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Abstract—Safe human-robot collaboration (HRC) has recently
gained a lot of interest with the emerging Industry 5.0 paradigm.
Conventional robots are being replaced with more intelligent
and flexible collaborative robots (cobots). Safe and efficient
collaboration between cobots and humans largely relies on the
cobot’s comprehensive semantic understanding of the dynamic
surrounding of industrial environments. Despite the importance
of semantic understanding for such applications, 3D semantic
segmentation of collaborative robot workspaces lacks sufficient
research and dedicated datasets. The performance limitation
caused by insufficient datasets is called ’data hunger’ problem.
To overcome this current limitation, this work develops a new
dataset specifically designed for this use case, named ”COV-
ERED”, which includes point-wise annotated point clouds of a
robotic cell. Lastly, we also provide a benchmark of current state-
of-the-art (SOTA) algorithm performance on the dataset and
demonstrate a real-time semantic segmentation of a collaborative
robot workspace using a multi-LiDAR system. The promising
results from using the trained Deep Networks on a real-time
dynamically changing situation shows that we are on the right
track. Our perception pipeline achieves 20Hz throughput with a
prediction point accuracy of >96% and >92% mean intersection
over union (mIOU) while maintaining an 8Hz throughput.

Index Terms—Multi-LiDAR, dataset, Semantic understanding,
Cobots, Data hunger, Real industrial environment

I. INTRODUCTION

Leveraging industry 5.0 concepts, robotic research has
opened up numerous possibilities for flexible and intelligent
ways of automation and collaboration between humans and
robots. In fact, cobots are increasingly being used for flexible
task accomplishment instead of traditional industrial robots [1]
and can work in the same workspace as humans [2].

Therefore, cobots need to be significantly more intelligent
than their conventional counterparts to be able to react to
natural human inputs and dynamically changing environments
in such a way that ensures smooth, safe, and productive
workflows. Thus, sensing, perceiving, and understanding the
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(a) Semantically-segmented Point cloud (b) Dynamic Collaborative area
Fig. 1: Collaborative robotic workspace at IMS, ZHAW.

environment in comprehensive detail is crucial and the artifi-
cial intelligence (AI) algorithms used should be able to antic-
ipate and cope with different situations occurring in industrial
environments [3]. Semantic segmentation, which separates
data of a given modality into semantically meaningful subsets,
is fundamental to scene understanding [4]. In the case of 3D
point clouds, labeling each point with a predefined class allows
to detect and distinguish objects precisely [5].

Over the past decade, 3D semantic segmentation has devel-
oped rapidly as a field of research in robotics, especially in
autonomous driving [6]. For 3D semantic segmentation tasks,
3D LiDAR data with point-wise annotation are required, where
S3DIS [7], Semantic3D [8], and SemanticKITTI [9] are among
the most popular datasets for general applications. Due to the
annotation difficulties, the publicly available datasets for 3D
semantic segmentation are very limited in both data size and
diversity compared to image datasets.

There is also an inadequacy of research focusing on seman-
tic understanding in HRC applications. The majority of HRC
research focuses on image-based data like RGB and RGBD,
which contain occlusion problems and lack the 3D information
that is critical for determining the accurate location of objects
(such as humans and robots) for ensuring human safety during
collaboration with robots [14]. The lack of precise perception
of the dynamic environment may result in fatal physical
injuries to humans in the worst case [15]. Therefore, industrial
robot cells are usually designed as fenced work areas, which
human can not enter during operation, to ensure rigid safety



TABLE I: 3D Lidar datasets

dataType dataset frames points classes Scene year objects

Static
S3DIS [7] 5 215M 12 Indoor 2017 Static

Semantic3D [8] 30 4009M 8 Outdoor 2017 Static
Paris-Lille-3D [10] 3 143M 50 Outdoor 2018 Static

Sequential

SemanticKITTI [9] 20351 4549M 28 Outdoor 2019 D-S obj
DALES [11] 40 505M 8 Outdoor 2020 D-S obj

SemanticPOSS [12] 2988 216M 14 Outdoor 2020 D-S obj
KITTI-360 [13] 100K 18B 19 Outdoor 2021 D-S obj

Static COVERED(ours) 218 48M 6 Industrial Env 2022 D-S obj

standards. [16]. In contrast for dynamic safety, AI powered
robots must be trained with appropriate datasets before they
can execute AI algorithms in a real world application. These
datasets must be carefully selected to provide the correct
training data for every use case to not limit the performance
of the system. The performance limitation caused by a lack
of training data is called data hunger effect [17] which
especially is a major obstacle in 3D semantic segmentation
research of HRC applications. Table I shows some of these
datasets and their characteristics which illustrate better the
data hunger for HRC. The static and sequential data type
indicates that the data is captured from a fix or moving view
point respectively. While some of these static datasets like
Semantic3D contain no moving objects such as people, our
dataset includes both dynamic and static objects (D-S obj).

In this paper, we address the problems of lack of dataset,
occlusion, and perceiving the industrial environment by devel-
oping an industrial dataset and demonstrate a multi-LiDAR 3D
semantic segmentation system in a real industrial human-robot
collaboration scenario. We further intend to use the dataset
in such applications like semantic segmentation, completion
networks and occlusion problems in industrial environments.
The main contributions we make are as follows:
• To the best of our knowledge, we present the first

point-wise annotated dataset from a collaborative robotic
workspace that includes multiple practical scenarios.

• We used the multi-LiDAR system to partly solve the
occlusion problem and have a better distribution and
resolution in our dataset. We evaluate the dataset using
two SOTA deep learning models for 3D semantic seg-
mentation of point clouds.

• We demonstrate a software stack that employs the above
deep learning models for real-time semantic segmentation
and explore the validity of the output for using it in high-
level HRC applications.

II. THE DATASET

A. Collaborative Workspace

As shown in Fig 2, the collaborative workspace is a compact
space with static and multiple dynamic objects including hu-
mans, cobots, and AGVs. The cobot has the task of assembling
a customized pen from parts arriving in a conveyor carrier and
an automated guided vehicle (AGV) moves the second cobot
to the assembly station, where the main cobot is working, for
supporting the task. After completion of the pen assembly, the

cobot hands over the completed product to a human operator
for inspection. The human operator controls the production
and intervenes to instruct or correct the cobots when needed,
whereas the AGV moves around in dynamically planned
paths. Considering the number of objects in this confined
space, the environment poses many challenges. Occlusions are
common because moving objects obscure the view to other
items in different ways. Different reflection factors, shapes,
and sizes of objects intensify the challenges in perception. To
overcome some of these challenges, multiple LiDAR sensors
are strategically positioned to capture the environment in high
detail and to avoid full occlusions of objects.

B. Preprocessing and Data Collection

The data was collected using four Ouster OS0-128 LiDAR
sensors and a host computer connected to a dedicated network
to provide the required quality of service (QoS). As part of
the initialization phase, the sensors are time-synchronized so
the combined point clouds can be created from all sensors
at the same timestamp. The raw data needs to be filtered,
registered, and aggregated to be used for machine learning
and other systems.

C. COVERED dataset

Data is captured at 20Hz with 1024x128 resolution which
results in approximately 60,000 points per point cloud for each
LiDAR sensor after filtering and trimming. In order to exclude
redundant data and to easily annotate the unique configuration
and scene, instead of using the 20Hz sample rate the dataset
was annotated on a sample rate of 1Hz. Each point cloud
is manually annotated with six classes stated above, using a
visual tool1. The dataset is available for public at the GitHub
repository2. This repository includes 218 point-wise annotated
point clouds in *.pcd format as well as *.npy format for
efficient processing by machine learning tools.

The points are annotated featuring six classes: Robots,
Human, AGV, Floor, Wall, and Unspecified. The additional
class ”Unspecified” includes all other types of objects which
are not of direct interest for the applications of this work.
The average point density for these classes are like Robots:
1800 points, Human: 2800, AGV: 1200 ,Floor: 10000 and
Wall: 13400 points in a 24 m2 area. We intend to provide
an extended dataset in the future with more data and classes.

1Semantic Segmentation Editor
2COVERED Dataset GitHub Link

https://github.com/Hitachi%2DAutomotive%2DAnd%2DIndustry%2DLab/semantic-segmentation-editor
https://github.com/Fatemeh-MA/COVERED-A-dataset-for-3D-Semantic-segmentation.git


(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4
Fig. 2: Defined Scenarios for COVERED

D. Scenarios

The dataset covers multiple practical and common scenarios
(Fig 2) in the collaborative robotic workspace as follows:

1) Two cobots are carrying out pre-programmed tasks. An
operator observes the work and interacts with Human
Machine Interface (HMI) and an AGV moves around.

2) The operator interacts with one cobot to resume from an
error state and with an other to receive the assembled
product from robot gripper.

3) The cobots are in usual operation and an operator passes
by without interaction and collects completed products.

4) Cobots and AGV are working autonomously without any
operator presence or intervention.

III. EXPERIMENTAL RESULTS

A. Evalution Metrics

We follow the evaluation metrics of similar benchmarks
like [11] and use the mean IoU as our main metric. The IoU
formula per class can be calculated by

IOU i =
cii

cii +
∑

j 6=i cij
(1)

we simply calculate the mean IoU of all six categories. As
the second metric we calculated the overall accuracy (OA) as
follows:

OA =

∑N
i=1 cii∑N

j=1

∑N
k=1 cjk

(2)

Furthermore, many current studies assess model perfor-
mance on a ”closed set,” assuming the testing set follows
the same distribution as the training set. Nevertheless, real-
world applications are ”open set” problems which require deep
models to deal with new scenarios and scenes, and will always
be data hungry in new scenes. Accordingly, another important
evaluation for our system is the real-time testing which is
one of the biggest achievements for this work and shows the
robustness in the network performance on the dataset. It proves
that our dataset has a very good distribution. A video from
real-time testing is available under this YouTube link.

B. Algorithm Performance

Semantic understanding begins with semantically segment-
ing the environment of interest. 3D semantic segmentation

is often a supervised learning task that requires a point-
wise annotated dataset of the environment. We selected two
benchmark algorithms based on their strong performance on
the mentioned datasets to evaluate their performance on our
dataset. KPConv [18] and RandLA-Net [19] were selected as
the best candidates to evaluate our dataset. Both models were
trained and tested using the same train-, validation-, and test
splits from the ”COVERED” dataset with multi-fold cross-
validation and examined by accuracy, OA, and mIOU.

In order to find the optimal hyper-parameters and model
configurations, multiple tests were carried out. After achieving
relatively high training performance, the model parameters
were fixed and re-validated using the test split in the offline
version. Table II shows the overall performance of the two
models on the test data. Both models show more than 96%
accuracy and 92% mIOU. This high accuracy was obtained
due to the fact, that the dataset was able to properly describe
the problem space of the application and both models were
complex enough to describe the decision boundaries of the
problem. This high accuracy was also clearly observed when
visually inspecting the real-time predictions later.

TABLE II: Overall test accuracy and test mIOU for two models
Metric KPConv RandLA-Net

Overall Accuracy 0.976 0.960
Overall IoU 0.946 0.927

Table III indicates the per-class accuracy each model ob-
tained using the test split (30 percent) of the dataset. It was
evident that both models were performing very well for most
classes, but KPConve has shown a slightly better performance
in detecting human and almost similar for robot which is of
interest to us.

TABLE III: Class accuracy and mIOU of models
Unspecified Floor Wall Robot Human AGV

Accuracy
RandLA-Net 0.972 0.985 0.981 0.975 0.866 0.981

KPConv 0.971 0.977 0.994 0.944 0.990 0.983

mIoU
RandLA-Net 0.972 0.929 0.961 0.919 0.786 0.949

KPConv 0.962 0.930 0.963 0.916 0.958 0.951

In real-time testing, we also observed that KPConv per-
formed better in defining the segmentation boundaries, espe-
cially when humans and objects are in proximity to each other.
Considering the importance of safety to industrial scenarios,
this is a huge advantage.

https://www.youtube.com/watch?v=UbHgE9W7144&t=28s


IV. DISCUSSION, CONCLUSION AND OUTLOOK

Despite the remarkable success of semantic segmentation
techniques on the reviewed datasets, there is still a long way
to go for robots to be able to perceive their surroundings
in the same way humans do. On the other hand, since the
annotation of real datasets is labor intensive, the genera-
tion of these datasets is very expensive, and to the best
of our knowledge, there is no relevant 3D LiDAR dataset
for industrial environments up to now. To fill this gap, we
introduce COVERED, a CollabOratiVE Robot Environment
dataset. As already mentioned, most known datasets focus on
autonomous driving and static environments and only reflect
a very small amount of real scenes, while our dataset covers
a dynamic environment including humans, robots and 4 other
distinguishable objects.

Despite some limitations, our dataset is quite sufficient
for the first attempt at segmenting industrial environments.
However, for a more accurate classification, especially in
the close collaboration between humans and robots, it is
necessary to distinguish between different robots and have
extremely accurate real-time segmentation to ensure human
safety. To this end, we are planning to complete the dataset,
in both, class types and different scenes and scenarios. Another
important matter for analyzing the existing datasets is the
statistics of point clouds. A statistical analysis of the point
number distribution of people and vehicle instances per-scene
in SemanticKITTI and SemanticPOSS shows that more than
half of instances contain fewer than 120 points, which does
not contribute significantly to the training of models [17] and
are difficult to recognize and distinguish even for humans;
with more points, the features tend to be clearer to extract.
Therefore, it is reasonable to use the point number as a
measurement of instance quality.

To address this issue, we use a multi-LiDAR sensor and
achieved a high point density. Taking all these factors into
account, robotics and autonomous driving in complex real-
world scenarios may always suffer from data hunger [17].
Therefore, in training and handling of rare/unseen objects, it
is important to develop methods that do not rely on finely
annotated data; However, it is just as important as completing
the datasets, especially for dynamic objects. We also analyzed
the dataset with two SOTA deep learning models and achieved
excellent results in 3D semantic segmentation. Unfortunately,
the results from benchmark datasets for other applications
are not directly comparable to ours. However, our real-time
perception and prediction pipeline that can directly be applied
to industrial setups has shown amazing results on semantic
segmentation, even for scenarios that are not in the training
dataset (e.g., more humans, different robot, etc.). Thus, we
believe, our dataset represents the problem space very well for
this application and can be considered as a benchmark dataset
for future research in similar applications. It will allow the
research community to develop new algorithms based on it.

In the future, we plan to release an even larger dataset from
our collaborative robot workspace with more scenarios and

classes. In addition, we plan to improve the real-time perfor-
mance of the pipelines and develop deep learning algorithm
to keep up with the SOTA.
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