
This paper has been accepted for publication at the
European Conference on Computer Vision (ECCV), 2024

Reinforcement Learning Meets Visual Odometry

Nico Messikommer⋆ , Giovanni Cioffi⋆ ,
Mathias Gehrig , and Davide Scaramuzza

Dept. of Informatics, University of Zurich
{nmessi,cioffi,mgehrig,sdavide}@ifi.uzh.ch

Abstract. Visual Odometry (VO) is essential to downstream mobile
robotics and augmented/virtual reality tasks. Despite recent advances,
existing VO methods still rely on heuristic design choices that require
several weeks of hyperparameter tuning by human experts, hindering
generalizability and robustness. We address these challenges by refram-
ing VO as a sequential decision-making task and applying Reinforcement
Learning (RL) to adapt the VO process dynamically. Our approach in-
troduces a neural network, operating as an agent within the VO pipeline,
to make decisions such as keyframe and grid-size selection based on real-
time conditions. Our method minimizes reliance on heuristic choices us-
ing a reward function based on pose error, runtime, and other metrics
to guide the system. Our RL framework treats the VO system and the
image sequence as an environment, with the agent receiving observa-
tions from keypoints, map statistics, and prior poses. Experimental re-
sults using classical VO methods and public benchmarks demonstrate
improvements in accuracy and robustness, validating the generalizabil-
ity of our RL-enhanced VO approach to different scenarios. We believe
this paradigm shift advances VO technology by eliminating the need for
time-intensive parameter tuning of heuristics.

Keywords: Visual Odometry · Reinforcement Learning

Multimedia Material The code is available at https://github.com/uzh-
rpg/rl_vo and video at https://youtu.be/pt6yPTdQd6M

1 Introduction

The task of estimating the camera pose from a sequence of images, referred to
as Visual Odometry (VO), finds broad applications in fields such as robotics and
augmented/virtual reality [2, 13]. Despite considerable research and industry
efforts to enhance the robustness of VO algorithms, state-of-the-art approaches
grapple with generalizability [2, 25]. This limitation stems from the reliance on
hyperparameters dictated by heuristic decision rules, which are highly scenario-
dependent, varying with factors such as motion and lighting. Consequently, iden-
tifying the optimal hyperparameters often requires the intensive effort of domain
experts, consuming several weeks.
⋆ equal contribution

https://orcid.org/0000-0003-1444-1176
https://orcid.org/0000-0003-3964-8552
https://orcid.org/0000-0003-2223-4265
https://orcid.org/0000-0002-3831-6778
https://github.com/uzh-rpg/rl_vo
https://github.com/uzh-rpg/rl_vo
https://youtu.be/pt6yPTdQd6M

2 Messikommer et al.

Fig. 1: Our Framework. We propose to employ a learned agent to adaptively guide
a VO method using real-time observations for enhanced robustness and accuracy. By
considering the problem as a sequential decision process, we use RL to train the agent
primarily based on the position error computed within a sliding window (dashed lines).

Existing VO methods can be positioned on a spectrum ranging from classical
geometry-based approaches to end-to-end methods trained on extensive datasets.
End-to-end approaches [23, 24, 26] aim to increase robustness by leveraging a
high amount of image sequences with ground truth poses. However, they tend to
struggle to adapt to visual scenarios and motion patterns beyond their training
data distribution. On the other side of the spectrum are classical methods [3,5,6],
which leverage geometry to map image points to and from the 3D world to
compute the camera pose. Hybrid approaches [18,19], positioned between these
extremes, replace certain parts of the VO pipeline, usually the ones processing
raw image pixels, with learned components while retaining well-defined geometric
components to increase robustness.

Despite these advancements, both hybrid and classical approaches still rely
on heuristic design choices, rendering the optimal VO settings scene- and motion-
dependent. Furthermore, these heuristics are defined by a fixed set of hyperpa-
rameters found through extensive offline tuning.

For example, one of the most impactful decisions to be taken by most of
the VO systems during operation is the selection of keyframes. An adequate
keyframe selection strategy should add informative keyframes to the current map
to maximize the map coverage and, consequently, the accuracy of the registration
of the pose of the incoming frame. Considering the limited map size due to
runtime and memory usage constraints, the naive strategy of selecting each frame
as a keyframe is oftentimes not the optimal one. In the current state-of-the-art
VO systems [5, 6], keyframe selection strategies are based on heuristic if-else
conditions, which rely on a fixed set of hyperparameters. These hyperparameters
are generally tuned offline by expert users, which exploit the prior knowledge
of the scene and the expected camera motion. For example, a strategy prone to
often selecting a keyframe is preferred if the camera undergoes fast motion. Other

Reinforcement Learning Meets Visual Odometry 3

hyperparameters such as feature extraction thresholds, brightness compensation,
and weighting factors are also important, however, their impact on the overall
performance depends on the specific VO system.

To reduce the dependence on heuristic-based design, we approach the Visual
Odometry problem from a sequential decision-making perspective, where cur-
rent actions influence future states. Given the temporal dependencies inherent
in this task, coupled with the absence of ground truth for optimal actions, we
propose to train a neural network within a Reinforcement Learning (RL) frame-
work to adapt a VO method at each timestep of the sequence. Operating as
a dynamic agent, this neural network guides decisions within the VO pipeline,
such as keyframe selection, or, in theory, any hyperparameter, based on real-time
observations representing the current state of the VO system (for example, the
number of points currently tracked and the distance from the past keyframe).
Thereby minimizing the reliance on heuristic design choices while increasing the
generalizability across diverse scenes and motions.

To enforce an accurate and robust pipeline, the reward function is constructed
from the pose error between predicted and ground truth poses but also includes
other non-differentiable metrics such as runtime and size of the map. Impor-
tantly, our proposed framework leaves the underlying VO method unaltered
while introducing a learned agent to enhance its robustness.

In our RL approach, we consider the underlying image sequence and the
VO system as the environment. From the environment, the agent receives ob-
servations in the form of tracked keypoints, map statistics, previously selected
keyframes, and previously estimated poses. The agent itself consists of a multi-
head attention layer to downproject a variable number of keypoints, which are
then further processed along the fixed-sized inputs in a two-layer MLP. For
training, we employ the on-policy RL algorithm Proximal Policy Optimization
(PPO) [14] with a privileged critic network to stabilize the training. Finally, the
reward includes the pose error between the predicted and ground truth pose
computed in a sliding window approach while also penalizing decisions that lead
to increased runtime.

Our experiments with the state-of-the-art VO methods [5, 6] on the VO
benchmarks [1,7,16] show that our learned agent improves accuracy up to 19%,
see RL DSO in Tab. 1, and increases robustness, see RL SVO in Tab. 1, where
it tracks all the camera trajectories while the w/o RL baseline gets lost. Our
contributions can be summarized as follows.

1. We propose to approach the Visual Odometry (VO) problem from a sequen-
tial decision perspective, where current actions influence future states.

2. We introduce an RL training framework designed to train an adaptive agent
to replace heuristic design choices in VO methods. Our experimental results
demonstrate that our approach not only boosts VO robustness and accuracy
but also highlights the potential to eliminate labor-intensive fine-tuning.

4 Messikommer et al.

2 Related Work

Three paradigms exist to approach Visual Odometry: classical geometric-based,
end-to-end, and hybrid approaches.

Classical approaches have been extensively studied in computer vision and
robotics in the past 30 years [2, 13]. They achieve commercial-level accuracy
and robustness. Indeed, classical VO algorithms are present in products like
smartphones, VR-AR devices, and mobile robots. Classical VO algorithms are
composed of two main modules: tracking and mapping. The tracking module
uses camera images to estimate the motion. Three main approaches exist in
the literature: direct methods [5], feature-based methods [11], and semi-direct
methods [6]. Direct methods, such as DSO [5], work directly on the raw pixel
intensities. These methods commonly extract image patches and estimate the
camera trajectory by tracking the motion of such patches through consecutive
images. The tracking is achieved by minimizing a photometric error defined on
the raw pixel intensities. On the contrary, feature-based methods, such as ORB-
SLAM [11], extract points of interest, commonly known as visual features or
keypoints, from the raw image pixels. The camera trajectory is estimated by
tracking these points through consecutive images. Feature-based methods rely
on scene texture to detect and track distinctive points, while direct methods use
raw image pixels and can achieve higher reliability in low-texture environments.
Semi-direct methods, such as SVO [6], combine keypoints and patches of raw
pixel intensities to estimate the camera motion. SVO uses keypoints to find
regions of interest in the current camera view and raw pixel intensities to track
the patches centered at the detected keypoints.

Following the deep learning revolution seen in computer vision in the past
years, learning-based end-to-end VO systems [23, 24, 26] have been proposed.
These methods usually rely on convolutional layers to process the input images
and subsequently, recurrent and/or feedforward layers to predict the camera 6-
DoF pose. They are trained with ground truth pose supervision. End-to-end VO
systems show better performance than classical approaches in scenarios covered
in the training data. However, they lack robustness when deployed on environ-
ments (scene and motion) outside the training data distribution.

Hybrid methods [18, 19] combine the best of two paradigms: the geometric
representation of the 3D world (classical methods), and the ability to process
highly dimensional inputs (end-to-end methods). One of the state-of-the-art hy-
brid approaches is DROID-SLAM [18]. DROID-SLAM is a SLAM system that
focuses on dense scene reconstruction, as well as, camera pose estimation. It
uses a RAFT-inspired network architecture [17] followed by a differentiable dense
bundle adjustment (BA) layer to iteratively update the camera poses and depth.
The BA layer includes geometry constraints that improve the consistency of con-
secutive camera pose estimates. Using a similar differential BA layer, the hybrid
method DPVO [19] tracks image patches over time using a recurrent network.

The performance of VO algorithms highly depends on heuristics and hyper-
parameters. Usually, hyperparameter tuning is done manually by expert users.
Due to the high dimensional space and the sequential nature of the VO prob-

Reinforcement Learning Meets Visual Odometry 5

lem, automatic optimization-based hyperparameters tuning methods, such as
Bayesian Optimization are difficult to use. An attempt to automatically select
keyframes has been made in [15], where a deep network is used to decide if a
new keyframe needs to be selected, as well as, to predict the camera pose.

In this paper, we model VO as a sequential decision-making task and apply
Reinforcement Learning. Related to the problem of hyperparameter tuning with
RL, Hyp-RL [10], poses the search for the best hyperparameters for training
neural networks as a sequential decision process and uses RL to select the next
hyperparameter set to be evaluated. In [4], RL is applied to dynamically choose
the best set of hyperparameters of a deep network that performs object tracking.

3 Method

Fig. 2: Agent Overview. Our agent takes as input the map statistics computed by
the VO method at timestep ti−1 and a variable number of keypoints using a multi-
head attention layer. Given these inputs, a two-layer MLP computes a multi-discrete
probability distribution over the binary keyframe action and the grid size action. These
actions are then used inside the VO method to process the current frame at timestep
ti, which will lead to the observation for the next timestep ti+1.

We consider monocular Visual Odometry (VO), whose primary objective is to
estimate the camera pose for each image within an image sequence. Despite ex-
tensive research and widespread application, the robustness and generalizability
of VO methods in different scenes remain an ongoing challenge. Both traditional
geometry-based approaches and hybrid methods incorporating learned compo-
nents often rely on heuristic decision rules for critical tasks such as keyframe
selection and keypoint filtering. These heuristic rules significantly affect the per-
formance of the VO method and are closely linked to the deployed scene. Con-
sequently, a substantial amount of fine-tuning is required to adapt these rules
effectively to each deployed scenario.

To increase the robustness and generalizability of VO pipelines, we formulate
the VO task as a sequential decision problem. Within this sequential framework,
a deep agent is trained through RL. This agent is designed to make decisions

6 Messikommer et al.

at each timestep for the VO method, taking into account the current state of
the system, including map statistics, keypoints information and previous pose
estimations. By training an adaptive agent, we can effectively reduce the reliance
on heuristics and increase the generalizability of the underlying VO method
across diverse scenes.

The structure of this section is the following. In Sec. 3.1, we present our
problem formulation. In Sec. 3.2, we introduce our proposed deep neural agent
with its corresponding input observations and output actions. In Sec. 3.3, we
formulate the reward function, while in Sec. 3.4, we present the RL training
framework. Finally, in Sec. 3.5, we explain the specific implementation of our
RL framework using SVO [6] and DSO [5] as the underlying VO methods.

3.1 Problem Formulation

We formulate the VO task as a sequential decision problem in which an agent
interacts with its environment, see Fig. 1. Specifically, we consider the image
sequence and the underlying VO pipeline to be fixed, both constituting the envi-
ronment. The agent is a neural network that, at each timestep, selects actions for
the VO pipeline, i.e., selecting keyframes and adapting the keypoint distribution
by setting the grid size constraint (a grid is fitted to the image, and maximum
one keypoint per grid cell is selected). Based on these actions, the VO method
processes the next image of the sequence and computes the corresponding pose.

With this definition of the agent and environment, we formulate the VO task
as a Markov decision process (MDP), denoted by the tuple M = (S,A, p, r, γ). A
state s ∈ S encapsulates the current image in the image sequence and the state
of the VO pipeline, which includes properties such as feature tracks, previously
estimated poses, the triangulate map, the optimization state, etc. To transition
between VO states, actions a ∈ A are executed in the VO method, while the
environment supplies the next frame of the sequence. The state transition prob-
ability p defines the likelihood of moving from one state si to another sj given
actions ai. Finally, each state transition is associated with a reward r(s, a), de-
pendent on the ensuing state and the chosen actions. The rewards of the future
are discounted by γ. In the context of VO, the reward function evaluates the ac-
curacy of the pose estimation and can also incorporate non-differentiable criteria
such as runtime and map size, among others.

In our formulation, the agent is characterized by a control policy π : S×A →
R, where π specifies the actions a ∈ A to be taken in each state s ∈ S. Since the
control policy is non-deterministic, it induces a probabilistic trajectory of states
and actions τ = {s0, a0, s1, a1, ..., sT , aT−1}, abbreviated as τ ∼ π. Following the
control policy π, the expected sum over the discounted rewards for each timestep
can be expressed with its value function

V π(si) = Eτ∼π

[∞∑
t=i

γtr(st, at)

]
. (1)

Reinforcement Learning Meets Visual Odometry 7

The overarching goal is to find a policy π that maximizes the expected sum of
discounted rewards.

π∗ = argmax
π

V π(s0) (2)

Given the reward formulation, the optimal policy provides decisions to the VO
pipeline, aiming to minimize the expected position error while accounting for
additional reward terms like runtime.

3.2 Deep Neural Agent

The central element of our proposed framework is the learned agent embodying
the policy π, which selects optimal settings for the VO method based on the
current keypoints and map statistics, i.e., relative poses to the newest and oldest
keyframe. Given the inherent complexity of the underlying VO method, supply-
ing the agent network with a comprehensive state encompassing all stored map
elements, optimization states, etc., is neither feasible nor advantageous. Instead,
the learned agent receives a selected subset of observations o ∈ O approximating
the VO state within the policy π : O × A → R. In our system, the observations
are derived from the local map and include relative poses to previous keyframes,
along with the information about the currently tracked keypoints. Notably, the
number of keypoints is variable and may vary depending on the characteristics
of the image sequence. Therefore, the network architecture of the agent should
be capable of processing inputs of variable sizes.

To handle inputs of varying sizes, we leverage a Perceiver [8,9] architecture,
illustrated in Fig. 2. Specifically, our approach involves a Variable Encoder that
incorporates a multi-head attention layer [21] for processing the image positions,
and the estimated depth of each tracked keypoint k ∈ RN×3. To project the in-
formation contained in the variable number of keypoints N to a fixed dimension,
we use M number of learned tokens z ∈ RM×D with dimension of D as query
Q values. These query tokens are attended to by the projected keypoint infor-
mation serving as both key K and values V . Finally, the fixed output of the
Variable Encoder is subsequently processed along with the statistics of the local
map, using a two-layer MLP with ReLu non-linearities.

The output of the agent network is a discrete probability distribution over
a set of actions expressed in the form of multiple independent categorical dis-
tributions. In our implementation, the agent predicts at each timestep a binary
distribution over the decision to take the current frame as a keyframe. Addi-
tionally, in the case of SVO, the agent also predicts a separate and independent
categorical distribution over a set of values {20, 25, ..., 40} for the keypoint grid
size. This grid size ensures a uniform distribution of keypoints on the image
plane by enforcing that only one keypoint can reside within a given grid cell.
Since DSO does not extract keypoints, there is no grid size selection necessary.

3.3 Reward

Another critical component within the RL framework is the design of the reward
function. The feedback of the reward at each timestep guides the deep agent

8 Messikommer et al.

Fig. 3: Position Error. To closely relate the pose prediction accuracy to the current
action, we employ a sliding window of five timesteps to align the ground truth and
estimated trajectory using a scale factor s, a translation vector t, and a rotation R.
The error at the current timestep ti is then used as the negative position reward.

toward a desired behavioral pattern. In the case of VO, naturally, the error
between the estimated and the ground truth pose is the primary focus of the
reward. However, since monocular VO methods cannot inherently estimate the
absolute scale of the trajectory, it becomes necessary to scale the predicted poses
before computing the error against the ground truth trajectory. Furthermore,
another crucial aspect of ensuring stable feedback for the RL algorithm is to
closely link the reward function of a timestep ti to the action taken at that
specific timestep, thus mitigating the value assignment problem. Consequently,
we adopt a sliding window approach to compute the error between the estimated
and ground truth poses. Specifically, we employ a window of five timestamps
{ti−4, ti−3, ..., ti} to compute the error at the current timestep ti, see Fig. 3.
The first three poses in the window are used to align the estimated trajectory
to the ground truth by minimizing the distances between the positions with
the Umeyama method [20]. This alignment method accommodates missing scale
information and differing coordinate origins, aligning both trajectories through
an Euclidean transformation involving rotation, translation, and scaling.

By designing the position reward function, we can influence the policy to
weigh accuracy higher at the cost of lower robustness or the other way around.
This trade-off also shows the benefit of our dynamic agent over manual tuning
since the decisions can be made in an online fashion, adapting to the current
conditions in the image sequence. To handle this trade-off, we clip the positional
error etran around zero, see Eq. 3, to positively enforce accurate states while
giving a penalty for states having a large positional error.

Given that our framework leverages RL, we have the opportunity to integrate
non-differentiable performance feedback into the reward system. Thus, we can
enforce a faster runtime by penalizing the insertion of keyframes, i.e., directly
penalizing the keyframe action akeyframe. Using the keyframe action instead of
directly penalizing the runtime mitigates the dependence on the usage of the
hardware during training. Our final reward function is formulated in Eq. 3,
where we use 0.01 for λ1 and set λ2 to 5× 10−3.

r =λ1 max(−1, 0.2− etran)− λ2akeyframe (3)

Reinforcement Learning Meets Visual Odometry 9

3.4 Reinforcement Learning Framework

We use the on-policy algorithm Proximal Policy Optimization (PPO) [14] imple-
mented in Stable Baselines3 [12] for training our agent. As commonly done, the
RL training is conducted in two alternating stages: the rollout and the policy-
update stage. During the rollout stage, the RL agent interacts with the environ-
ment, i.e., the underlying VO method and image sequences from TartanAir [25],
via its actions to collect experiences comprising the actions, observations, and re-
wards at each timestep. While the experiences are collected, the network weights
of the agent are not updated. In the second stage, the collected experiences of
the rollout stage are used to update both the agent and the critic. The task of
the critic is to approximate the value function, which represents the expected
return of the current policy at a given state. The critic is used to stabilize the
training inside the policy update steps in accordance with the PPO algorithm,
which is designed to limit large changes in the policy.

Since the performance of the VO pipelines depends not only on the decisions
of the agent but also on the current image sequence, we introduce a privileged
critic to stabilize the training. This privileged critic has access to both the current
and future ground truth poses, enabling a better assessment of whether tracking
performance was influenced by the decisions of the agent or the difficulty of
the underlying image sequence. Importantly, this privileged critic with access to
ground truth poses is only used during training.

Another crucial aspect is the handling of the different stages of the VO sys-
tem, which include the normal mode of camera tracking, the mode for the relo-
calization in the current map, and the initialization mode. Since the VO system
only provides information about its full state in the tracking mode, we declare
the current state a valid state if the previous state was in the tracking mode.
Notably, the agent can exclusively make decisions in valid stages. To account for
the valid states in the policy-update phase, we use a masked rollout buffer, which
computes the return using all collected states, but samples only valid states for
updating the policy network. As states in the initialization stages can not be
influenced by the agent, we directly use the ground truth poses to triangulate
tracked keypoints. The initialization with the ground truth poses also has the
benefit of a significantly faster runtime compared to the original initialization.

Since RL is sample inefficient, it is crucial to have a fast runtime of the
environment interactions. For our RL framework, the runtime of each of the
main components in the rollout phase using 100 SVO instances in parallel is
reported in Tab. 6.

3.5 VO System

In general, our proposed agent network can be combined with any VO system
that relies on decision components. In this work, we use SVO [6] and DSO [5],
which feature a very small runtime. Additionally, we also test on the slower
SLAM pipeline ORB-SLAM3 [3]. From a practical viewpoint, the small runtime

10 Messikommer et al.

and parallelization accelerate training and partially compensate for the inherent
low sample efficiency of RL.

SVO is a semi-direct visual odometry composed of two main threads: motion
estimation and mapping thread. The first step of the motion estimation thread is
image alignment, where the pose of the new frame is estimated by aligning pixel
intensity patches from the previous keyframe. The next step is feature alignment,
where the positions of the keypoints on the current image are refined while the
camera poses are fixed. The last step is a sparse bundle adjustment, where both
the camera poses and the locations of the 3D points included in the current map
are optimized. The motion thread assumes that the depth of the mapped 3D
points is known. It is the objective of the mapping thread to estimate the depth.
The mapping thread estimates the depth of each tracked pixel from multiple
observations by means of a recursive Bayesian filter [22].

DSO is a direct visual odometry also composed of two threads: the front-
end thread and the mapping thread. The front-end thread performs the initial
frame tracking where the pose of the current frame is tracked with respect to
the previous keyframe by aligning pixel intensities patches. The front-end is also
in charge of selecting the active candidate points, performing outlier rejection
and occlusion detection, and selecting keyframes. The mapping thread optimizes
a non-linear cost function based on the photometric error. The camera poses,
intrinsics, and inverse depth value of the active points in the current map are
jointly optimized. This optimization can be seen as the photometric equivalent
of sparse bundle adjustment.

We use SVO to run ablation studies on the contributions of the main com-
ponents of the RL system (runtime, inputs, actions, and reward tuning).

4 Experiments

Dataset For training our agent, we leverage the synthetic sequences from Tar-
tanAir [25], a comprehensive dataset offering, among other measurements, ground
truth camera poses. The dataset features a wide range of simulated scenes with
challenging conditions such as low light and weather effects. The total number of
different training sequences is 337, amounting to 279987 images or timesteps for
the training of the agent. Importantly, we consider the dataset in our RL frame-
work to be fixed without the possibility of the agent influencing the next image.
Notably, as our method is trained on abstractions rather than image pixels, the
risk of domain shift is mitigated.

For evaluation, we use three VO benchmarks: EuRoC [1], TUM-RGBD [16]
and KITTI [7]. The EuRoC dataset consists of 11 sequences recorded via a drone,
with ground truth pose measurements obtained from a motion capture system
or a laser tracker. The TUM-RGBD dataset features 9 sequences recorded via a
hand-held camera with ground truth poses provided by a motion capture system.
For the results on the KITTI dataset, we refer to the supplementary.
Evaluation Following standard practice in evaluating VO algorithms, we use the
Absolute Translation Error (ATE [m]) [27] as the error metric for the EuRoC and

Reinforcement Learning Meets Visual Odometry 11

TUM-RGBD datasets. Before computing the error metric, the estimated trajec-
tories are aligned to the ground truth trajectory using the Umeyama method [20].
For the relative position error on EuRoC and TUM-RGBD, we refer to the sup-
plementary.

Since we want to guarantee a fair comparison between the methods with and
without RL, we remove the effect of the initialization phase at the beginning of
each sequence by providing the ground truth poses to the VO algorithm. Sim-
ilar to the original initialization of the underlying VO, extracted keypoints are
tracked from the first frame of the sequence and triangulated once a large enough
disparity is detected. However, instead of estimating a relative pose, the ground
truth poses are used for the triangulation. Following this procedure, all of the
tested methods start with the same high-quality map, effectively eliminating the
unwanted influence of the initialization. Naturally, the ground truth initializa-
tion is not used for the comparison against state-of-the-art VO methods. Instead,
we take the average of the performance metrics for five runs.

Fig. 4: Keyframe Selection. The num-
ber of selected keyframes by SVO at dif-
ferent translational and angular velocities
for the EuRoC dataset.

Fig. 5: Top-Down View of Trajecto-
ries. Visualization of the predicted tra-
jectory using SVO with and without RL.

Method MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203 Avg
SVO 0.183 0.490 0.381 3.236 1.293 0.320 0.333 - 0.084 0.553 1.431 -
RL SVO 0.236 0.124 0.241 2.149 1.982 0.225 0.398 0.394 0.069 0.334 1.506 0.696
DSO 0.087 0.044 0.354 0.184 0.260 1.223 1.624 1.125 0.059 0.065 1.516 0.594
RL DSO 0.037 0.033 0.241 0.168 1.192 0.207 0.499 1.450 0.043 0.164 1.286 0.483

Table 1: EuRoC. We report the ATE [m] of our RL agents and the heuristic-based
VO methods with parameters obtained by an extensive grid search. Our RL agents
outperform the heuristic-based VO methods in terms of accuracy (lower average error)
and robustness (RL SVO can complete the sequence V103 while the baseline SVO fails
to track all the camera poses due to fast rotations).

4.1 Results

EuRoC We compare our RL agent with SVO and DSO against the heuristic-
based VO with parameters obtained by tuning on this dataset using an extensive

12 Messikommer et al.

Method 360 desk desk2 floor plant room rpy teddy xyz Avg
SVO 0.186 0.681 0.898 - 0.320 0.805 0.053 0.769 0.057 0.471
RL SVO 0.189 0.556 0.755 - 0.260 0.804 0.056 0.697 0.062 0.422
DSO - 0.237 0.893 - 0.320 0.931 0.057 - 0.053 -
RL DSO 0.187 0.682 0.888 - 0.625 - 0.054 0.756 0.105 -

Table 2: TUM-RGBD. We report the ATE [m] of our RL agents and the heuristic-
base VO methods with parameters obtained by an extensive grid search. Our RL SVO
outperforms the heuristic-based SVO methods in terms of accuracy (lower average
error). Although this dataset is challenging for DSO, due to the use of a rolling shutter
camera, RL DSO improves the robustness with two more sequences completed.

Method MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203 Avg
TartanVO [24] 0.639 0.325 0.550 1.153 1.021 0.447 0.389 0.622 0.433 0.749 1.152 0.680
DROID-VO [18] 0.163 0.121 0.242 0.399 0.270 0.103 0.165 0.158 0.102 0.115 0.204 0.186
DPVO [19] 0.087 0.055 0.158 0.137 0.114 0.050 0.140 0.086 0.057 0.049 0.211 0.105
RL SVO 0.289 1.599 0.552 2.407 1.826 0.229 0.813 0.496 0.085 0.965 1.434 0.972
RL DSO 0.032 0.037 0.166 0.142 0.110 0.107 0.089 1.331 0.041 0.152 1.313 0.320

Table 3: EuRoC. We report the ATE [m] of our RL agents and the state-of-the-art
VO methods. Our RL DSO achieves the best accuracy in 5 sequences.

grid search. Qualitative estimation results of SVO are shown in the left plot
in Fig. 5 from a top-down view of the trajectory estimated by RL SVO, the
baseline VO, and the ground truth. Tab. 1 reports the ATE. In the case of
SVO, the combination with our RL agent achieves the best ATE in most of the
sequences. Remarkably, our RL SVO can estimate the entire camera trajectory
in the sequence V103 while the baseline fails. This sequence is one of the most
difficult in the EuRoC dataset due to fast camera rotations. The benefit of our
RL agent is also evident for DSO, which achieves consistently a lower tracking
error, leading to a 19% lower mean tracking error. We report in Tab. 3 the
comparison of our RL agent against the state-of-the-art VO methods, which are
taken from [19]. The results reported for our methods are averaged over five
runs. Our RL DSO achieves the best ATE in five sequences.
TUM-RGBD Similar to EuRoC, we use a parameter grid search to find the
best parameters for the baseline DSO and SVO methods. We report the ATE in
Tab. 2, which shows that SVO RL achieves a lower ATE in most of the sequences
and a lower overall mean error. Since the images of TUM-RGBD are not captured
with a global shutter camera, DSO, relying on photometric alignment, struggles
to finish all the sequences. Nevertheless, our RL agent improves the robustness
in some challenging conditions with two more sequences successfully completed.
For completeness, the top-down view of the trajectory estimated by RL SVO,
the baseline, and the ground truth are visualized in the right plots in Fig. 5. We
report in Tab. 4 the comparison of our RL agent against the state-of-the-art VO
methods. The results reported for our methods are averaged over five runs. The
results of the state-of-the-art methods are taken from [19].
Keyframe Selection In Fig. 4, we give insights into the keyframe selection
strategy employed by our RL agent. We visualize the histogram of states at
which keyframes are selected and their corresponding rotational and translation

Reinforcement Learning Meets Visual Odometry 13

Method 360 desk desk2 floor plant room rpy teddy xyz Avg
DROID-VO [18] 0.161 0.028 0.099 0.033 0.028 0.327 0.028 0.169 0.013 0.098
DPVO [19] 0.135 0.038 0.048 0.040 0.036 0.394 0.034 0.064 0.012 0.089
RL SVO 0.183 0.648 0.790 - 0.332 0.786 0.052 0.741 0.071 -
RL DSO - 0.438 0.765 - 0.479 - - - 0.057 -

Table 4: TUM-RGBD. We report the ATE [m] of our RL agents and the state-of-
the-art VO methods.

Method MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203 Avg
SVO 0.183 0.490 0.381 3.236 1.293 0.320 0.333 - 0.084 0.553 1.431 -
RL SVO 0.236 0.124 0.241 2.149 1.982 0.225 0.398 0.394 0.069 0.334 1.506 0.696
RL SVO (w/o keypoints) 0.255 0.160 0.419 1.979 0.588 0.173 0.644 0.849 0.182 1.394 - -
RL SVO (w/o privileged c.) 0.130 0.099 0.834 3.283 0.958 0.140 0.286 0.459 0.116 0.618 1.373 0.754
RL SVO (w/o keyframe) 0.179 0.351 0.302 3.072 1.021 0.325 - - 0.179 0.258 1.464 -
RL SVO (w/o gridsize) 0.152 0.183 0.293 2.154 1.537 0.198 0.269 0.808 0.108 1.683 1.405 0.799

Table 5: EuRoC Ablations. Ablation study on inputs and action of the RL agent.

Components Time [ms]
- 100 Parallel SVO Step 73.9
- Load 100 Images 18.6
- Network Forward Pass 3.1
Complete Rollout Step 104.1

Table 6: Rollout Runtime. The run-
time for the main components in the roll-
out phase averaged over 500 iterations.

Method Time [ms]
SVO 9.06
RL SVO 7.40
DSO 34.45
RL DSO 32.29
Network inference 1.75

Table 7: Inference Runtime. The run-
time of SVO, DSO, and one network for-
ward pass.

velocity. The keyframe selection using the RL agent has a similar distribution
around the motion patterns, while the heuristic rules select more keyframes.
Following the motion distribution of the dataset, both methods trigger more
keyframes in small motions. Despite the fewer keyframes, our RL agent still
achieves a more robust performance. Without the possibility to set keyframes,
namely, the agent only determines the feature grid size, robustness is drastically
reduced, as it can be seen in Tab. 5 by the entry RL SVO (w/o keyframe).
Grid size Selection The positive impact of dynamically selecting the grid size
for SVO can be observed by removing the grid size action, which lowers the pose
estimation accuracy, see RL SVO (w/o gridsize) in Tab. 5. The supplementary
video shows that the RL agent learns to reduce the grid size to the minimal

EuRoC (ATE [m])

Method MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203 Avg
ORB-SLAM3 0.031 0.032 0.041 1.256 0.066 0.035 1.528 1.451 0.201 0.190 1.469 0.573
RL ORB-SLAM3 0.029 0.028 0.039 0.152 0.106 0.034 1.472 1.441 0.203 0.070 1.654 0.475

TUM-RGBD (ATE [m])

Method 360 desk desk2 floor plant room rpy teddy xyz Avg

ORB-SLAM3 - 0.031 0.746 0.013 0.154 1.048 - 0.108 0.011 0.302
RL ORB-SLAM3 - 0.031 0.604 0.013 0.038 0.717 - 0.091 0.011 0.215

Table 8: ORB-SLAM3. We report the ATE [m] of our RL agent applied on ORB-
SLAM3.

14 Messikommer et al.

size of 20 for challenging conditions, leading to more keypoints being tracked.
Another behavior that can be observed is the quick increase of the grid size for
one or two frames. A possible explanation for this short increase and subsequent
decrease in the grid size is that the agent tries to filter out less robust keypoints.
Runtime The runtime achieved by DSO and SVO given decisions from the
heuristic rules and our RL agent are reported in Tab. 7. The results are obtained
by averaging the runtime required for processing all sequences of EuRoC on one
NVIDIA A100. Our RL agent leads to a faster average SVO runtime, which can
be related to the lower rate of keyframe selection, see Fig. 4. In comparison,
RL DSO does not lead to a high runtime reduction. For the performance of the
agents with different penalty terms, we refer to the supplementary. Finally, the
architecture of our agent is very lightweight, with a total of 296,584 parameters.
SLAM Method In addition to VO methods, we also tested our method with
the full SLAM pipeline ORB-SLAM3. Differently from the VO methods, which
run in a sliding-window fashion (old measurements are marginalized), ORB-
SLAM3 uses a local bundle adjustment that has access to the entire history of
keyframes. Although the local bundle adjustment could compensate for uninfor-
mative keyframes, our agent can still provide a more suitable keyframe selection
strategy than the heuristics, as it can be observed in Tab. 8 by the increased ac-
curacy on the EuRoC and TUM-RGBD datasets. To run ORB-SLAM3 with our
framework, significant adjustments with respect to the synchronization between
the tracking and bundle adjustment threads were required, amongst others, the
removal of the loop closure algorithm, which explains the different performance
compared to results reported in [3].
Ablation To evaluate the benefits of our Variable Encoder processing the key-
points, we report in Tab. 5 the performance of an agent network without the
Variable Encoder, i.e., RL SVO (w/o keypoints). As can be observed, the agent
without access to the keypoint information is not capable of successfully finishing
all the sequences of the EuRoC dataset. Furthermore, we also report the perfor-
mance of the agent trained without privileged critic referred to as SVO RL (w/o
privileged c.), leading to a larger mean ATE. For the ablations on TUM-RGBD,
we refer to the supplementary.

5 Conclusion

By approaching the Visual Odometry (VO) problem from a sequential decision-
making perspective, we employ a neural network trained within a Reinforcement
Learning (RL) framework to dynamically adapt the VO method at each timestep.
Instead of hand-tuned heuristics and fixed hyperparameters, the dynamic agent
predicts optimal actions for the VO method to increase its accuracy and robust-
ness. The RL agent is trained on a large-scale synthetic dataset and tested on
common real-world VO benchmarks showing improved robustness and accuracy.
We believe this paradigm shift advances VO technology and opens avenues for
integrating RL into visual inertial odometry and simultaneous localization and
mapping approaches.

Reinforcement Learning Meets Visual Odometry 15

Acknowledgments

This work was supported by the European Research Council (ERC) under grant
agreement No. 864042 (AGILEFLIGHT).

Supplementary: Reinforcement Learning Meets
Visual Odometry

6 Limitations

One of the main challenges for the RL framework is the difficulty of the Tar-
tanAir sequences used for training. If the underlying VO method struggles to
complete the sequences, our RL framework can experience instabilities due to
wrong decision rewards. This can affect the final performance, even with the
employment of a privileged critic. Furthermore, the trained RL agent also strug-
gles with motion patterns not present in the training dataset, which especially
includes static motions.

7 Training Details

We train our agent network using the on-policy algorithm Proximal Policy Opti-
mization (PPO) [14] implemented in Stable Baselines3 [12]. The environment is
comprised of image sequences from TartanAir [25] processed within 100 parallel
instances of the chosen VO algorithm. The sequences are selected randomly in-
side each environment at the start of the training and when the current sequence
finishes. The agent is trained for a total of 1000 iteration steps, each including one
policy update phase and one roll-out phase of 250 timesteps leading to 25× 103

environment steps per iteration. To keep the influence of the rewards to a small
time horizon, a γ factor of 0.6 is selected. The agent network is updated for ten
epochs in the policy update phase. To account for different image sizes, we use
normalized image coordinates as input to the Variable Encoder.

We will release our code upon acceptance to provide complete infor-
mation about our implementation and to facilitate future work.

8 Deep Agent Ablation

To evaluate the benefits of our Variable Encoder processing the keypoints, we
report in Tab. 9 and Tab. 10 the performance of an agent network without
the Variable Encoder, i.e., RL SVO (w/o keypoints). As can be observed, the
agent without access to the keypoint information is not capable of successfully
finishing all the sequences of the EuRoC dataset. Furthermore, on TUM-RGBD,
the agent without keypoint information only achieves a performance comparable

16 Messikommer et al.

to the heuristic baseline, cf. SVO in the first row of Tab 10. This shows that the
keypoint information is important for the VO task.

We illustrate in Fig. 6 the distribution of the selected keyframes over the
angular and translational velocities for three variants: our default RL SVO agent,
the heuristic-based SVO, and the RL agent without keypoint information. This
figure shows that the RL w/o keypoints features a similar keyframe distribution
to the heuristic-based SVO. The similarity can be explained by the access to
the same information for the keyframe selection. In contrast to the heuristic
rules, since our agent is a neural network, we can process complex information
without being limited by heuristic-based rules. Thus, we propose using a Variable
Encoder to process a variable number of keypoints. This architecture leads to
a more robust and accurate pose estimation and, as a consequence of the more
efficient keyframe selection strategy, reduces the runtime.

Furthermore, we report in Tab. 9 and Tab. 10 the performance of the agent
trained without privileged critic referred to as RL SVO (w/o privileged c.). Both
agents trained with and without privileged critic can track the same number of
sequences on EuRoC. However, on the TUM-RGBD dataset, the agent trained
without privileged critic only finishes 6/9 versus 8/9 achieved by our proposed
agent. This can be explained by the fact that the training using the privileged
critic is more stable in terms of the found action distribution, which also leads
to a more robust agent.

Fig. 6: Keyframe Selection Ablation. The number of selected keyframes at differ-
ent translational and angular velocities for the EuRoC dataset.

Method MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203 Avg
SVO 0.183 0.490 0.381 3.236 1.293 0.320 0.333 - 0.084 0.553 1.431 -
RL SVO 0.236 0.124 0.241 2.149 1.982 0.225 0.398 0.394 0.069 0.334 1.506 0.696
RL SVO (w/o keypoints) 0.255 0.160 0.419 1.979 0.588 0.173 0.644 0.849 0.182 1.394 - -
RL SVO (w/o privileged c.) 0.130 0.099 0.834 3.283 0.958 0.140 0.286 0.459 0.116 0.618 1.373 0.754
RL SVO (high penalty) 0.156 0.148 - - 4.349 0.245 1.244 1.251 0.109 1.715 1.473 -
RL SVO (no penalty) 0.397 0.183 0.296 2.742 1.244 0.377 0.446 - 0.331 0.304 1.468 -
RL SVO (w/o keyframe) 0.179 0.351 0.302 3.072 1.021 0.325 - - 0.179 0.258 1.464 -
RL SVO (w/o gridsize) 0.152 0.183 0.293 2.154 1.537 0.198 0.269 0.808 0.108 1.683 1.405 0.799

Table 9: EuRoC Ablations. Ablation studies on inputs, reward design, and action
of the RL agent.

Reinforcement Learning Meets Visual Odometry 17

Method 360 desk desk2 floor plant room rpy teddy xyz Avg
SVO 0.186 0.681 0.898 - 0.320 0.805 0.053 0.769 0.057 0.471
RL SVO 0.189 0.556 0.755 - 0.260 0.804 0.056 0.697 0.062 0.422
RL SVO (w/o keypoints) 0.191 0.709 0.759 - 0.529 0.771 0.058 0.673 0.095 0.473
RL SVO (w/o privileged c.) - 0.635 0.821 - 0.299 - 0.054 0.716 0.062 -
RL SVO (high penalty) - 0.575 0.906 - 0.471 0.723 0.059 0.738 0.087 -
RL SVO (no penalty) - 0.611 0.900 - 0.412 0.794 0.054 0.743 0.154 -
RL SVO (w/o keyframe) - 0.652 0.891 - 0.243 0.841 - 0.711 0.079 -
RL SVO (w/o gridsize) - 0.612 0.755 - 0.255 0.822 - 0.824 0.059 -

Table 10: TUM-RGBD Ablations. Ablation studies on inputs, reward design, and
action of the RL agent.

Method Time [ms]
SVO 9.06
RL SVO 7.40
RL SVO w/o penalty 13.44
RL SVO high penalty 6.42
Network inference 1.75

Table 11: Inference Runtime. The runtime of SVO using different reward weight-
ings.

Fig. 7: Cumulative density function of the relative position error (RPE).
The CDF is computed on a sliding window of size 5 m, on the entire test set. The
steeper the plots are, the better the performance. The curve corresponding to the VO
with RL is above the curve of the VO without RL.

9 Reward Ablation

In Tab. 9 and Tab. 10, we also report the accuracy for two variants of our
RL agent trained with different weighting on the keyframe action akeyframe, for
which we report the runtimes in Tab. 11. The first agent RL SVO (no penalty),

18 Messikommer et al.

Method 05 06 07 08 09 10 Avg
SVO 11.91 13.31 9.24 - 12.30 12.50 11.85
RL SVO 11.59 11.12 10.42 - 12.58 12.02 11.54
DSO 2.42 - 2.70 3.23 - 1.79 2.53
RL DSO 2.24 - 2.52 2.92 - 1.74 2.35

Table 12: KITTI. We report the ratio between ATE and traveled distance in [%].
Our RL agents achieve lower average error than the heuristic-based VO methods.

was trained without any penalization of the keyframe action, which led to an
agent selecting almost each frame as a keyframe. That also explains the lower
accuracy as well as robustness (10/11 successful sequences on EuRoC and 7/9
on TUM-RGBD) compared to the proposed agent with keyframe penalty since
a spatially diverse set of keyframes improves the triangulation accuracy and,
as a consequence, also the keypoint tracking. If the penalty on the keyframe
action is increased by setting λ2 to 7.5×10−3 (RL SVO high penalty), the agent
selects roughly two times fewer keyframes than our default agent. Since fewer
keyframes are selected, the agent is more prone to lose track due to a small
number of keypoints, as happened for sequences MH03 and MH4, see RL SVO
(high penalty) in Tab. 9. In general, for both weighting experiments, the training
was more unstable than our agent trained with the default value of 0.5 for λ2.
As a consequence, the best-performing agent for both trainings with different
weighting was already obtained after 150 iterations.

10 Relative Errors

In addition to the ATE reported in the main manuscript, we also visualize the
relative position error by reporting the cumulative density function (CDF) on
the entire dataset, EuRoC and TUM-RGBD, for SVO. The CDF plot in Fig. 7
shows the probability of the relative position error being below a given value on
the x-axis. The relative position error is computed based on a sliding window
of length 5m. As can be observed, our RL SVO achieves constantly a better
performance over the distribution of error distances.

11 KITTI

Additionally to EuRoC and TUM-RGBD, we evaluate on six commonly used
sequences from the KITTI dataset, recorded by a car and accompanied by poses
obtained with an accurate GPS-based localization system. Considering the long
length of the trajectories, we report the error for the KITTI dataset with the
predominantly used ratio between ATE and traveled distance in [%]. Similar
to EuRoC and TUM-RGBD, our RL agents also outperform the two heuristic-
based VO pipelines specifically tuned for the KITTI dataset, as indicated by the
lower mean error in Tab. 12.

Reinforcement Learning Meets Visual Odometry 19

References

1. Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., Achte-
lik, M.W., Siegwart, R.: The euroc micro aerial vehicle datasets. The Inter-
national Journal of Robotics Research (2016). https://doi.org/10.1177/
0278364915620033, http://ijr.sagepub.com/content/early/2016/01/21/
0278364915620033.abstract

2. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I.,
Leonard, J.J.: Past, present, and future of simultaneous localization and mapping:
Toward the robust-perception age. IEEE Transactions on robotics 32(6), 1309–
1332 (2016)

3. Campos, C., Elvira, R., Gomez, J.J., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM3:
An accurate open-source library for visual, visual-inertial and multi-map SLAM.
IEEE Transactions on Robotics 37(6), 1874–1890 (2021)

4. Dong, X., Shen, J., Wang, W., Shao, L., Ling, H., Porikli, F.: Dynamical hyperpa-
rameter optimization via deep reinforcement learning in tracking. IEEE transac-
tions on pattern analysis and machine intelligence 43(5), 1515–1529 (2019)

5. Engel, J., Koltun, V., Cremers, D.: Direct Sparse Odometry. IEEE Trans. Pattern
Anal. Mach. Intell. 40(3), 611–625 (Mar 2018). https://doi.org/10.1109/TPAMI.
2017.2658577

6. Forster, C., Zhang, Z., Gassner, M., Werlberger, M., Scaramuzza, D.: SVO: Semidi-
rect visual odometry for monocular and multicamera systems. IEEE Trans. Robot.
33(2), 249–265 (2017). https://doi.org/10.1109/TRO.2016.2623335

7. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2012)

8. Jaegle, A., Borgeaud, S., Alayrac, J.B., Doersch, C., Ionescu, C., Ding, D., Koppula,
S., Zoran, D., Brock, A., Shelhamer, E., Hénaff, O., Botvinick, M.M., Zisserman,
A., Vinyals, O., Carreira, J.: Perceiver io: A general architecture for structured
inputs & outputs. Int. Conf. Learn. Representations (ICLR) (2022)

9. Jaegle, A., Gimeno, F., Brock, A., Zisserman, A., Vinyals, O., Carreira, J.: Per-
ceiver: General perception with iterative attention. Proc. Int. Conf. Mach. Learning
(ICML) (2021)

10. Jomaa, H.S., Grabocka, J., Schmidt-Thieme, L.: Hyp-rl: Hyperparameter optimiza-
tion by reinforcement learning. arXiv preprint arXiv:1906.11527 (2019)

11. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate
monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015)

12. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-
baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research 22(268), 1–8 (2021), http://jmlr.org/papers/v22/20-1364.
html

13. Scaramuzza, D., Fraundorfer, F.: Visual odometry [tutorial]. IEEE robotics & au-
tomation magazine 18(4), 80–92 (2011)

14. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

15. Sheng, L., Xu, D., Ouyang, W., Wang, X.: Unsupervised collaborative learning
of keyframe detection and visual odometry towards monocular deep slam. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
4302–4311 (2019)

https://doi.org/10.1177/0278364915620033
https://doi.org/10.1177/0278364915620033
https://doi.org/10.1177/0278364915620033
https://doi.org/10.1177/0278364915620033
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
https://doi.org/10.1109/TPAMI.2017.2658577
https://doi.org/10.1109/TPAMI.2017.2658577
https://doi.org/10.1109/TPAMI.2017.2658577
https://doi.org/10.1109/TPAMI.2017.2658577
https://doi.org/10.1109/TRO.2016.2623335
https://doi.org/10.1109/TRO.2016.2623335
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

20 Messikommer et al.

16. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for
the evaluation of rgb-d slam systems. In: Proc. of the International Conference on
Intelligent Robot Systems (IROS) (Oct 2012)

17. Teed, Z., Deng, J.: Raft: Recurrent all-pairs field transforms for optical flow. In:
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part II 16. pp. 402–419. Springer (2020)

18. Teed, Z., Deng, J.: Droid-slam: Deep visual slam for monocular, stereo, and rgb-
d cameras. Advances in neural information processing systems 34, 16558–16569
(2021)

19. Teed, Z., Lipson, L., Deng, J.: Deep patch visual odometry. arXiv preprint
arXiv:2208.04726 (2022)

20. Umeyama, S.: Least-squares estimation of transformation parameters between two
point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4) (1991)

21. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg,
U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R.
(eds.) Advances in Neural Information Processing Systems. vol. 30. Curran As-
sociates, Inc. (2017), https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

22. Vogiatzis, G., Hernández, C.: Video-based, real-time multi-view stereo. Image and
Vision Computing 29(7), 434–441 (2011)

23. Wang, S., Clark, R., Wen, H., Trigoni, N.: Deepvo: Towards end-to-end visual
odometry with deep recurrent convolutional neural networks. In: IEEE Int. Conf.
Robot. Autom. (ICRA). pp. 2043–2050. IEEE (2017)

24. Wang, W., Hu, Y., Scherer, S.: Tartanvo: A generalizable learning-based vo. In:
Conference on Robot Learning. pp. 1761–1772. PMLR (2021)

25. Wang, W., Zhu, D., Wang, X., Hu, Y., Qiu, Y., Wang, C., Hu, Y., Kapoor, A.,
Scherer, S.: Tartanair: A dataset to push the limits of visual slam. 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (2020)

26. Ye, W., Lan, X., Chen, S., Ming, Y., Yu, X., Bao, H., Cui, Z., Zhang, G.: Pvo:
Panoptic visual odometry. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 9579–9589 (2023)

27. Zhang, Z., Scaramuzza, D.: A tutorial on quantitative trajectory evaluation for
visual (-inertial) odometry. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS).
pp. 7244–7251. IEEE (2018)

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

	Reinforcement Learning Meets Visual Odometry

