Dx, Dy)
cov(Dx, Dy) σ2

dy

]
3) Correspondence Probabilities: Using the normal ap-

proximation of d from the previous section, we are now
ready to calculate the correspondence probability in eqn 12.
Using Baye’s rule, we can write this as

cij =
pdi(q2,j − q1,i)pf (q1,i)∑N1

k=1 pdk(q2,j − q1,k)pf (q1,k)
(23)

where pf (q1,i) is the probability that the feature located at
q1,i really exists, which we assume is uniformly distributed
so cancels out of eqn 23.

To account for measurement error in q2,j , assumed be be
normally distributed, we need to integrate over the measure-
ment distribution.

cij = αj

∫
R2

pdi(q − q1,i|q)pq2,j (q)dq (24)

Solving this integral gives

cij =
αj
√
|Σa|

2π
√
|ΣdΣn|

e−
f
2 (25)

f ,− µᵀ
aΣ−1a µa + (µd + q1,i)

ᵀΣ−1d (µd + q1,i)+

µᵀ
q2,jΣ−1n µq2,j

µa ,Σa(Σ−1d (µd + q1,i) + Σ−1n µq2,j)

Σa ,(Σ−1d + Σ−1n)−1

The remaining unknown, αj , is found by requiring

N1∑
i=1

cij = 1 (26)

Finally, to account for the possibility of a point not having
a correspondence, we introduce the virtual point q1,N1+1 in
Q1 whose time integrated position, dN1+1, follows a uniform
probability distribution. Note that eqn 26 should now sum
over i = 1 . . . N1 + 1.

B. MAP Velocity and Height Estimation

Using the correspondence results of the previous section,
estimation of the MAP velocity and height is a straightfor-
ward application of standard Bayesian inference tools. Our
goal is to find the velocity and height that maximizes the
joint probability distribution, i.e.

v∗, z∗ = arg max
v,z

p(v, z|Q1, Q2, C) (27)

where v∗ and z∗ are the respective maximizers.

We can use Baye’s rule to rearrange this into distributions
that are more easily defined.

p(v, z|Q1, Q2, C) = p(v, z|Q1, Q2, C, z)p(z|Q1, Q2, C)

=
p(Q2|Q1,v, z, C)p(v|Q1, C, z)

p(Q2|Q1, z, C)

p(Q2|Q1, z, C)p(z|Q1, C)

p(Q2|Q1, C)

=
p(Q2|Q1,v, z, C)p(v|Q1, C, z)p(z|Q1, C)

p(Q2|Q1, C)
(28)

Under independence assumptions we can write

p(v|Q1, C, z) = pv(v) ∼ N (µ,Σv) (29)

p(z|Q1, C) = pz(z) ∼ N (µz, σ
2
z) (30)

where pv and pz are the respective prior distributions. Further
assuming that the measurement of each point in Q2 is
independent of the other points in Q2 we can write

p(Q2|Q1,v, z, C) = ΠN2
j=1pn(nj)

1−cN1+1,jacN1+1,j (31)

nj =

N1∑
i=1

cij

(
q2,j − q1,i − Lω,iωdt− Lv,i

v

z
dt
)

pn ∼ N (0,Σn)

where nj is measurement noise and a is the uniform a priori
probability density of a point having no correspondence.
This seems similar to cN1+1,j , but recall that cN1+1,j is the
probability that the point at q2,j is associated with the virtual
point in Q1, i.e. the a posteriori probability that the specific
point q2,j has no real correspondence.

Rather than directly optimizing eqn 27 it is mathematically
more convenient to optimize the log probability, which has
the same maximizers. The optimization objective function,
J , then becomes

J = ln p(Q2|Q1,v, z, C) + ln pv(v) + ln pz(z) + . . .

=− 1

2

 N1∑
j=1

(1− cN1+1,j)n
ᵀ
jΣ−1n nj+

(v − µv)ᵀΣ−1v (v − µv) +
(z − µz)2

σ2
z

]
+ . . . (32)

where the omitted terms do not contain any variables being
optimized over.

Eqn 32 is quadratic in v which, if z is known, admits the
unique solution

v∗ᵀ =

(
1

z
sᵀ1 + µᵀ

vΣ−1v

)(
1

z2
S2 + Σ−1v

)−1
(33)

sᵀ1 ,
N2∑
j=1

(1− cN1+1,j)

(
N1∑
i=1

cij(q2,j − q1,i−

Lω,iω)

)ᵀ

Σ−1n Aj

S2 ,
N2∑
j=1

(1− cN1+1,j)A
ᵀ
jΣ−1n Aj

Aj ,dt
N1∑
i=1

cijLv,i

From eqn 33 we can see that when the feature measurement
noise is large, and, hence, s1 and S2 are small, the MAP esti-
mate of v will be close to the prior µv . As the measurement
noise decreases relative to Σv , the MAP estimate approaches
the least-squares estimate using the visual information only,
as expected.

For the general optimization over both v and z, we can
use eqn 33 to reduce the numerical optimization problem to
that of a single scalar, z. Rewriting eqn 32 using constant
matrices,

J =− 1

2

[
s0 −

2

z
sᵀ1v +

1

z2
vᵀS2v+

(v − µv)ᵀΣ−1v (v − µv) +
(z − µz)2

σ2
z

]
+ . . . (34)

s0 ,
N2∑
j=1

(1− cN1+1)

(
N1∑
i=1

cij(q2,j − q1,i − Lω,iω)

)ᵀ

Σ−1n(
N1∑
i=1

cij(q2,j − q1,i − Lω,iω)

)
, we can easily apply any common numerical optimization
technique. For the work here, we simply perform a coarse
grid search over the range of expected heights (µz±3σz) and
then use a golden section search [7] to refine the estimate.
Most of the computational effort is in building up s0, s1, and
S2 so the specific choice of numerical optimization technique
is not critical.

VI. EXPERIMENTAL RESULTS

We have implemented the above algorithms on a Galaxy
SIII smartphone. All computations are done onboard using
only onboard sensors for nearly everything. We are still
in the process of researching and implementing onboard
position and yaw measurement algorithms so the current
results use Vicon to simulation those results. The Vicon data
is limited to 10Hz and has 1cm standard deviation noise
artificially added. Since our previous analysis [3] showed
that the velocity estimation algorithm performed well with
relatively few feature points, we use an image size of 320px
× 240px.

Figure 2 shows that the velocity estimation algorithm
outlined in section V works well for a sample fight. Note
that little effort was spent to tune the Kalman filter for this
flight so better overall results could be achieved with a more
accurate Kalman filter. There will always be some error,
though, so the velocity estimation algorithm of section V
is still useful.

Figures 3 and 4 show the computation performance of the
smartphone. In figure 3 we see that most velocity estimates
are ready in less than 30ms. This is not only the image
processing time, but also any overhead due the operating
system or other running processes such as the attitude
observer and controller, translation observer and controller,
etc. Figure 4 shows that the current flight controller is only
using around 50% of the available cpu power. This suggests

60 62 64 66 68 70 72 74 76 78 80
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time [s]

x
ve

l [
m

/s
]

Vicon
MAP

(a) x-vel

60 62 64 66 68 70 72 74 76 78 80
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time [s]

y
ve

l [
m

/s
]

Vicon
MAP

(b) y-vel

Fig. 2: Velocity estimation performance. “Vicon” is the
velocity measured using the Vicon system. “MAP” is the
onboard velocity measurement using the algorithm described
in this section V. For this flight, the height was held relatively
constant so z and ż plots are omitted.

that there is still sufficient resources available to support
onboard position estimation.

An example flight video is available at http://db.tt/
2I7LwMEg

VII. CONCLUSION

In this work we showed some of the algorithms neces-
sary to enable autonomous flight using a smartphone flight
controller. Additionally, we demonstrated an online imple-
mentation of a velocity estimation algorithm that we recently
proposed. We are currently in the process of researching and
implementing algorithms for position estimation and control
which will enable us to remove the last elements of reliance
on external sensing.

ACKNOWLEDGEMENT

This work was supported by the New and Renewable
Energy Program of the Korea Institute of Energy Technology
Evaluation and Planning (KETEP) grant funded by the Korea
government Ministry of Knowledge Economy.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Vel Total Delay Time [ms]

Im
ag

es
 P

ro
ce

ss
ed

 in
 L

es
s

T
im

e
[%

]

Fig. 3: Total vision delay time. The horizontal axis represents
the time elapsed between image capture and the velocity
estimate being ready, which includes all vision processing
steps plus operating system overhead due to other processing.
The vertical axis is the percentage of images with less delay
than the respective horizontal axis value, e.g. 95% of the
images had a total delay of less than 30ms.

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [s]

U
sa

ge
 r

at
io

Fig. 4: Average cpu usage, over all 4 cores, during flight

REFERENCES

[1] M. Achtelik, S. Weiss, and R. Siegwart, “Onboard imu and monocular
vision based control for mavs in unknown in-and outdoor environ-
ments,” in Robotics and automation (ICRA), 2011 IEEE international
conference on. IEEE, 2011, pp. 3056–3063.

[2] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and
M. Pollefeys, “Pixhawk: A micro aerial vehicle design for autonomous
flight using onboard computer vision,” Autonomous Robots, vol. 33, no.
1-2, pp. 21–39, 2012.

[3] T. Ryan and H. J. Kim, “Image-space prior distributions and bayesian
inference for robust UAV velocity estimation from video sequences,”
in under review.

[4] Mikrokopter website. [Online]. Available: http://www.mikrokopter.de/
ucwiki/en/MikroKopter

[5] T. Hamel and R. Mahony, “Attitude estimation on SO3 based on direct
inertial measurements,” in Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on. IEEE, 2006, pp.
2170–2175.

[6] T. Ryan and H. J. Kim, “PD-tunable control design for a quadrotor,”
in AIAA Guidance, Navigation, and Control (GNC), 2013 Conference
on. AIAA, 2013.

[7] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming,
3rd ed. Springer, 2008.

