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Abstract: This work explores the potential of using differentiable simulation for
learning quadruped locomotion. Differentiable simulation promises fast conver-
gence and stable training by computing low-variance first-order gradients using
robot dynamics. However, its usage for legged robots is still limited to simulation.
The main challenge lies in the complex optimization landscape of robotic tasks
due to discontinuous dynamics. This work proposes a new differentiable simu-
lation framework to overcome these challenges. Our approach combines a high-
fidelity, non-differentiable simulator for forward dynamics with a simplified sur-
rogate model for gradient back-propagation. This approach maintains simulation
accuracy by aligning the robot states from the surrogate model with those of the
precise, non-differentiable simulator. Our framework enables learning quadruped
walking in simulation in minutes without parallelization. When augmented with
GPU parallelization, our approach allows the quadruped robot to master diverse
locomotion skills on challenging terrains in minutes. We demonstrate that dif-
ferentiable simulation outperforms a reinforcement learning algorithm (PPO) by
achieving significantly better sample efficiency while maintaining its effective-
ness in handling large-scale environments. Our method represents one of the first
successful applications of differentiable simulation to real-world quadruped loco-
motion, offering a compelling alternative to traditional RL methods.
Video: https://youtu.be/weNq_w715xM
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1 Introduction

Figure 1: Graphical model for policy
learning using differentiable simulation.

Traditional model-free reinforcement learning (RL) of-
ten requires extensive parallelization to achieve a stable
walking policy for legged robots [1]. How can legged
robots master walking quickly with a few trials and er-
rors? Recent progress in legged robot control has been
largely driven by combining model-free RL with mas-
sively parallelized simulation [1, 2, 3, 4, 5, 6, 7]. Cen-
tral to these advancements is the policy gradient algo-
rithm [8, 9], where the gradient of a control policy can
be calculated via ∇θJ(θ) = Eτ∼πθ

[R(τ)∇θ log p(τ ; θ)];
which is a zeroth-order estimate of the true gradient of J
based on sampled trajectories following the policy πθ.
Here, R(τ) is the reward of a trajectory τ . Such zeroth-
order gradient estimate provides a powerful and general
framework for robot control since it can handle non-differentiable optimization objectives and dis-
continuous dynamics. However, the gradient has high variances. Consequently, several additional
strategies are required for stable training, such as using a clipped surrogate objective [10] and in-
creasing the sample size.
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In robotics, leveraging well-established knowledges about robot dynamics can enable the construc-
tion of first-order gradient estimates∇θJ(θ) = ∇θR(τ), which typically exhibit significantly lower
variance than their zeroth-order counterparts and hold great potential for more stable training and
faster convergence. Recently, policy training using first-order gradient has been notably advanced
through differentiable simulation [11, 12, 13, 14, 15]; these works have shown promising results in
reducing both the number of simulation samples and total training time compared to zeroth-order
methods. Differentiable simulation combines the advantages of model-based control and data-driven
learning. Similar to numerical optimal control methods, such as shooting techniques, differentiable
simulation utilizes robot dynamics to simulate trajectories and iteratively optimize decision variables
using analytical gradients derived from the robot model. Like reinforcement learning, differentiable
simulation benefits from large-scale simulations and deep learning to train neural network control
policies that map observations directly to control actions. Despite its advantages, differentiable
simulation faces several challenges, including discontinuous dynamics, complex optimization land-
scapes, and issues like exploding or vanishing gradients in long-horizon tasks, which can limit the
effectiveness of first-order gradient methods.

This work investigates the potential of training policies through surrogate models within differ-
entiable simulation, specifically focusing on quadruped locomotion. We show that differentiable
simulation offers considerable advantages over model-free RL for policy training in legged locomo-
tion. Notably, we demonstrate that a single robot, without the need for parallelization can quickly
learn to walk within minutes in simulation using our approach. Leveraging the advantage of GPUs
for parallelized simulation, our robot learns diverse walking skills over challenging terrain in min-
utes. Specifically, we train a quadruped robot to walk with different gait patterns, including trot,
pace, bound, and gallop, and with varying gait frequencies. While model-free RL can also achieve
similar performance given sufficient parallelization, our approach requires much less data, achiev-
ing significantly better sample efficiency while maintaining its effectiveness in handling large-scale
environments. More importantly, we show that the policy trained via differentiable simulation can
be transferred to the real world directly without fine-tuning. This work presents one of the earliest
demonstrations of using differentiable simulation to train control policies for real quadruped robots,
highlighting the potential of differentiable simulation for real-world applications.

Contribution: The key to our approach is a novel policy training framework that combines the
smooth gradients obtained from a simple surrogate dynamics model for efficient backpropagation
with the high fidelity of a more complex, non-differentiable simulator for accurate forward simu-
lation. Instead of simulating the quadruped robot using whole-body dynamics, which by definition
has discontinuities due to contact, we propose separating the simulation into its floating base space
and its joint space. For the robot body, we employ an approximation using single rigid-body dynam-
ics, which offers a continuous and effective representation of the robot body. To address simulation
errors arising from our simplified rigid-body dynamics model, we incorporate a more precise, non-
differentiable simulator. This non-differentiable simulator can simulate complex contact dynamics
and is used to align the state in our simplified model, thereby ensuring that our training pipeline
remains grounded in realistic dynamics. Figure 2 provides an overview of our system.

2 Methodology

2.1 Problem Formulation

We formulate legged robot control as an optimization problem. The robot is modeled as a discrete-
time dynamical system, characterized by continuous state and control input spaces, denoted as X
and U , respectively. At each time step k, the system state is xk ∈ X , and the corresponding control
input is uk ∈ U . An observation ok ∈ O is generated at each time step based on the current state xk

through a sensor model h : X → O, such that ok = h(xk). The system’s dynamics are governed
by the function f : X × U → X , which describes the time-discretized evolution of the system as
xk+1 = f(xk, uk). At each time step k, the robot receives a cost signal lk = l(xk, uk), which is
a function of the current state xk and the control input uk. The control policy is represented as a
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Figure 2: System overview of learning quadruped locomotion using differentiable simulation.
Our approach decouples the robot dynamics into two separate spaces: joint and floating base spaces.
We leverage the differentiability and smoothness of a single rigid-body dynamics for the robot’s
main body, which takes the ground reaction force from its legs as the control inputs. We use the state
from a non-differentiable simulator (IsaacGym) to align the state in the differentiable simulation.

deterministic, differentiable function such as a neural network uk = πθ(ok). The neural network
takes the observation ok as input and outputs the control input uk. The optimization objective is to
find the optimal policy parameters θ∗ by minimizing the total loss via gradient descent

min
θ
Lθ =

N−1∑
k=0

l(xk, uk) =

N−1∑
k=0

l(xk, πθ(ok)) (1)

θ ← θ − α∇θLθ, (2)

where α is the learning rate and l(xk, uk) is the differentiable loss at simulation time step k.

2.2 Forward Simulation

We represent the robot’s main body using single rigid-body dynamics. Single rigid-body dynamics
have been shown to be useful for dynamic locomotion using model predictive control [16, 17]. The
single rigid-body model offers a continuous representation of the robot base dynamics, avoiding the
complex optimization landscape introduced by contacts. We develop our differentiable simulation
using the single rigid-body dynamics, which is expressed as follows,

ṗWB = vWB v̇WB =
1

m

∑
i

fi + g

q̇WB =
1

2
Λ(ωB) · qWB ω̇B = I−1 (η − ωB × (IωB)) .

In this approximation, the state of our system is x = [p,q,v,ω], where pWB ∈ R3 is the position
and vWB ∈ R3 is the linear velocity of the center of mass in the world frame W , We use a unit
quaternion qWB to represent the orientation of the body in the world frame and use ωB to denote
the body rates in the body frame B. Here, I is the robot’s inertia tensor, η is the body torque, and
Λ(ωB) is a skew-symmetric matrix. The control inputs are the ground reaction force fi from the
legs that have contacts.

The ground reaction forces are required to simulate the rigid-body dynamics. One option for the
control policy design is to output the ground reaction force directly, similar to the MPC design [16,
17]. Another option is to control the robot in the joint space, e.g., output desired joint position, which
allows more control authority for the policy and adaptive behavior. Our policy maps observations
to the desired joint position qref, while assuming zero joint velocity, i.e., q̇ref = 0. In this case,
the neural network output (joint position) is required to be converted into the control input of the
single rigid-body model, which is the ground reaction force. This conversion is achieved using a PD
controller for forward propagation

τ = kp(q
ref − q) + kd(q̇

ref − q̇), (3)

which calculates the required motor torque τ . Here, kp and kd are fixed gains, qref and q are the
reference joint position and the current joint position separately, and q̇ref and q̇ are the reference
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joint velocity and the current joint velocity respectively. Subsequently, the motor torques are then
converted to ground reaction forces f using the foot Jacobian J: f = (JT )−1τ . The continuous
nature of PD control enables the backpropagation of policy gradients. Consequently, our simulation
framework treats the PD controller as a differentiable layer.

2.3 Backpropagation Through Time

In differentiable simulation for policy learning, the backward pass is crucial for computing the an-
alytic gradient of the objective function with respect to the policy parameters. Following [18], the
policy gradient can be expressed as follows

∇θLθ =
1

N

N−1∑
k=0


k∑

i=1

∂lk
∂xk

k∏
j=i

(
∂xj

∂xj−1

)
︸ ︷︷ ︸

differentiable dynamics

∂xi

∂θ
+

∂lk
∂uk

∂uk

∂θ

 , (4)

where the matrix of partial derivatives ∂xj/∂xj−1 is the Jacobian of the dynamical system f . There-
fore, we can compute the policy gradient directly by backpropagating through the differentiable
physics model and a loss function lk that is differentiable with respect to the system state and con-
trol inputs. A graphical model for gradient backpropagation in policy learning using differentiable
simulation is given in Figure 1. Due to the usage of multiplication

∏
, there are two potential issues

in using Eq. (4) for policy gradient: 1) gradient vanishing or exploding, 2) long computation time.
We tackle these two problems via short-horizon policy training.

2.4 State Alignment with A Non-Differentiable Simulator

Due to the simplification of our single rigid-body dynamics and the decoupling of the simulation
space, the robot state can diverge from its actual one. Over time, even minor discrepancies can ac-
cumulate, leading to unrealistic states and ultimately causing the failure of policy training. We pro-
posed to align the body state in our differentiable simulation using information from other simulators
that use accurate whole-body dynamics. Specifically, we align the robot state in our differentiable
simulation with the state information from IsaacGym [19].

We use the following equation to align the robot state x̂diff
t+1 = xnon-diff

t+1 + α ∗ (xdiff
t+1 − xdiff, detach

t+1 ).

Here, xdiff, detach
t+1 and xdiff

t+1 represent the same robot state of our differentiable simulator at time step
t + 1; hence, they share the same value. The word detach indicates that x̂diff, detach

t+1 is detached
from the computational graph for automatic differentiation. Therefore, we can reset the robot state
using the value from the non-differentiable simulation during forward simulation: x̂diff

t+1 = xnon-diff
t+1 +

α ∗ 0. During backpropagation, the gradient of the state at a given time t is computed as follows
∂x̂diff

t+1/∂x
diff
t = 0+ α ∗ ∂xdiff

t+1/∂x
diff
t . Here, 0 < α ≤ 1 is used to decay the gradient.

The non-differentiable simulator can simulate complex contact dynamics and is used to align our
simplified model, thereby ensuring that our differentiable training pipeline remains grounded in
realistic dynamics. At the same time, our approach benefits from the simplified differentiable simu-
lator, which offers smooth gradients for backpropagation. Figure 2 shows the computational graph
of the forward propagation and backpropagation using state alignment.

2.5 Short-Horizon Policy Training

Although smoothed physical models (e.g., single rigid-body dynamics) improve the local optimiza-
tion landscape, the complexity of the optimization problem escalates significantly in long-horizon
problems involving extensive concatenation of simulation steps. The situation further deteriorates
when the actions within each step are interconnected through a nonlinear and nonconvex neural
network control policy. The complexity of the resulting optimization landscape can make gradient-
based methods to become trapped in local optima quickly. Instead of directly solving a long-horizon
policy training problem, following [13, 1], where long-horizon simulation tasks are truncated into
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short-horizon simulation, we utilize short-horizon policy learning to achieve stable gradient back-
propagation over a short horizon. Mathematically, short-horizon policy learning involves truncating
a long-horizon trajectory of length N into several shorter segments to compute the policy gradient
shown in Eq. (4). For instance, for a trajectory of length 240, we divide it into ten segments of
N = 24. However, it’s important to note that while a shorter horizon could simplify computation
and facilitate optimization, it may also limit the model’s ability to anticipate future events, introduc-
ing bias into the gradient calculation. This bias could, in turn, affect the types of tasks the model can
effectively learn.

2.6 Differentiable Loss Function

A fundamental difference between policy training using differentiable simulation and reinforcement
learning is that the loss function has to be differentiable when using differentiable simulation. RL
allows the direct optimization of non-differentiable rewards, such as binary rewards 0/1. On the
contrary, differentiable simulation requires a smooth differentiable cost function to provide learning
signals for the desired control inputs. We formulate a differentiable loss function l(xt,ut) tailored
for velocity tracking, where the main objective is to follow a specified velocity command, denoted
as vref. Additionally, we maintain the robot’s body height, represented by pz . To enhance the
robustness of this system, we incorporate several regularization terms: one to mitigate a large angular
velocity, thus controlling the body rate ω; another to limit the output action u, preventing large
control actions; and a term aimed at stabilizing the robot’s orientation using projected gravity vector
gproj. The loss function is defined as

l(xt,ut) = a1∥v − vref∥2 + a2∥pz − pref
z ∥+ a3∥ω∥2

+a4∥u∥2 + a5∥gproj∥+ a6∥pfoot − pref
foot∥2, (5)

where pfoot is the foot position.

3 Experimental Results
3.1 A Toy Example: Control of A Double Integrator

Figure 3: Control of a double integrator using optimal control, reinforcement learning, and
differentiable simulation. (left): Learning curves. (middle): Trajectories of different control poli-
cies. We initialize the system at the same states for all methods. (right): DiffSim achieves control
commands close to optimal control.

Inspired by [20], where the author studied the connection between reinforcement learning and op-
timal control using a toy double integrator example, we begin by examining the same toy example:
control of a double integrator, which is a fundamental problem in system and control theory. The
double integrator is a second-order control system that models simple point mass dynamics in one-
dimensional space. The state variables are position x and velocity ẋ, with control inputs u = ẍ. The
objective is to drive the system state from any initial point to the origin, [x, ẋ] = [0, 0]. Therefore,
this problem can be solved by the Linear quadratic regulator (LQR), which can provide an optimal
solution. We train a 2-layer multiplayer perception using backpropagation through time via differ-
entiable simulation and the proximal policy optimization (PPO) method [10]. We show that the
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policy trained using differentiable simulation (DiffSim) achieves nearly optimal performance within
a handful of training iterations and samples. In contrast, even when scaling the number of simulation
environments to 1024 and training the policy with considerably more iterations, PPO fails to achieve
the same level of control performance as LQR or DiffSim. This toy example suggests that scaling
might be insufficient for PPO to achieve an optimal solution.

3.2 Learning to Walk with One Robot

Figure 4: Learning to walk with one sim-
ulated robot. We run 10 experiments with
different random seeds. The plot is smoothed
using a moving average.

This section explores whether a robot can learn to
walk without parallelization and with very limited
data points at each training iteration. We design a
simple velocity-tracking task where the robot is re-
quired to follow a constant velocity in the x-axis,
e.g., vx = 0.2 m/s. At each training iteration, we
simulate 24-time steps with one single robot. Hence,
each training iteration contains 24 data points. We
trained the policy for a total of 1000 iterations. The
result is given by the learning curve in Figure 4. De-
spite very limited data, our policy successfully learns
to walk after minutes of training. As a comparison,
PPO failed to achieve useful locomotion skills un-
der the same condition. By providing first-order gra-
dients with low variance, differentiable simulations
offer a fundamental advantage: they allow for more
efficient and reliable optimization of the control policy. This is because the gradient provides a clear
direction for updating parameters, and the low variance ensures that this direction is consistent and
reliable, even when data is limited.

3.3 Learning Diverse Walking Skills on Challenging Terrains

We design a more difficult task: learning diverse locomotion skills over challenging terrains. Specif-
ically, we design four different gait patterns, including trot, pace, bound, and gallop. Additionally,
we vary the gait frequency from 1Hz to 4Hz. The robot receives a high-level velocity command
and is required to track randomly commanded velocity. Figure 5 shows the learning curves using
different numbers of robots for policy training. We compare the learning performance of our method
with a model-free RL algorithm (PPO) [10]. Given minimal samples, e.g., only four robots, RL has
a slow convergence speed and does not learn meaningful walking skills, e.g., the policy constantly
falls after a few simulation steps. In contrast, differentiable simulation achieves much higher rewards
and can acquire useful walking skills.

As the number of robots increases, the performance of both algorithms improves. Notably, the
performance improvement for RL is much more significant than our approach. This indicates that the
zeroth-order gradient estimates used by reinforcement learning are generally inaccurate and require
many more samples to achieve stable training. On the contrary, the first-order gradient estimates
used by our differentiable simulation can have very stable and accurate gradients, even given very
limited simulation samples. Figure 5 demonstrates diverse walking skills over challenging terrains
using a blind policy trained via differentiable simulation.

We demonstrate the performance of our policy in the real world using Mini Cheetah [21]. Mini
Cheetah is a small and inexpensive, yet powerful and mechanically robust quadruped robot, intended
to enable the rapid development of control systems for legged robots. The robot uses custom back-
driveable modular actuators, which enable high-bandwidth force control, high force density, and
robustness to impacts [21]. The control policy runs at 100Hz during deployment. Figure 5 shows
several snapshots of the robot’s walking behavior over different terrains using different gait patterns.
We trained a blind policy in simulation using 64 robots and then transferred the policy directly to
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Figure 5: Learning to walk on challenging terrains, reinforcement learning versus differen-
tiable simulation. Differentiable simulation exhibits significant advantages over PPO in terms of
sample efficiency and learning stability. After training in simulation, the policy can be transferred
to the real world without fine-tuning.

the real world without fine-tuning. The robot can walk forward and backward with different gait
patterns and frequencies. Moreover, the policy enables the robot to manage disturbances, such as
unexpected forces and deformable terrain.

Robots
Final Reward Total Training Time [min]

PPO Ours PPO Ours

4 −25.82 ± 2.16 −3.83 ± 3.01 7.27 ± 0.12 7.28 ± 0.12

16 −8.07 ± 1.30 −2.03 ± 0.69 7.54 ± 0.06 7.50 ± 0.08

64 −6.42 ± 0.29 −2.49 ± 0.37 8.46 ± 0.16 8.23 ± 0.07

1024 −2.80 ± 0.13 −2.69 ± 0.06 11.44 ± 0.13 11.55 ± 0.09

Table 1: A comparison of final reward and total training
time. We run both methods for the same number of training
iterations and collect the same amount of samples.

Additionally, we compare the total
training wall-clock time and the fi-
nal performance of the resulting poli-
cies. Differentiable simulation of-
ten involves the creation of a com-
plex computational graph to facilitate
gradient computation. As the simu-
lation horizon extends, the length of
the computational graph can increase
proportionally, leading to a substan-
tial increase in the total training time.
This increase can diminish its bene-
fits in situations where gathering a large number of samples is both cheap and fast. Therefore, we
ask the question: Can differentiable simulation be effectively applied to large-scale settings, for
example, thousands of environments? To ensure a fair comparison, we ran both PPO and our train-
ing framework for the same number of training iterations, namely 1000 iterations. We compare
the total training time, which includes the time for simulating dynamics and updating policies. As
shown in Table 1, our results indicate that differentiable simulation can be as time efficient as PPO
in large-scale environments despite the requirement of backpropagation through time (BPTT)—a
process known for its computational demands. However, notice that the training time to reach a
certain reward is much lower with our method and requires less robot and data. For example, our
method requires only roughly 64 robots and 200 training iterations to solve this task, while PPO still
performs less after 1000 training iterations with 1024 robots.
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4 Related Work
Previous efforts in leveraging differentiable simulation to robot control can be broadly categorized
into two classes: improving the simulator itself and enhancing the associated optimization algo-
rithms. The first kind has led to the development of several general-purpose differentiable simula-
tors, including Brax [11], Nimble [22], NeuralSim [23], and Dojo [24]. These simulators enable
the integration of robot models directly into policy optimization, allowing neural network control
policies to be trained using more mathematically precise analytical gradients. However, as noted
in [18, 25], in scenarios where the underlying system exhibits chaotic behavior—where small per-
turbations in initial conditions lead to significantly divergent states, such as in robotic simulations
involving contact dynamics—these gradients can become unmanageable, leading to divergence in
optimization processes. Our work highlights the benefits of employing well-behaved proxy dynam-
ics as an alternative to the true robot dynamics involving contact. Such a design choice has its roots
in model predictive control, which often leverages a simplified model for the optimization to control
complex robotic systems [16, 17, 26].

Besides developing a better simulator, various methods have been proposed to improve policy train-
ing algorithms. For example, [25] proposes an α-order gradient estimator that aims to combine
the efficiency of first-order estimates with the robustness of zeroth-order methods. SHAC [13] ad-
dresses local minima issues by learning a smooth value function and mitigates vanishing/exploding
gradients through truncated backpropagation. Gradient norm clipping strategies have also proven
effective in managing the exploding gradients issue [27]. Furthermore, since differentiating through
chaotic dynamics is challenging, it is often useful to learn an approximation of these functions
and use the approximation for gradient computation. This approach commonly has a connection
with model-based reinforcement learning [28, 29, 30, 31, 32], which involves learning a predictive
model of the environment, followed by training a controller. Similar to [13], our method leverages
a truncated backpropagation to facilitate optimization. Our method could be improved further by
combining other ideas, such as learning a critic function or clipping the gradients.

5 Limitations
A key advantage of model-free RL lies in its ability to directly optimize task-level rewards [33],
especially non-differentiable rewards. In contrast, differential simulation depends on the backprop-
agation of information from its objective function, making it challenging to explore novel solutions
guided by task objectives. Consequently, our system requires specifying foot positions using the
Raibert heuristic [34], as it cannot explore foot placement motion through velocity tracking loss
alone. In addition, RL’s flexibility allows for more robust performance enhancements, such as
implementing simple termination penalties to discourage falling behaviors or employing constant
survival rewards to encourage continued operation. In addition, differentiable simulations are often
tailored to specific optimization tasks and might not generalize well across different problems. It
requires specific domain knowledge in both building the simulation pipeline and formulating the
problem. To generalize our approach to other tasks, additional engineering efforts are required.

6 Conclusion
This work proposes a new perspective on learning quadruped locomotion policies using differen-
tiable simulation by integrating a simplified rigid-body model with a non-differentiable model for
whole-body dynamics. Our key insight is that a neural network control policy can be optimized
directly by backpropagating the differentiable loss function through a simplified model while simul-
taneously aligning the robot’s state using a more accurate whole-body dynamics model. Future work
should address several limitations of the proposed framework, such as removing the assumption of
gait scheduling and the Raibert heuristic for foot contact sequence and foot position planning. Ad-
ditionally, more sim-to-real analysis is helpful in evaluating the benefits of using a simplified model
compared to the true but chaotic gradients or to the policy trained via domain randomization. Finally,
we should demonstrate the true advantages of stable training introduced by the first-order gradient
by tackling more challenging tasks, such as large-scale training and vision-based control.
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Appendix

1 Double Integrator

A double integrator system is characterized by its position and velocity. The control input u directly
controls the acceleration of the system. For a fair comparison, we formulate the problem as a
discrete-time finite-horizon optimal control problem. The discrete-time state space representation of
a double integrator is

xk+1 = Axk +Buk

where A =

[
1 dt
0 1

]
and B =

[
d2t/2
dt

]
. Here, dt is the simulation time step. The objective is to

minimize a quadratic loss function

J = xT
NQfxN +

N−1∑
k=0

(xT
kQxk + uT

kRuk)

Q = Qf =

[
1 0
0 1

]
, R = [1].

This is a discrete-time finite-horizon Linear–Quadratic Regulator problem, where the optimal con-
trol law can be found using dynamic programming

u∗
k = −(R+BTPk+1B)−1BTPk+1Axk, k = 0, 1, · · · , N − 1,

where PN = Qf and Pk can be found from the Riccati recursion.

2 Experimental Setup

Simulation Setup: We develop our own differentiable simulator using PyTorch and CUDA. Our
differentiable simulator allows for both forward propagation of the robot dynamics and backprop-
agation of the policy gradient. Additionally, we run IsaacGym [19] alongside our differentiable
simulation and use it to align the robot state resulting from our simplified robot dynamics. Isaac-
Gym simulates the whole-body dynamics and complicated contacts between the robot and its en-
vironment. Both simulations are parallelized on GPU. We used a discretized simulation time step
of 0.002 s and a control frequency of 100Hz. We use PPO baseline from [1]. Additionally, we
follow prior works [35, 36] for the implementation of the gait schedule and Raibert Heuristic.

Observation and Action: The policy observation includes random commands (cmdrand) for the
reference velocity, sinusoidal and cosinusoidal representations of gait phases, the base velocity
(vWB), the base orientation (qWB), the angular velocity (ωB), motor position deviations from
default (q − qdefault), and a projected gravity vector (gprojected). The policy action δq is the desired
joint position offset from the default joint position.

Observation Dimension Action Dimension
cmdrand 3

δq 12

sin(gait phase) 4
cos(gait phase) 4

vWB 3
qWB 4
ωB 3

q − qdefault 12
gprojected 3

Table 2: Policy observation and action for quadruped locomotion.
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3 Foot Trajectory Planning

We use the foot position loss ∥pfoot−pref
foot∥2 to provide a learning signal for the swing legs. This loss

term is critical for the swing leg since it contains information about the motor position. Following
prior works [35, 36], the swing leg trajectory can be computed by fitting a quadratic polynomial over
the lift-off plift

foot, mid-air pair
foot, and landing position pland

foot of each foot, where the lift-off position is
the foot location at the beginning of the swing phase, the landing position pland

foot is calculated using
the Raibert Heuristics [34], which is expressed as the following function

pland
foot = phip

foot + vCoMTstance/2

where Tstance is the expected time the foot will spend on the ground, phip
foot is the location on the ground

beneath the robot’s hip, vCoM is the body velocity projected on the xy-plane. The desired contact
state of each leg. e.g., swing or stance, is determined via a gait generator. The gait is modulated by
a phase variable ϕ ∈ [0, 2π]. The phase is defined through a dynamic function ϕt+1 = ϕt +2πf∆t,
where f is the stepping frequency. We can design different locomotion patterns by adapting the
stepping frequency f and the phase difference between each leg.

4 On the Importance of Non-differentiable Terminal Penalty

We highlight one important benefit of RL compared to differentiable simulation: RL can signifi-
cantly enhance its robustness by directly optimizing through non-differentiable rewards or penalties.
Specifically, we use a non-differentiable value p = 200 to penalize the robot when the robot experi-
ences termination during training, e.g., falling on the ground or lifting its legs above its body.

r(xt,ut) =

{
−l(xt,ut)− p if termination
−l(xt,ut) otherwise.

Fig. 6 shows a study of using non-differentiable terminal penalty for both RL and differentiable
simulation. The results show that adding a final penalty can greatly affect how well RL works.
Without a penalty, RL might get trapped in a local minimum. However, with a large penalty at the
end, RL can achieve better task rewards as well as more robust control performance. This is because
RL optimizes a discounted return, which estimates “how good” it is to be in a given state. RL uses
a state-value function to encode this information

Vπ(s) = E[G|S0 = s] = E

[ ∞∑
t=0

γtRt+1|S0 = s

]
.

On the other hand, a terminal penalty has no impact on differentiable simulation since the gradient
of a constant value is equal to zero, and we do not leverage a state value function. As a result,
differentiable simulation requires well-defined continuous functions, e.g., a potential function or
control barrier functions for robust control.

5 Ablation Study

We conducted an ablation study to investigate the significance of the proposed state alignment mech-
anism. In our implementation, we use the state from IsaacGym to align the robot state within our
simplified rigid-body differentiable simulation. To assess the impact of state alignment, we per-
formed experiments where we removed the state alignment and compared the resulting learning
curves to those obtained with state alignment. The results are presented in Figure 7. The results
indicate that without state alignment, the robot fails to learn any useful walking skills.

6 Hyperparameters
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Figure 6: A comparison of non-differentiable terminal penalty for policy training. Using a non-
differentiable terminal penalty, PPO can achieve robust control performance, e.g., longer episode
length. We use 1024 robots for simulation.

Figure 7: Ablation study for state alignment using IsaacGym.

Parameter Value
learning rate 0.001
discount factor γ 0.95
GAE-λ 0.95
learning epoch 10
policy network MLP [256, 256]
value network MLP [256, 256]
clip range 0.2
entropy coefficient 0.002
number of epoch 10

Table 3: PPO hyperparameters.

Parameter Value
learning rate 0.001
policy network MLP [256, 256]
gradient decay factor α 0.9

Table 4: Hyperparameters for policy training using differentiable simulation.
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