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I. ABSTRACT

Abstract— Vision-based control of aerial robots
adds the challenge of visual sensing on top of
the basic control problems. Here we pursue the
approach of using sensor-coupled motion primi-
tives in order to tie together both the sensor and
motor components of flying robots to leverage
sensorimotor interaction in a fundamental man-
ner. We also consider the temporal scale over
which autonomy is to be achieved. Longer term
autonomy requires significant adaptive capacity of
the respective control structures. We investigate
linear combinations of some nonlinear network
activity for the generation of motor output and
ultimately, behaviour. In particular we are in-
terested in how such networks can be set up to
autonomously learn a desired behaviour. For that,
we are looking at bootstrapping of motor primi-
tives. The contribution of this work is a neurally
inspired architecture for the representation of
sensorimotor primitives capable of online learning
on a flying robot.

II. INTRODUCTION

Our aim is the design of control circuits for mul-
tirotor type helicopters to safely and robustly move
and navigate in unmodified everyday environments.
This requires a highly adaptive architecture which
can be realized by using Reinforcement Learning
(RL) techniques in combination with autonomously
acquired internal models of the robot to be con-
trolled. The main sensory mode is vision, aided by
several auxiliary channels, the overall dynamics of
the underlying system, however, are largely unaf-
fected by the choice of sensors. This course of action
is motivated both by technical requirements and
biological models. The general setting is to start
the robot learning episode with a default parame-
terization of the primitive, or policy. The policy is
stochastic and the system follows the gradient of a
cost function with respect to the policy parameters.
The major challenge is to do this without the robot
damaging or destroying itself.

The control problems that we consider here are ba-
sic stabilization of positions in space in the presence
of continuous perturbation and noise. We consider
the question: Can we bootstrap a controller based

purely on robotic self-exploration with the marginal
condition of not destroying the robot during learn-
ing?

III. RELATED WORK
A. Biology

The biological idea of primitives has a long history.
Motor primitives date back at least to Helmholtz
and are still receiving current interest. In biological
context motion primitives are mostly referred to as
Central Pattern Generators (CPG), emphasizing the
fact of their autonomous nature. The decomposition
of sensing into the activity of specialist primitives
starts at the latest with the ecological approach of
Gibson. In investigations of motor control, several
authors describe a coherent picture of the features of
biological control systems (Arbib 1981} Mussa-Ivaldi
and Solla 2004; Grillner [2006; Ijspeert |2008)).

In summary, these features are their distributed
character which results in intelligent behaviour
from the ground up through component autonomy
and goal-awareness at lowest levels due to motor-
referenced sensory primitives; their subsumption of
concepts such as regulators, feedback controllers,
homeostasis and their mediating function in output
transformation; presence of internal models coupled
with identification mechanisms to realize adaptive
control; the ability to realize minute yet significant
adjustment which is in many cases necessary for
successful actions. Overall, adaptability appears to
be favored over precision.

B. Proposed architectures for representing primitives

Recently proposed computational models for
primitive representation can be classified according
to their location on the model-based to model-free
spectrum. On the model-based end, Lupashin
et al. (2010); Schoellig, Mueller, and D’Andrea
(2012); Mellinger, Michael, and Kumar (2012) use
a detailed quadrotor flight dynamics model derived
from first principles which is then refined iteratively.
Behaviourial targets are trajectory following with
varying DoF and aerobatics. Faust et al. (2013) learn
swing-free trajectories on load-carrying quadrotors



using Approximate Value Iteration (AVI) on top
of similar models. The autonomous plane of Bry,
Bachrach, and Roy (2012)) also falls into this class.

Using attractors in dynamical systems has been
proposed repeatedly for achieving computational
function, an example are Attractor Neural Networks
(ANNs) (Mussa-Ivaldi and Solla [2004). Ijspeert,
Nakanishi, and Schaal (2002)) introduced the concept
of Dynamic Movement Primitives (DMP) which are
explicitly constructed attractor systems which drive
a second system via a nonlinear coupling that is
generated with a set of weighted basis functions.
The weight parameters can be optimized with Policy
Search (PS) methods (Schaal et al. [2004; Kober,
Wilhelm, et al. 2012). Tedrake et al. (2009)) have
used a similar approach for controlling a model
plane around stall conditions. Sensory coupling of
DMPs is not as straightforward however (Kober,
Mohler, and Peters 2008).

Kolter and Ng (2009) and Lau [2011] integrate
coarse models of the systems under consideration
into their policy representations. The coarse model
reflects the intuitive understanding of the system, in
many cases the sign of the control input dependent
derivatives suffices. Michels, Saxena, and Ng (2005)
used a Markov Decision Process (MDP) model and
the PEGASUS RL algorithm for learning vision-
based obstacle avoidance on an RC car.

Rottmann et al. (2007) are bootstrapping an
altitude controller using RL and Gaussian Process
Regression (GPR) for approximating the state-
action value function but special provision must
be made to partition learning into chunks suitable
for GPR. In their comprehensive work on learning
autonomous helicopter aerobatic maneuvers, Abbeel
and Ng (2004); Abbeel, Coates, and Ng (2010]) use
Inverse Reinforcement Learning (IRL) to optimize
a coarse model through expert demonstrations
and use that for learning aerobatic maneuvers on
an autonomous helicopter. This is an incomplete
sample of the literature, for a good survey of RL in
robotics please refer to Kober and Peters (2012).

Finally, Waegeman, Wyffels, and Schrauwen 2012
propose a neural realization of motion primitives
which are acquired through imitation using
regression, which is a standard reservoir computing
method (Jaeger 2001; Maass, Natschlaeger, and
Markram 2002).

IV. METHODS AND MODEL
A. Multirotor motion primitives

We choose to work on top of a standard
attitude-stabilized  controller =~ which  accepts
Upobor = (U1, us,u3,us)’ as the time-dependent
control input, where the w; for i = {1,., 4}
correspond to roll, pitch, yaw and thrust. The time
index t is omitted for clarity. Simply speaking,
thrust effects a vertical acceleration, setting roll and
pitch angles effects lateral accelerations in the plane.
By integrating these actions, we attain velocity and
position in space. We are searching for an alphabet
of excitation patterns of w with which to synthesize
acceleration controlled behaviour in the 6 DoF of a
rigid body in R3.

B. Network model

We use neural reservoirs for representing the inter-
nal model from which controller output is derived.
The reservoir is a recurrent neural network with
random connectivity per instantiation. It can be used
as a universal dynamical system approximator. The
first important parameter of such a reservoir is its
size, that is, the number of neurons N in the network.
Increasing the network size N increases the general
modelling capacity of the network.

We represent the Sensorimotor Primitive (SMP)
with a leaky integrator reservoir and an output
weight vector WU associated with output channel
i. These components model the actual physical sys-
tem and can generate control and prediction outputs.
The network state evolves according to

Axy = AW, + Wiy, + Wiz, + Whias]
L1 — (1 — T)mt + TA.’Bt
Tip1 = tanh(@xi1) + Vstate

The matrices W', Win, Wi Wbas are the N x N
reservoir, N x U input, N x Y readout feedback and
N x 1 bias matrices respectively. U and Y designate
the number of inputs and readout units. The scalar A
is a scaling factor to effect a desired spectral radius
for the reservoir matrix and in our experiments is
chosen as A = gj, where gain ¢ = 1.1 and the

connection probability for the reservoir matrix p =
0.1. The state noise vgqse is uniformly distributed
with amplitude -0.1 to 0.1 and has a regularizing
effect. Network output is computed as

_ out
Yie = Wim



for each channel ¢ at time ¢. The final policy can
be formed according to
Urobot = (Y1, 92,y3,y4)T
In the experiments we do not synthesize the full
Urobot DUt only look at one or two readout units. The

other controls are either assigned constant values or
are driven by e.g. a PID controller.

C. Learning

There are several methods available for training
reservoirs. We interrelate three different methods,
learning rules, PS, and regression in In the
bootstrapping case, we want use close to no prior
information on how the control signal depends on
the sensory input. The priors we do introduce in
the process are limited to an offset for the thrust
command to bridge the "dead band" in the lower half
of the allowed range (the system is unresponsive), a
time constant for the network dynamics, the size of
the reservoir and an amplitude for the exploration
noise v. We use an unsupervised learning method
implemented via a Hebbian learning rule (Hoerzer,
Legenstein, and Maass 2012)). The learning rule ex-
ploits correlations in the exploration noise v and the
immediate reward. During learning, Gaussian noise
is added to the readout signal by letting

~ out
Vit =Wori + vy =y + 11

with v ~ N (u,0). The reward is computed by a
performance measure P; at each time step. A low-
pass filtered version P, = aP;_; + (1 — a)P; is also
generated with a = 0.8. The modulator signal is
derived from P; via

t =

1 if P, >P,
0 otherwise

and the weight update then is given as

AW = 0 7 (i — Tit) M,

with 9;+ being a low-pass filtered version of y; ;
analogously to P. The signals P, and M; indexed
with motor channel 4, but this is not strictly neces-
sary. The entire situation is schematically depicted

in [Fizure 1)

it
i AW Reservoir l Readouts

‘ Learning rule ‘ Learning

—){‘ Policy search J

Readout feedback

r - target

T VT aT )’1'
vo,a, ...

a Robot state s = (p

Fig. 1. Schematic of the learning system. Those components
directly involved with learning in the proposed setup are
colored in bright red, related methods in a darker shade.
Application of the Hebbian learning rule can be regarded
as policy search. PS methods emit AW derived from online
exploration, regression computes W directly from a batch.

D. Simulator

Simulations were done with the flight model sim-
ulator crresim E[, which was modified to be used as a
software-in-the-loop drop in for the real helicopter.
This allows using the same software infrastructure as
on our real robots. The control loop is executed at
36 Hz.

V. EXPERIMENTS

In these experiments we consider basic stabilizing
behaviour for a multirotor helicopter, in particular
hovering at fixed altitudes and keeping a fixed lateral
position. What we aim to bootstrap is a policy
for general cases, even when we might not have a
clear a priori idea of the general direction of motor
induced sensory consequences. These experiments
were performed to investigate the suitability of the
approach to application on a real robot.

A. Bootstrapping asymmetrical stabilization: hover

The most basic capability of a flying robot is, ar-
guably, that of getting off the ground. In the simplest
case, the goal state could be required to be inside a
given band, that is, between a lower and an upper
limit disregarding the specific altitude achieved by
the controller. Nonetheless we set a singular setpoint
as the target for learning.

For bootstrapping we apply exploratory Hebbian
learning to the reservoir readout weights. This im-
plements a policy gradient method via immediate

Thttp://sourceforge.net/apps/mediawiki/crrcsim/
index.php?title=Main_Page
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reward correlation with action. A crucial point before
learning can take place is determining the dead-time
or temporal delay T of the sensory consequences
with regard to motor action. Here we bumped the
system and determined the temporal delay with
cross-correlation of the recorded reponses. The re-
ward used in this experiment is P, = a;sgne; with
acceleration a;, positional error e; = pg — p:, the
desired position pg and the sign of the error sgne €
{1, —1}. The performance measure rewards acceler-
ation pointing in a direction reducing the error with
a sharp inversion when crossing the setpoint. The
delta rule needs to respect the temporal delay T' so
we used AW = n(y;—1 — yr—7) M.

Structurally, the reservoir receives u' = (p,v,a)
as input, where p,v,a are position, velocity and
acceleration respectively with regard to the vertical
axis. The readout is connected to the thrust mo-
tor channel and is also fed back into the reservoir
as an efference copy. Before learning, the readout
weights are initialized to zero as W = 0 and after a
short washout period of 300 time-steps, learning is
started. shows an exemplary learning run
in that configuration. After about three (real-time)
minutes the system achieves ground clearance and
after twice the amount of time achieves satisfying
performance. Learning is performed with a constant
learning rate n for about 550 seconds when learning
is clamped and the system is put into testing mode.
The testing episode is magnified in The
spikes are strong perturbations achieved by halting
controller execution for several seconds, propagating
the last motor command emitted, and then resuming
execution. The system returns to the operating point
without overshoot. shows the first two
principal components of the reservoir activation dur-
ing another testing episode of a different controller
instance with positive and negative perturbations
around the setpoint.

What is special in this setup, apart from the
obvious dynamical assymmetry is that in order to
take off, the robot needs to move through Ground
Effect (GE). GE alters the thrust to lift ratio, so
that a thrust value which initially lifts the robot off
the ground is insufficient for climbing once GE is left.

B. Results

We generated statistics over 100 learning runs
to assess the robustness of the learning process it-
self. The learning duration has been set to a fixed
amount, during which a major proportion of runs
reach a satisfying level of performance. Those that
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Fig. 2. Exemplary learning run for bootstrapping the hover

controller. Learning starts at ¢ = 8.3s and the robot makes its
first jump in the air shortly after. The weight vector norm
oscillates slightly in the beginning due to the invserion of
the reward value when crossing the target setpoint but this
behaviour subsequently ceases. At about 3 minutes the robot
finally clears the ground and remains airborne for the rest of
the episode, except for touching the ground once at ¢ = 300.
Until termination of learing at t = 555s, variance steadily
decreases.
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Fig. 3. The testing episode of the controller whose acquisition
is shown in The system is perturbed at various points
marked in red during the episode visible as large spikes in
the curve. It returns robustly to baseline activity around the
designated setpoint. The seemingly chaotic resting activity is
induced by internal system noise.
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Fig. 4. First two principal components of the reservoir
activation during hover testing. The system went through posi-
tive and negative perturbations of varying magnitude robustly
returns to a stable fixpoint.

do not, fall into two categories. In some cases the
learning process picks up the wrong direction right
at the beginning, resulting in negative thrust values



and making the system unresponsive. In the other
cases, the reservoir locks into autonomous oscilla-
tions which the learning process fails to suppress
and which dominate the output. See for
examplary altitude profiles and RMSE for all 100
runs.

—

z [ft]

....... ..............mggmnﬂﬂlﬂmIJJ(["“|||

0 20 40
Run Index [#]

100

Fig. 5. Statistics over 100 learning runs. The upper graph
shows a sample of superimposed temporal altitude profiles
during testing of the converged controller. The lower graph
shows the RMSE for the final testing interval for all runs.
Those runs displayed in the upper graph are colored red in
the lower one.

We ran the experiments with reservoirs of sizes
N = {20,100} although we did not, at this point,
generate comparative statistics. Not entirely surpris-
ing, the larger reservoir overall tends towards better
performance in terms of convergence speed, final
error and robustness. Apart from disturbances, we
also tested injecting additional measurement noise in
the altitude reading, clamping of inputs and setpoint
modulation by adding an offset to the measurement.
We applied the same method to learning lateral sta-
bilization of the robot and also investigated episodic
policy refinement using PS methods. Due to limited
space these results cannot be further illustrated here.
Other possible follow-up experiments from this gen-
eral scenario are discussed in [section VI

VI. DISCUSSION AND FUTURE WORK

All the learning methods discussed here are only
able to find local optima in the performance land-
scape. This is still sufficient for a variety of tasks. Of
particular importance to us was the applicability of
learning to real robots without the immediate danger
of destroying the robot during exploration.

We think the learning process of the hover con-
troller is remarkable in that bootstrapping occurs in
a double sense. First, the controller itself has to be

learnt but at the same time, the learning task is not
stationary but the system needs to learn implicitly
to first take off before it can stabilize itself at a
given hover altitude requiring different magnitudes
of changes to output signal.

The acquired primitives are innately grounded in
that they are only referenced to locally measurable
quantities. Using only the sign of the positional
error besides acceleration in the reward puts weak
demands on the visual sensing of position on the real
robot. Compared with other approaches our method
is very general in that almost no prior knowledge is
needed for a successful learning run. It can readily be
applied to a variety of vehicles in an online setting.
At the same time, if prior knowledge can be given
in the form of a demonstration, this could also be
exploited.

Future work will involve verifying the approach on
real robots (Berthold, Miiller, and Hafner 2011)) and
autonomous determination of the inherent temporal
delay. It has to be noted however, that using episodic
policy search, the temporal delay issue is of no
concern.

VII. SUMMARY

We presented a neural architecture capable of rep-
resenting sensorimotor primitives suitable for model-
free reinforcement learning. We demonstrated the
application of that architecture to problems in MAV
motion control although we are not limited in scope
to MAVs. We were able to bootstrap SMPs for sta-
bilization tasks using online learning and exploiting
sensorimotor interaction. The bootstraping process
is gentle enough to not destroy the system during
exploration and thus can be applied to learning on
real hardware. In addition, the same process can
be applied to post-bootstrapping adaptation of the
acquired primitives to changes in the environment.
This enables implementation of continuously learn-
ing system. The resulting controllers display antici-
patory behaviour and are extremely robust to noise
which make them well suited for use in combination
with vision-based state estimates. Supplementary
material includes python scripts for learning of sta-
bilizing an acceleration controlled point mass in two
dimensions, thus illustrating the principles.
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