
Department of Informatics

Benjamin Keiser

Torque Control of a
KUKA youBot Arm

Master Thesis

Robotics and Perception Group
University of Zurich

Supervision

UZH:
Elias Müggler

Matthias Fässler
Prof. Dr. Davide Scaramuzza

ETH:
Stephan Huck

Prof. Dr. John Lygeros

September 2013

Contents

Abstract iii

Nomenclature v

1 Introduction 1
1.1 Related work . 3

2 Hardware 5
2.1 KUKA youBot . 5

2.1.1 youBot Arm . 6
2.1.2 youBot Base . 6

2.2 The ASUS Xtion PRO . 6

3 Software 8
3.1 ROS . 8
3.2 Webots . 8
3.3 PCL . 9
3.4 Fuzzylite . 9

4 Torque control 10
4.1 Dynamical model . 10

4.1.1 Manipulator inertia matrix 11
4.1.2 Coriolis matrix . 11
4.1.3 Force vector . 12

4.2 Computed-torque control . 12
4.2.1 Tuning of the feedback controller gain matrices 13

4.3 Motor controllers . 14
4.4 Trajectories . 16
4.5 Self-tuning fuzzy logic controller 17

5 Object detection 20
5.1 Downsampling of the Point Cloud 20
5.2 Removal of the planes . 20
5.3 Cluster Extracting . 21
5.4 Bounding boxes . 21

6 Experimental results 23
6.1 Computed-torque control on the KUKA youBot 23
6.2 Object detection and grasping . 26

i

7 Discussion 30
7.1 Torque controller . 30
7.2 Object detection and grasping . 31
7.3 Future Work . 32

A Orocos 33

B Coordinate frames 34
B.1 YouBot coordinate frame . 34
B.2 Kinematic coordinate frame . 34
B.3 Dynamic coordinate frame . 34

Abstract

Accurate end-effector trajectory tracking is a fundamental requirement for many
robotic manipulator tasks—even for simple movements such as picking objects
straight up from the floor. While end-effector trajectories are given in Cartesian
space, we can only control the individual manipulator joints. However, small
errors in the joint positions can sum up to large position errors of the end effec-
tor in Cartesian space. Furthermore, the change of the end-effector position for
a given change of the manipulator joint positions depends on the manipulator
configuration. In this project, we aim on using a KUKA youBot for accurate
and fast grasping. Existing control schemes for the KUKA youBot arm, namely
joint position and joint velocity control, do not consider the arm configuration
and its dynamics. Therefore, we designed a torque controller, based on a dy-
namical model of the KUKA youBot arm, and validated it on a real platform.
The designed torque controller allows ten times faster grasping of objects than
existing control schemes with similar tracking performance of the grasp trajec-
tory. As an application, we demonstrate autonomous grasping of objects, which
are detected using an on-board Kinect-like sensor. With the proposed control
scheme, objects can be grasped even when the youBot is moving.

iii

Nomenclature

Notation

g Gravitational acceleration

J Jacobian

M Manipulator Inertia Matrix

C Manipulator Coriolis Matrix

n Vector of external forces acting on the manipulator

τ Joint Torques

θ Joint Positions

e Tracking error in joint positions

Kv,Kp Controller gain matrices

Acronyms and Abbreviations

CTC Computed-torque Control

DoF Degrees of Freedom

Orocos Open Robot Control Software

PCA Principal Component Analysis

PCL Point Cloud Library

PID Proportional-Integral-Derivative

RANSAC Random Sample Consensus

RGBD Red Green Blue Depth

ROS Robot Operating System

RPG Robotics and Perception Group

SAC Sample Consensus

v

Chapter 1

Introduction

A robot is a machine that can interact with its environment. One form of
interaction is the manipulation of objects, e.g. picking up objects, moving them
around, and putting them down again. Every attempt at object manipulation
depends on an accurate and precise manipulator. These two properties enable
the end effector to move exactly where the object is.

Conventional robot arms consist of rotatory and prismatic joints. While these
can be controlled accurately and precisely in the joint space, it is more difficult
to control a robotic arm directly in the Cartesian space. The calculation of
the current end-effector pose in the Cartesian space from the joint positions is
done using the forward kinematic chain. The inverse problem is a lot harder to
compute. Depending on the degrees of freedom of a robot arm, the same end-
effector pose might be reached by different joint positions. On the other hand,
not every end-effector pose in Cartesian space has a feasible solution in the joint
space. Even if all joint positions for a Cartesian space trajectory are known and
feasible, there is no guarantee that tracking of the trajectory is precise. Control
in joint space does not guarantee smooth motion in Cartesian space. Precise and
accurate following of trajectories is important for various reasons. Unpredicted
movements may damage the environment or the robot itself, or move objects
out of position that have to be picked up. Inaccurate tracking of trajectories will
cause the end effector to be out of position. This could cause the robot to be
damaged or simply cause a task to become impossible to complete. Especially
tasks in dynamic surroundings consisting of moving objects would suffer from
inaccurate or imprecise tracking of trajectories.

We now assume that for a feasible Cartesian trajectory, the joint positions
for every point on the trajectory are known. As we are considering discrete
time control, the number of points will be limited to the number of time-steps.
Depending on how we choose to move from one point to the next, tracking
of the trajectory will be accurate and smooth or inaccurate with unpredicted
manipulator movements. The easiest way to move from one point to the next,
is to simply command the joint to change its current position to the next. We
call this the position control mode. Another method is to command a certain
velocity to a joint until the desired position is reached. This is the so called
velocity control mode. For both of these methods, we do not know how the
end-effector is moving between two points. A third method is to implement
a torque controller, which calculates the required joint torques to switch from

1

2

−0.28 −0.26 −0.24 −0.22
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

y [m]

z
 [
m

]

(a) Direct step ∆t = 1.5 s

−0.28 −0.26 −0.24 −0.22
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

y [m]

z
 [
m

]

(b) 1 mm step ∆t = 15.4 s

Figure 1.1: Left: Lowering of the end effector with direct position command.
Right: Lowering of the end effector in 1 mm steps. Both trajectories are com-
pared to the ideal trajectory in form of a straight line.

the current position to the next. The main advantage of the torque controller
compared to the other methods is that it also takes the joint configuration
and manipulator dynamics into account. This allows for smoother tracking of
trajectories.

For the test platform, a KUKA youBot, the position and velocity control meth-
ods deliver results which are unsatisfactory for certain tasks such as grasping of
objects. As an example object, boxes are chosen. We assume that the best way
to grasp a box is to position the end effector directly above the object and then
lowering it straight down. In Figure 1.1, it is shown that when lowering the end
effector by directly commanding the new joint positions, it does not move in a
straight line at all. Such a trajectory is very inconvenient when trying to grasp
an object, as it is almost certain that the object will be moved and grasping
fails. When commanding the lowering in 1 mm steps, the trajectory is much
closer to the straight line. However, the task is taking up to 10 times longer to
complete than any other tested method. In addition to the long time required,
the end effector is also oscillating by a small measure which is inconvenient.
Figure 1.2 shows the trajectory if the lowering is commanded in the velocity
control mode. Without a joint position feedback to correct the velocity, the
reached position differs vastly from the desired position. Even with a position
feedback the manipulator does not move in a straight line. In short, none of
the existing control schemes is able to accurately and quickly follow the desired
trajectory. That is why we implemented a torque controller based on a dynam-
ical model of the KUKA youBot arm. The torque controller is able to track
a Cartesian end-effector trajectory with a low position error while remaining
fast. It is successfully used for autonomous grasping of objects and grasp while

Chapter 1. Introduction 3

−0.28 −0.26 −0.24 −0.22
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

y [m]

z
 [
m

]

(a) Velocity ∆t = 1.7 s

−0.28 −0.26 −0.24 −0.22
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

y [m]

z
 [
m

]

(b) Velocity with feedback ∆t = 2.92 s

Figure 1.2: Left: Lowering of the end effector in velocity mode without feedback.
Right: Lowering of the end effector in velocity mode with feedback. Both
trajectories are compared to the ideal trajectory in form of a straight line.

driving.

Grasping objects requires detection of the objects in simple flat scenes. For
this the youBot is equipped with a Kinect camera system. A Kinect system is
equipped with a color as well as an infra-red camera which allows capturing of an
image with a corresponding depth map. These two images can then be combined
to form a color point cloud. We developed an algorithm to detect and extract
objects and their position and orientation in the point cloud. Afterwards, the
robot moves independently to that position and picks up the objects using the
designed torque controller.

1.1 Related work

Shashank Sharma, Gerhard K. Kraetzschmar, Christian Scheurer, and Rainer
Bischoff developed an unified closed form solution for the inverse kinematics of
the youBot which allows fast computation of joint positions for Cartesian end-
effector positions [8]. Using this approach, generated Cartesian trajectories are
easily transformed to the corresponding joint space trajectories required by the
torque controller, as long as all the positions are feasible.

Timothy Jenkel, Richard Kelly and Paul Shepanski show an approach to object
manipulation on the KUKA youBot [3]. Their system is able to detect objects
autonomously in the environment then pick them up and put them down using
a simple user interface. In order to effectively control the youBot arm they
make use of the existing ROS arm navigation stack and adapt it for the KUKA
youBot. The stack allows to control the manipulator in Cartesian space based

4 1.1. Related work

on the implemented inverse kinematic chain. After objects get detected using
a Microsoft Kinect attached to the arm, the youBot is then navigated to a
position from where the objects are grasped using a set of overhead cameras. For
grasping, they make use of the ROS object manipulation stack, which provides
a framework for pick and place actions. Contrary to this thesis, they make
use of external stacks for efficient manipulator control, grasping of objects and
even use an external camera system to track the base. In this project, we are
developing a torque controller which is designed for close tracking of trajectories
and assume grasping is always optimal when attempted from directly above. In
addition, the base is only controlled using the odometry messages generated by
the KUKA youBot ROS stack.
The object detection algorithm was developed by Paul Malmsten [5] and is
very similar to the one implemented in this thesis (see Chapter 5). The main
difference is that their algorithm is using iterative closest point to match objects
to a database, while in this thesis no database is used and objects are simply
detected by finding an appropriate bounding box.

Chapter 2

Hardware

We want to use a KUKA youBot to autonomously grasp objects using a torque
controller and an object detection algorithm. The youBot consists of a mobile
omnidirectional base and a 5 DoF arm, which are described in Section 2.1. To
generate a point cloud for the object detection algorithm, we use an ASUS Xtion
PRO sensor, which is described in Section 2.2.

2.1 KUKA youBot

The robot used in this thesis is a KUKA youBot [1]. It consists of a 5 DoF
arm with a two-finger gripper, mounted on an omnidirectional platform. It was
developed for use in research and education. Communication of the base and
the arm of the youBot is enabled via EtherCAT which has real time capabilities.

Figure 2.1: The base of the KUKA youBot with omnidirectional wheels.

5

6 2.2. The ASUS Xtion PRO

Figure 2.2: The 5 DoF arm of the KUKA youBot

2.1.1 youBot Arm

The arm of the KUKA youBot (see Figure 2.2) consists of five rotatory joints
and a two-finger gripper as an end effector. It reaches a height of 655 mm, has
a weight of 6.3 kg and is designed to carry a payload of up to 0.5 kg in weight.
The rotatory joints of the arm rotate around two different axes. Joints two,
three, and four are rotating in parallel around one axis and joints one and five
in parallel around the other if the arm is pointing straight up. The maximum
rotation speed of a joint is 90 deg /s and the end effector can be opened 11.5 mm
per finger.

2.1.2 youBot Base

The base of the KUKA youBot is pictured in Figure 2.1. It consists of a mini
PC running Ubuntu, a battery and four omnidirectional wheels with separate
motors. These allow the youBot to turn on the spot as well as move in any
direction without having to turn first. The maximum speed of the base is
0.8 m

s . It has a weight of 20 kg, and measures 580 mm by 380 mm by 140 mm.

2.2 The ASUS Xtion PRO

The ASUS Xtion PRO1 works the same way as the better known Microsoft
Kinect. Image 2.3 shows the sensor mounted on the KUKA youBot. The sensor
was developed by PrimeSense2 and both ASUS and Microsoft bought a license
for the usage of that sensor. In addition to an RGB camera with up to SXGA

1http://www.asus.com/Multimedia/Xtion_PRO_LIVE/
2http://www.primesense.com/

http://www.asus.com/Multimedia/Xtion_PRO_LIVE/
http://www.primesense.com/

Chapter 2. Hardware 7

Figure 2.3: ASUS Xtion PRO mounted on the KUKA youBot

resolution (1280x1024 pixels), it also has a depth sensor made for distances
between 0.8 m and 3.5 m. The depth measurement is done by combining a laser
with an infra-red sensitive camera. The laser is directing its beam at points in
a raster, the infra-red camera registers these points and calculates the distance
from the camera for each point. This results in the output of a VGA (640x480
pixels) depth map. The depth map and RGB image are then combined to output
an RGBD point cloud. Such a point cloud consists of points for which the x, y,
and z position as well as its color is known.

Chapter 3

Software

All the software for this project was developed on Ubuntu using the Robot
Operating System (ROS). After initially using Orocos, we switched to ROS
when issues with over currents on the youBot joint controllers arose and official
support was dropped (see Appendix A). This chapter briefly introduces ROS,
a simulation environment we use for the youBot as well as additional libraries
used.

3.1 ROS

ROS1 is an environment that facilitates the development of robotics applica-
tions. It includes libraries and tools to provide hardware abstraction, device
drivers, visualizers, message-passing and so on. An advantage of ROS is that it
is very transparent. Programs are built as ROS nodes, which connect to a single
ROS master. Every node connected to this master can then listen to all the
messages provided by other nodes by simply subscribing to the corresponding
topics. In addition to messages, parameters and services can be made available
for all nodes connected to the master in the same way. The user can interact
with the master by a series of simple commands. This way, the user can publish
messages or call services manually. There is an existing ROS component for the
KUKA youBot, which builds an interface for communication between ROS and
the youBot driver which accesses the hardware directly. This provided youBot
component handles messages to command joint positions or velocities. It also
publishes information about the current state the youBot is in. For this the-
sis, the component was extended to additionally allow the handling of torque
messages. ROS is still under active development and new versions are released
regularly. The version used in this thesis is ROS fuerte.

3.2 Webots

Webots2 is a development environment for robotics which is used to create
advanced simulations. It comes with an implemented model of the KUKA

1http://wiki.ros.org/
2http://www.cyberbotics.com/overview

8

http://wiki.ros.org/
http://www.cyberbotics.com/overview

Chapter 3. Software 9

Figure 3.1: Example of a Webots simulation with the KUKA youBot and gras-
pable objects in the background.

youBot. Webots supports physics supplied by plug-ins, which are adapted for
different cases. Figure 3.1 shows the main window of a Webots simulation. On
the left is the scene tree which consists of all the elements in the scene. The
console output can be seen at the bottom while on the right side, there is a text
editor where code can be adapted directly. We integrated Webots in our ROS
code so it sends and receives the same messages as the physical robot.

3.3 PCL

The Point Cloud Library (PCL) is a standalone C++ library to facilitate the
handling of point clouds and was originally developed as a ROS component
[7]. Its applications include filtering, feature estimation, surface reconstruction,
registration, and segmentation. E.g. a voxel grid filter is used to downsample
point clouds, while a segmentation algorithm based on RANSAC is able to find
planes in the point cloud. Basically the PCL is to point clouds what OpenCV
is to images. In this thesis we use the PCL to develop an algorithm to detect
graspable objects and compute their pose.

3.4 Fuzzylite

Fuzzylite3 is a library that provides the user with an environment to easily create
fuzzy logic controllers. It includes a graphical user interface which is used to
create the controller logics, which can then be simply exported into C++ code.
For an example of how this looks, see Chapter 4.5. In this project it is used to
test self tuning of the developed torque controller.

3http://code.google.com/p/fuzzylite/

http://code.google.com/p/fuzzylite/

Chapter 4

Torque control

The movement, which an arm joint will perform when a certain torque is ap-
plied, depends on the robot dynamics. In order to have our manipulator follow a
specific trajectory closely, a complete and accurate model of the robot dynamics
is necessary. With this model, the required joint torques for given joint posi-
tions, velocities, and accelerations can be calculated. In this chapter we present
the dynamical model of the youBot as well as the control laws used to follow
trajectories. Both Section 4.1 and Section 4.2 follow the proceedings from the
book ”A Mathematical Introduction to Robotic Manipulation”[6].

4.1 Dynamical model

The dynamical model of a robotic manipulator can be written as

τ = M(θ)θ̈ + C(θ, θ̇)θ̇ + n(θ). (4.1)

For a robotic arm with n joints, it is defined by the manipulator inertia matrix
M ∈ Rn×n, the Coriolis matrix C ∈ Rn×n and the vector of external forces
acting on the arm n ∈ Rn which includes gravitational forces [6]. The zero
position of the arm θ = 0 is set to be when the arm is pointing straight up as
shown in Figure 4.1. The model depends on the current position and velocity
of the joints, which are denoted as θ and θ̇ respectively. Parameters required to
calculate the model are found on the official youBot homepage1. The following
subsections describe the single components of the dynamical model in more
detail.

1http://www.youbot-store.com/youbot-developers/software/simulation/

kuka-youbot-kinematics-dynamics-and-3d-model?c=44

10

http://www.youbot-store.com/youbot-developers/software/simulation/kuka-youbot-kinematics-dynamics-and-3d-model?c=44
http://www.youbot-store.com/youbot-developers/software/simulation/kuka-youbot-kinematics-dynamics-and-3d-model?c=44

Chapter 4. Torque control 11

Figure 4.1: Youbot arm with height measurements and angle limits.

4.1.1 Manipulator inertia matrix

To calculate the manipulator inertia matrix M, the link inertia matrix

Mi =

mi 0 0
0 mi 0 0
0 0 mi

Ii,x 0 0
0 0 Ii,y 0

0 0 Ii,z

 (4.2)

has to be known for every link i. The matrices Mi depend on its mass mi

and its moment of inertia Ii. All the links are assumed to be symmetric and
hence have a diagonal moment of inertia matrix. In addition to the link inertia
matrix, we need to compute the body Jacobian corresponding to each link frame.
Interested readers can find the derivation of the body Jacobian matrix in the
book ”A Mathematical Introduction to Robotic Manipulation”[6] on pages 115-
117. The manipulator inertia matrix can then be calculated as

M(θ) =

n∑
i=1

JT
i (θ)MiJi(θ). (4.3)

It only depends on the joint positions of the manipulator and is a symmetric
and positive definite matrix.

4.1.2 Coriolis matrix

The Coriolis matrix for the manipulator C gives the Coriolis and centrifugal
force terms in the equation of motion [6]. It depends on both the joint positions
and the joint velocities of the manipulator. We can calculate the elements of C
directly from the manipulator inertia matrix as

Cij(θ, θ̇) =
1

2

n∑
k=1

(
∂Mij

∂θk
+
∂Mik

∂θj
− ∂Mkj

∂θi
)θ̇k, (4.4)

12 4.2. Computed-torque control

with i and j denoting the row and column of the matrix and k the joint number.

4.1.3 Force vector

For the force vector n, all the external forces acting on the manipulator have
to be considered. In this project we assume that the only forces acting on the
manipulator come from the gravitational pull. The gravitational forces can then
be computed by calculating the potential energy

V (θ) =

n∑
i=1

mighi(θ) (4.5)

of the manipulator. Where g is the gravitational acceleration and hi the height
of the center of gravity of link i. From the potential energy we can calculate
the gravitational forces acting on the manipulator as

n(θ) =
∂V

∂θ
. (4.6)

In addition to gravitational forces, frictional and damping forces could be added
to n as well but they are neglected in the dynamical model of the youBot.

4.2 Computed-torque control

With the derived dynamical model of the robot, the required joint torques for
given joint positions, velocities, and accelerations can be calculated according to
Equation 4.1. Applying these torques to the manipulator results in an open-loop
torque controller. For a perfect model with corresponding initial conditions, the
manipulator will match the desired position and velocity and thus correctly
track a trajectory. In order to make tracking more robust, a state feedback
is introduced. The feedback is necessary to cope with model uncertainties,
disturbances, and wrong initial conditions. This can be written as the computed-
torque control law

τ = M(θ)(θ̈d −Kvė−Kpe) + C(θ, θ̇)θ̇d + n(θ) , (4.7)

where θd denotes the desired joint positions and e = θ − θd the error in joint
positions. The matrices Kp and Kv consist of the proportional and differential
feedback gain of each link respectively. Substituting Equation 4.7 into 4.1 yields
the error dynamics of the control law.

M(θ)(ë + Kvė + Kpe) = 0 (4.8)

As M is always positive definite this can be simplified to

ë + Kvė + Kpe = 0 (4.9)

From Equation 4.9 it is derived that by choosing Kp and Kv positive definite
and symmetric, the control law (Equation 4.7) results in an exponentially stable
system. In addition, we also choose the gain matrices to be diagonal only, which
allows us to split the system up into five separate systems. That is why we can
tune the feedback gain for each joint independently.

Chapter 4. Torque control 13

Feedback Motor controller

Feedforward

τfb

Measurements

+

τff

θd, θ̇d, θ̈d e I

−

θ, θ̇

Figure 4.2: Control scheme for the computed-torque controller. Feedforward
and feedback form the controller which sends the torque to the motor controllers.
The torques are then translated into currents and we receive measurements
about joint positions and joint velocities back.

Further analysis of Equation 4.7 leads to the separation of the control law in a
feedforward and a feedback term.

τ = M(θ)θ̈d + C(θ, θ̇)θ̇d + n(θ)︸ ︷︷ ︸
τff

+ M(θ)(−Kpe−Kvė)︸ ︷︷ ︸
τfb

(4.10)

This allows us to set up the control scheme illustrated in Figure 4.2.

The manipulator inertia matrix M in the computation of the feedback torques
provides a positional scaling of the torque. Depending on the current joint
positions, a small change in torque can have a huge or a very small impact on
the movement of the joints. This property is very important to the feedback
controller as we do not want to correct the feedforward torque by too much or
too little. Since we want to keep the system separable, we choose to only use
the diagonal elements of M in the feedback term. This way, the system with
the joint position dependent gain matrices M(θ)Kp and M(θ)Kv can still be
split up in five separate systems.

4.2.1 Tuning of the feedback controller gain matrices

Tuning the gain matrices Kp and Kv is done by analysing the step responses
for each joint separately and increasing or decreasing the gain accordingly [9].
An increase in the proportional gains Kp results in a faster rise time but also
in a larger overshoot and degrading stability of the system. As we do not want
gains high enough to cause an unstable system, it is better to start with a lower
gain and gradually increase it, until the step response is satisfactory. Figure
4.3 shows such a step response. Fine tuning is done afterwards by analysing
how closely a joint space trajectory is followed and adjusting the controller gain
accordingly. A starting point for the tuning of the gains is found based on the
maximum applicable torques and maximised manipulator inertia matrix M. By

14 4.3. Motor controllers

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

t [s]

P
o
s
it
io

n
 [
ra

d
]

Desired Position
Actual Position
Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−5

0

5

10

t [s]

T
o
rq

u
e
 [
N

m
]

Feedforward Torque
Controlled Torque
Actual Torque

Figure 4.3: Response of a joint position step applied to joint 1. The maximum
torque in this joint is limited to 9.5 N m.

following the equation

τmax = MmaxKpemax, (4.11)

where emax is the maximum possible joint position error, depending on the
position that maximises M. Each joint can then be approximated by the second
order transfer function

H(s) =
1

s2 + ki,vs+ ki,p
. (4.12)

This transfer function shows that by choosing the elements of Kv as 2
√
ki,p the

system becomes critically damped.
Note that emax can reach values of up to 5.8 rad depending on the joint. As we
want accurate trajectory tracking with very low position errors, the gain has
to be set to large values. This means that for large position errors the torque
controller would output joint torque values that are way above the maximum
applicable joint torque. So in order to prevent damage to the motors, the
controller output should be artificially limited to the maximum applicable joint
torque.

4.3 Motor controllers

Each joint motor of the KUKA youBot manipulator is controlled by a Trinamic
TMCM-1610-KR controller board. This controller board regulates the applied
current based on the command it received. Figure 4.4 shows the cascaded
PID regulation loop used to do so. Commands received can either be a target

Chapter 4. Torque control 15

TMCM-1632/TMCM-1610-KR EtherCAT™ Manual (V2.6 / 2012-Mar-23) 43

Copyright © 2011, TRINAMIC Motion Control GmbH & Co. KG

12 PID regulation

12.1 Structure of the cascaded motor regulation modes
The TMCM-1632/TMCM-KR-841 support a current, velocity, and position PID regulation mode for motor control
in different application areas. These regulation modes are cascaded as shown in figure 12.1. The individual
modes are explained in the following sections.

motor

current
measurement

hall sensor
or encoder

SVPWM
current

PID

current
PID

values

max
target
current
(SAP 6)

target
current

target
current

(SAP 155)

target
position
(SAP 0)

actual current

velocity
PID

actual velocity

velocity
PID

values

max
target

velocity
(SAP 4)

ramp generator
velocity

ramp
generator

accelerat.
(SAP 11)

 enable/
 disable

 ramp
 (SAP 146)

position
PID

target
velocity

target
velocity
(SAP 2)

position
PID

values

actual position

 current regulation mode

 velocity regulation mode

 position regulation mode

Figure 12.1: Cascaded PID regulation

12.2 Current PID regulation
The current regulation mode uses a PID regulator to adjust a desired motor current. This target current can
be set by axis parameter 155. The maximal target current is limited by axis parameter 6.

The PID regulation uses five basic parameters: The P, I, D and I-Clipping value as well as the timing control
value. The timing control value (current regulation loop multiplier, axis parameter 134) determines how often
the current regulation is invoked. It is given in multiple of 50µs:

 = resulting delay between two PID calculations
 = current regulation loop multiplier parameter

For most applications it is recommended to leave this parameter unchanged at its default of 2*50µs. Higher
values may be necessary for very slow and less dynamic drives. The structure of the current PID regulator is
shown in figure 12.2. It has to be parameterized with respect to a given motor.

Figure 4.4: Cascaded PID regulation of the motor controller board. The three
possible commands are target position, target velocity and target current.

TMCM-1632/TMCM-1610-KR EtherCAT™ Manual (V2.6 / 2012-Mar-23) 44

Copyright © 2011, TRINAMIC Motion Control GmbH & Co. KG

IACTUAL

˗ITARGET +

PPARAM/256

X

IPARAM/65536

X +
Clip

-32768..
+32767

SVPWM

eLAST ˗

DPARAM/256

X

Clip

IMax

Clip

ICLIP

eSUM

Figure 12.2: Current PID regulation

Parameter Description

I
ACTUAL

 Actual motor current (GAP 150)

ITARGET Target motor current (SAP 155)

IMax Max. target motor current (SAP 6)

eLAST Error value of the last PID calculation (GAP
200)

eSUM Error sum for integral calculation (GAP 201)

PPARAM Current P parameter (SAP 172)

IPARAM Current I parameter (SAP 173)

DPARAM Current D parameter (SAP 174)

ICLIP Current I-Clipping parameter (SAP 175)
(a value of 1000 allows the I-part to use
100% of the SVPWM)

Table 12.1: Current PID parameter description

To parameterize the current PID regulator for a given motor, first set the P, I and D parameter to zero. Then
start the motor by using a low target current (e.g. 1000mA). Then modify the current P parameter. Start from
a low value and go to a higher value, until the actual current nearly reaches the desired target current.

After that, do the same for the current I parameter with the current D parameter still set to zero. For the
current I parameter, there is also a clipping value. The current I-Clipping parameter should be set to a
relatively low value to avoid overshooting, but high enough to reach the target current. The current D
parameter can still be set to zero.

Attention: For all tests set the motor current limitation to a realistic value, so that your power supply does
not become overloaded during acceleration phases. If your power supply goes to current limitation, the unit
may reset or undetermined regulation results may occur.

Figure 4.5: Current PID regulation mode of the motor controller.

position, velocity, or current. The torque commands from the torque controller,
are translated into target currents using a motor model. So for the torque
controller only the current regulation mode, which consists of a single PID loop
(Figure 4.5), is of importance.

The torque controller relies on an excellent reaction to commanded set-points.
In other words, we require very short rise and settling times as well as little to
no overshoot. This was not the case with the factory presets. Especially the
rise time was far too long which can be seen in the step response in Figure 4.6.
So to get the torque controller to work properly, the current controllers need
to be tuned properly. Tuning of the gains is done by analysing step responses
of the current controllers. As a moving joint introduces a lot of noise in the
current measurement (see Figure 4.6), we prevented the joints from moving
while applying a step input on the current. In addition, due to the noise in the
current measurement of a moving joint, it is already derived that introducing
a differential gain would prove counter productive and might even cause the
controller to become unstable. That is why we only use a PI controller.
We tuned the PI controller manually by starting with a low proportional gain
and no integral gain. The proportional gain is then increased until the current

16 4.4. Trajectories

0 5 10 15 20
0

0.5

1

1.5

t [s]

To
rq

ue
[N

m
]

0 5 10 15 20
0

0.5

1

1.5

t [s]

To
rq

ue
[N

m
]

Torque Setpoint
Actual Torque

Torque Setpoint
Actual Torque

Figure 4.6: Step response of the current PID controller of joint 1 when the joint
is moving (left) and when it is blocked (right).

0 5 10 15 20
0

0.5

1

1.5

t [s]

To
rq

ue
[N

m
]

Torque Setpoint
Actual Torque

Figure 4.7: Step response of the current PID controller of joint 1 after tuning
its gains.

response starts oscillating. It is then roughly halved and the integral gain is
increased until there is no steady state offset. Figure 4.7 shows the step response
of the current PID regulator after this tuning step. Comparing it to the step
response in Figure 4.6, it is seen that the rise time is a lot faster with no
overshoot and instant settling. After tuning the current PID loop, the same
procedure was done for the position and velocity controller gains to ensure the
desired functionality of these control methods. Table 4.1 gives a comparison of
the existing and the tuned controller gains.

4.4 Trajectories

We consider discrete time trajectories consisting of a point for every time-step.
The time-step is depending on which frequency the torque controller is running
at. Every point needs to have a value for desired position, velocity and acceler-
ation for every joint. Trajectories are generated in the Cartesian space for the
desired end-effector pose. These Cartesian poses are then converted to joint po-
sitions using the inverse kinematic chain of the youBot arm [8]. Joint velocities

Chapter 4. Torque control 17

Joint 1 2 3 4 5

existing

current
Kp 25 25 25 25 25
Ki 60 60 60 60 60
Kd 0 0 0 0 0

velocity
Kp 1000 1000 1000 1000 1000
Ki 1000 1000 1000 1000 1000
Kd 0 0 0 0 0

position
Kp 2000 2000 2000 2000 2000
Ki 0 0 0 0 0
Kd 0 0 0 0 0

tuned

current
Kp 1200 1200 1200 2000 4000
Ki 3000 3000 3000 4000 4000
Kd 0 0 0 0 0

velocity
Kp 300 300 300 200 120
Ki 600 600 600 800 100
Kd 0 0 0 0 0

position
Kp 1000 1000 1000 1000 1000
Ki 0 0 0 0 0
Kd 0 0 0 0 0

Table 4.1: Comparison of existing and tuned controller gains.

and accelerations are calculated using the discrete time derivatives. While no
feedback exists for the acceleration, the desired acceleration is still important
in the calculation of the feedforward torques. The aim of the designed torque
controller is to closely track end-effector trajectories in Cartesian space. This
is necessary to allow accurate and precise grasping of objects. For example for
easy and quick grasping, we assume that the end effector is placed directly above
the object. Then the torque controller should lower the end effector in a straight
line to encompass the object. Figure 4.8 shows the end-effector trajectory as
well as the joint positions for such a straight line with velocity and acceleration
profiles seen in Figure 4.9.

4.5 Self-tuning fuzzy logic controller

In addition to the standard computed-torque controller, a self-tuning controller
via fuzzy logic was also tested. This is useful in real applications of a computed-
torque controller where unmodeled disturbances come into effect [4]. The idea
behind this is quite simple and builds on Equation 4.11. As an increase of the
gains will decrease the steady state error [9] the aim is to have ||Kp|| as big
as possible while retaining system stability. The maximum gain values without
generating torque values bigger than the maximum allowed torque, is dependent
on the tracking error e. The bigger the error, the smaller the gains have to be
to still generate applicable torques. So the idea is to have the gain matrices
tune themselves based on the current tracking error. We chose fuzzy logic to
introduce this self tuning property. It allows us to define fuzzy rules such as
”If the position error of joint 1 is very small then the corresponding gain in M

18 4.5. Self-tuning fuzzy logic controller

0
0.05

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x [m]

y [m]

z
 [
m

]

x axis

y axis

z axis

Figure 4.8: Example trajectory in Cartesian space. The x, y, and z axis sym-
bolise the gripper orientation. The red points are the different joints.

0 0.2 0.4 0.6

−0.2

−0.1

0

t [s]

v
 [
m

/s
]

0 0.2 0.4 0.6
−1

0

1

t [s]

a
 [
m

/s
2
]

Figure 4.9: End-effector velocity and acceleration trajectories corresponding to
Figure 4.8.

Chapter 4. Torque control 19

Figure 4.10: Fuzzy controller definitions for joint 1. On the left four functions
describing keywords for the input variable can be seen. The right part shows
the keyword functions for the output variable. From this the controller gain is
calculated.

should be big”. Keywords such as very small or big are then defined by various
functions (see Figure 4.10). We can then collect all these fuzzy rules to make
up the feedback gain matrices. As the fuzzy logic controller did not improve the
control performance in case of the youBot, this method was discarded again.

Chapter 5

Object detection

The detection of objects we can grasp is done using the PCL to analyse a point
cloud. The scene is assumed to be sparse and uncluttered. This means we have
a low total object count with no obstructions or background noise. This chapter
describes the algorithms used for detecting objects in such a scene. Figure 5.1
provides an overview over the whole object detection algorithm.

5.1 Downsampling of the Point Cloud

The output point cloud of the ASUS Xtion has a point for each pixel. At VGA
resolution this results in 307200 points. Analysing this point cloud directly
would be very computationally expensive. In a first step, we downsample the
cloud. This is done using a voxel grid filter1. A voxel is basically a 3D box. So
a voxel grid can be seen as a set of 3D boxes attached to each other to cover
the space. Now for all points in a voxel, their centroid point is calculated and
saved in a new point cloud. This results in a point cloud with far less points
that is still approximating the underlying surface very nicely. For example, a
cubic voxel with an edge length of 5 mm leads to a point cloud consisting of
about 65000 points which is 5 times less than the original.

5.2 Removal of the planes

As the objects are expected to lie on a flat surface such as the ground, the
next step in the detection algorithm is to remove all the flat surfaces. This is
done using a plane segmentation algorithm2. The PCL provides an SAC model
for a plane and RANSAC is then used to find all the inliers of the model. A
distance threshold of 1 cm is set as a limit to determine the inliers. For the
detected plane the estimated plane parameters are returned which are used
to differentiate between floors and walls. The algorithm then removes all the
found planes from the original point cloud and stores the remaining points in a
new cloud. While the randomness of RANSAC does not guarantee an optimal

1http://pointclouds.org/documentation/tutorials/voxel_grid.php#voxelgrid
2http://pointclouds.org/documentation/tutorials/planar_segmentation.php#

planar-segmentation

20

http://pointclouds.org/documentation/tutorials/voxel_grid.php#voxelgrid
http://pointclouds.org/documentation/tutorials/planar_segmentation.php#planar-segmentation
http://pointclouds.org/documentation/tutorials/planar_segmentation.php#planar-segmentation

Chapter 5. Object detection 21

ASUS Xtion

Read Point
Cloud

Downsample
Point Cloud

Remove
Planes

Extract
Clusters

Find
Bounding

Box

Object Poses

Figure 5.1: Flowchart of the detection algorithm

solution, its robustness and short execution time are far more important for the
detection algorithm which makes it a great choice.

5.3 Cluster Extracting

The remainder of the original point cloud now only consists of points that could
be objects. In order to check if there are any objects in the scene, the points
are grouped into clusters3. A cluster contains only points that fulfil some re-
quirement of closeness, meaning the points should belong to the same object.
This is done by setting up a k-d tree object and using a nearest-neighbour clas-
sification to find points that belong to the same cluster. The k-d tree sets up
the points in a way that optimises lookups in the k-dimensional space and sup-
ports nearest-neighbour queries [2]. The nearest-neighbour algorithm assigns a
point the same value as its nearest-neighbour, assuming the points are within a
certain distance of its neighbour. So points that lie close to each other will be
grouped in the same cluster. In this algorithm points can be no further than
1 cm of each other. Graspable objects have to be fairly small due to the limited
width the gripper which has a maximum opening of 6 cm. This allows us to
impose an additional limit on the cluster size. Only clusters that have at least
40 points but less than 500 points get saved.

5.4 Bounding boxes

The resulting clusters now have to be further analysed to filter out any unwanted
clusters and receive information about the pose of the remaining clusters. We
assume that graspable objects are boxes with an edge length of at least 2 cm
and a maximum width of 10 cm, height and depth of 5 cm. To get the size of
the cluster as well as its pose we can apply an algorithm to find a bounding
box for the cluster. It is based on PCA and the projection on the axes of the
coordinate frame. From the projection we can calculate the width, length and
depth of the cluster, while PCA returns the translation and orientation of the
cluster. The resulting orientation returns inaccurate values for roll and pitch.
This stems from the asymmetric nature of the cluster, with only three faces of

3http://pointclouds.org/documentation/tutorials/cluster_extraction.php#

cluster-extraction

http://pointclouds.org/documentation/tutorials/cluster_extraction.php#cluster-extraction
http://pointclouds.org/documentation/tutorials/cluster_extraction.php#cluster-extraction

22 5.4. Bounding boxes

the box visible in the best case scenario. The calculated yaw is accurate as it is
dependent on the two faces with most visible points. As we assume the objects
to lie flat on the floor, roll and pitch can be manually set to zero. If a cluster’s
size fulfils the object requirements, its pose is stored in a vector of poses. This
is the final step in the object detection algorithm. In Figure 5.2 an example
point cloud can be seen with the objects highlighted in green.

Figure 5.2: Point Cloud with detected objects highlighted in green

Chapter 6

Experimental results

In this chapter, the performances of both the torque controller and the object
detection algorithm are analysed.

6.1 Computed-torque control on the KUKA youBot

To evaluate the torque controller, we look at different trajectories. The first
trajectory is the one which motivated the project, namely grasping an object
by lowering the end effector from a position directly above the object. Then we
look at a much longer trajectory, which is used for grasp while driving, where
the arm gets dragged parallel to the base while lowering the manipulator and
then lifting it back up. Finally, we analyse tracking of a complicated trajectory
in form of a circle where all the joints have to be moved simultaneously and the
controller is operating near the joint position limits.

Figure 6.1 shows the actual end-effector trajectory driven by the torque con-
troller, when attempting to grasp objects directly from above. The trajectory
was generated using a maximum end-effector velocity of 0.05 m

s and a maximum
end-effector acceleration of 0.5 m

s2
. It is completed in 1.7 s. Comparing this to

the results in Figure 1.1 and Figure 1.2, it is clear that the performance of the
torque controller is a lot better than the existing methods. It has a similar
accuracy as lowering the arm in 1 mm steps but it completes the task 10 times
faster. As the time required to follow a trajectory is crucial for a large range
of dynamic tasks, the fact that the torque controller is that much faster than
the 1 mm step grasping cannot be emphasised enough. Comparing the absolute
tracking error of the torque controller to the existing methods, illustrated in
Figure 6.3, shows that the torque controller stays within a few millimetres of
the desired trajectory. Only the 1 mm step method has a smaller mean error
but this method is not practical due to the long runtime. The absolute error is
the 2 norm of the errors in x, y, and z direction and is illustrated for the torque
controller in Figure 6.2.

Looking at a longer trajectory, as seen in Figure 6.4, which was again generated
with a maximum end-effector velocity of 0.05 m

s and a maximum end-effector
acceleration of 0.5 m

s2
, we can see that much longer trajectories can still be

tracked with good accuracy. Figure 6.5 shows the absolute error in position
tracking over the 7 s it took to complete the trajectory. The error peaks at

23

24 6.1. Computed-torque control on the KUKA youBot

−0.28 −0.26 −0.24 −0.22
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

y [m]

z
 [
m

]

Figure 6.1: The actual end-effector position (blue) during the grasping trajec-
tory compared to the desired trajectory (black). The trajectory was completed
in 1.7 s.

4.2 mm with the average being 2.2 mm.

Figure 6.6 shows how the error in tracking of the grasp while driving trajectory
changes depending on the maximum velocity the trajectory was generated with.
As expected, the faster the trajectory has to be completed, the bigger the error
in tracking. Unexpectedly, for very slow velocities, there is a large number of
points with a high end-effector position error which reduces the quality of the
tracking. This is due to friction and the self-locking properties of the youBot
joints. The lowest error was recorded at a maximum end-effector velocity of
0.03 m

s .

So far we only considered straight end-effector trajectories which can be used
for various grasping tasks. While these paths are important, they are also quite
simple. To really put the torque controller to the test, we generated a more
complex trajectory in form of a circle in Cartesian space. In order to follow
a circle, all joints of the youBot have to be moved in both directions during
the whole process and all joints are moving simultaneously. In addition, the
torque controller is also operating near the joint position limits. Figure 6.7
shows the desired trajectory together with the actual end-effector position of
the process which took 20 s to complete. Figure 6.8 shows the corresponding

Chapter 6. Experimental results 25

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

2.5

3
x 10

−3

t [s]

a
b
s
 e

rr
o
r

[m
]

Figure 6.2: Absolute error during the grasping trajectory.

0

0.005

0.01

0.015

0.02

tor mm vel fb vel dir
Method

P
os

iti
on

E
rr

or
[m

]

Figure 6.3: Error of the different control methods (torque control, 1 mm steps,
velocity with feedback, velocity, direct) compared with each other.

absolute error over the time period. During the first half of the trajectory,
where the arm is lowered, tracking is accurate. As soon as the arm is lifted up
again, an offset in z direction is introduced by the torque controller. The offset
originates from physical limitations of the youBot manipulator and its inherent
problems of lifting arm joints in certain configurations in the torque control
mode (see Chapter 7.1). This problem is intensified by the self-locking joints of
the youBot. At joint velocities close to 0 m

s the joint stops completely and needs

26 6.2. Object detection and grasping

−0.1 −0.05 0 0.05 0.1

0.2

0.25

0.3

x [m]

y
 [
m

]

0.2 0.25 0.3
−0.1

−0.08

−0.06

−0.04

−0.02

y [m]

z
 [
m

]

−0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.1

−0.08

−0.06

−0.04

−0.02

x [m]

z
 [
m

]

Desired Position

Actual Position

t
2
 = 4.5st

1
 = 2.5s

Figure 6.4: Tracking of a trajectory for grasp while driving. ∆t = 7 s.

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−3

t [s]

a
b
s

e
rr

o
r

[m
]

t
2

= 4.5st
1

= 2.5s

Figure 6.5: Absolute error while tracking the grasp while driving trajectory.

a high torque to get moved again. This effect is not included in the dynamical
model of the youBot and has a negative consequence on the performance of the
torque controller.

6.2 Object detection and grasping

For autonomous grasping, the ASUS Xtion sensor used for object detection is
mounted on the youBot. To evaluate the performance of the object detection

Chapter 6. Experimental results 27

0

0.005

0.01

0.015

0.02

0.025

0.03

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19
v [m/s]

E
rr

or
[m

]

Figure 6.6: Errors in end-effector position of the grasp while driving trajectory
for different velocities.

0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.1

−0.05

0

0.05

0.1

x [m]

y
 [
m

]

Desired Position

Actual Position

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.2

0.25

0.3

0.35

0.4

x [m]

z
 [
m

]

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0.2

0.25

0.3

0.35

0.4

y [m]

z
 [
m

]

Desired Position

Actual Position

Figure 6.7: Tracking of a circular trajectory

algorithm, we placed an object at a known position and moved the youBot
around it while simultaneously tracking the position of the youBot using a
motion capture system. We then assume that the youBot was standing still,
while the object was placed at different positions. Then the detected positions
are compared to the actual positions which is illustrated in Figure 6.9. In
addition, the difference in detection of the algorithm and the motion capture
system can be split up in the error in x and y direction and the rotation angle.

28 6.2. Object detection and grasping

m

0 2 4 6 8 10 12 14 16 18 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

t [s]

a
b
s
 e

rr
o
r

[m
]

Figure 6.8: Absolute error while tracking a circle, it is shown that at t = 10 s an
offset gets introduced which comes from problems with lifting the arm properly.

−0.8−0.6−0.4−0.200.20.40.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y [m]

x
 [
m

]

Detected Object Position
Actual Object Position
Youbot

Figure 6.9: Detected objects compared to the actual object positions

These plots are shown in Figure 6.10.
Finally, the absolute error in detection, is compared to the distance of the object
to the youBot (see Figure 6.11). The large errors of up to 2 cm in each direction
with up to 12 degrees in the rotation angle, is tracked back to various reasons.
Firstly, the accuracy depends on the actual position of the Kinect sensor. As
that position cannot be measured accurately, the accuracy of the algorithm is
suffering. Another reason is that the precision of the sensor is decreasing with
increasing distance and usually ranges between 1 mm and 1 cm1. The accuracy

1http://wiki.ros.org/openni_kinect/kinect_accuracy

http://wiki.ros.org/openni_kinect/kinect_accuracy

Chapter 6. Experimental results 29

0 50 100 150 200 250 300 350 400 450
−0.03

−0.02

−0.01

0

Point

x
 e

rr
o
r

[m
]

0 50 100 150 200 250 300 350 400 450
−0.02

0

0.02

Point

y
 e

rr
o
r

[m
]

0 50 100 150 200 250 300 350 400 450

−0.2

0

0.2

0.4

Point

th
e
ta

 e
rr

o
r

[m
]

Figure 6.10: Error of the object detection in x and y direction and in the rotation
angle.

0

0.005

0.01

0.015

0.02

0.025

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
Distance from Object [m]

P
os

iti
on

er
ro

r[
m

]

Figure 6.11: Absolute error, as the 2 norm of the errors in x and y direction, of
the object detection depending on the distance from the object

of the sensor also depends on the lighting conditions as the infra-red sensor
can be disturbed by ambient light. Even though the detected object positions
are not very accurate, we were still able to successfully perform autonomous
grasping and grasp while driving (see Chapter 7.2) using this detection method
together with the developed torque controller.

Chapter 7

Discussion

7.1 Torque controller

The torque controller is split up in a feedforward and a feedback term. From
the dynamical model of the youBot we can directly calculate the feedforward
term. With the feedback term we then correct this calculated torque based on
the error in joint position and joint velocity. After tuning the PID gains of the
motor current controllers and the feedback gain matrices the torque controller
is able to track trajectories.

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

3

4

5

t [s]

T
o
rq

u
e
 [

N
m

]

M ⋅ acc

C ⋅ vel

N

Total

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

0.4

v
e

lo
c
it
y
 [
ra

d
/s

]

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

a
c
c
e
le

ra
ti
o

n
 [
ra

d
/s

2
]

t [s]

Figure 7.1: Calculated torques with velocity and acceleration plots. It can be
seen that only N, the part compensating the gravity adds to the total required
torque and the dynamic parts M · acc and C · vel stay zero.

The performance of the torque controller varies depending on the trajectory
that is tracked. If the desired path is well within torque limits, the tracking only
deviates slightly from the desired trajectory. These errors in tracking are small
enough, even at fast speeds, to complete several tasks that require a dynamic
and efficiently controlled manipulator. However, there are limitations which
mostly stem from the model parameters the controller is based on. Firstly, the
current dynamical model parameters are wrong, which is illustrated in Figure

30

Chapter 7. Discussion 31

7.1. The calculated torques are almost independent of joint velocities and joint
accelerations. This results in a huge offset in calculated torque and the torque
that is actually required to track a trajectory. Secondly, the dynamical model is
incomplete. Friction and the self-locking properties of the youBot joints are not
considered. This shifts all the weight of the torque controller on the feedback
loop, meaning that without it, the arm is not moving at all. The resulting large
offsets require a more aggressively tuned feedback controller, which in turn can
become critically stable in certain situations, which leads to bad performance.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

t [s]

P
o

s
it
io

n
 [
ra

d
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

−8

−6

−4

−2

0

t [s]

T
o
rq

u
e
 [

N
m

]

Desired Position
Actual Position

Feedforward Torque
Controlled Torque
Actual Torque

Figure 7.2: Joint position and joint torque for arm joint 2 after a commanded
step input with fully stretched out arm. The arm cannot be lifted because the
imposed torque limit of 9.5 N m is too small.

Another reason why the performance of the torque controller is suffering at times
is because of the maximum torque on the joints imposed by the manufacturer.
They are simply too small and do not even allow the manipulator to move a joint
to a different position in certain configurations even though those movements
are possible using the direct position control or velocity control methods. Figure
7.2 shows the position and torque on joint 2 after it was commanded to lift the
fully stretched out arm. It shows that even though the maximum allowed torque
is commanded, the arm does not move in the desired direction.

7.2 Object detection and grasping

Objects are detected from the point cloud captured by an ASUS Xtion PRO
sensor. The point cloud is then downsampled using a voxel grid filter. After
RANSAC based plane removal, the remaining points are sorted into clusters
using a k-d tree. For each of these clusters, we then find the minimum bounding
box that includes all the points. If the size of the box is in the range we expect
our objects to be, the cluster is then classified as an object and its pose is saved.

While the object detection algorithm detects objects accurately enough to grasp
them autonomously, it is also limited in its usefulness. In our experiments,
autonomous grasping using the object detection algorithm and the developed
torque controller worked 90 % of all the attempts. For objects close to the base,

32 7.3. Future Work

the detection will not work. In this case the Kinect sensor is obstructed by the
base of the youBot. Additionally, during the grasp while driving process, the
camera is obstructed by the arm of the youBot. Therefore, closed-loop grasping
of objects is impossible. As the open-loop base movement of the grasp while
driving experiment is a lot longer than for the autonomous grasping, the success
rate was much lower. Without accurate position updates, we relied entirely on
the odometry data of the youBot. As this data is drifting and is not very
accurate, grasp while driving only worked 50 % of all the attempts.

7.3 Future Work

To improve the tracking properties of the torque controller for complex trajec-
tories and close to the joint limits, it is necessary that the model discrepancies
are resolved. The model parameters from the manufacturer have to be verified
and corrected where necessary. Also, the new model should include friction and
compensation for the self-locking effect of the joints.
If robust grasp while driving is required, the object detection algorithm has to
be extended. It would be best to only use the Kinect sensor to initially estimate
the object position. The accurate position could then be confirmed by the use
of a different sensor once the youBot is close to the object. This could be done
by mounting a simple color camera on the youBot arm. From its image, the
accurate object position can then be extracted and the arm position corrected
accordingly.

Appendix A

Orocos

The Open Robot Control Software1 (Orocos) is an environment developed for
robotics applications. Orocos is built on a real time messaging system which is
a necessity for some applications. It offers the possibility to send ROS messages
which enables the two systems to be connected. Orocos is a peer based system
which allows the passing of parameters and messages between connected peers.
The downside of Orocos is that it is a lot less common and offers fewer tools
than ROS. It is also not as transparent, which makes data logging more difficult.
There is an unofficial Orocos driver for the KUKA youBot, which allows sending
of position, velocity and torque commands. However, unlike the ROS compo-
nent, the Orocos driver is not official and methods to write the commands to the
youBot differ greatly. After initially using the Orocos driver the switch to ROS
was made when twice in a short period of time joint controllers were damaged
due to over current. It was never proven that the controller was damaged due
to the use of Orocos or not, but the problem ceased to exist after the switch to
ROS.

1http://www.orocos.org/

33

http://www.orocos.org/

Appendix B

Coordinate frames

As the absolute joint positions, which the youBot is using, are not suited for
kinematic or dynamic calculation, they have to be converted to a better suited
system. For this, two different coordinate system were introduced independently
of each other. The problem stems from the fact that the axis of rotation for
joint 3 is opposite to those of joint 2 and 4. This can be interpreted differently,
which is reflected in the choice of the coordinate frame. One coordinate frame
was designed when the kinematic chain for the youBot was developed, while the
other is used for the dynamics chain. It is important for the user to understand
in which coordinate frame the software is working. While the situation with
3 different coordinate frames is not ideal, it would be too much of a hassle
to recode software to use a different frame. Hence conversion before calling a
function in a different frame is easier.

B.1 YouBot coordinate frame

In the youBot coordinate frame, all joints except joint 3 move in positive direc-
tion. At calibration, all joints are moved to their physical limits which is then
set as the zero position. So for all joints except joint 3 this is their minimum
position while for joint 3 it is the maximum position. From this follows that in
the youBot coordinate frame joint 3 only has negative positions while the other
joints will always be positive.

B.2 Kinematic coordinate frame

The standard youBot coordinate frame switches the direction of rotation around
the z axis. This is corrected in this coordinate frame which follows the standard
notation for directions found in the literature. It assumes the joints zero position
to be when the arm is stretched out in a straight up position.

B.3 Dynamic coordinate frame

The dynamic coordinate frame is used to calculate the torques. It assumes that
all joints start at their minimum position and then move in positive direction

34

Appendix B. Coordinate frames 35

CF Joint Minimum Straight up Maximum

YouBot

1 0 2.9496 5.8992
2 0 1.1345 2.7053
3 0 -2.5482 -5.1836
4 0 1.7890 3.5779
5 0 2.9234 5.8469

Kinematic

1 2.9496 0 -2.9496
2 -1.1345 0 1.5708
3 2.5482 0 -2.6354
4 -1.7890 0 1.7890
5 2.9234 0 -2.9234

Dynamic

1 -2.9496 0 2.9496
2 -1.1345 0 1.5708
3 -2.5482 0 2.6354
4 -1.7890 0 1.7890
5 -2.9234 0 2.9234

Table B.1: Joint Positions in three different coordinate system for three posi-
tions.

to their maximum position. Again the zero position is assumed in the straight
up position. In addition to the positions, also the velocity and acceleration for
joint 3 have to be negated to switch to the other frames.

36 B.3. Dynamic coordinate frame

Bibliography

[1] Rainer Bischoff, Ulrich Huggenberger, and Erwin Prassler. KUKA youBot –
a mobile manipulator for research and education. Proc. IEEE International
Conference on Robotics and Automation (ICRA), pages 1 – 4, 2011.

[2] Sharat Chandran. Introduction to kd-trees. http://www.cs.umd.edu/

class/spring2002/cmsc420-0401/pbasic.pdf.

[3] Timothy Jenkel, Richard Kelly, and Paul Shepan-
ski. Mobile manipulation for the kuka youbot platform.
https://www.wpi.edu/Pubs/E-project/Available/E-project-031113-
133138/unrestricted/Mobile Manipulation for the KUKA youBot Platform.pdf.

[4] Miguel Llama, Rafael Kelly, and Victor Santiba nez. Stable computed-torque
control of robot manipulators via fuzzy self-tuning. IEEE Transactions on
Systems, Man, and Cybernetics - Part B: Cybernetics, vol. 30, pages 143 –
150, 2000.

[5] Paul Malmsten. Object discovery with a microsoft kinect.
http://www.wpi.edu/Pubs/E-project/Available/E-project-121512-
232610/unrestricted/MalmstenRAILMQP.pdf.

[6] Richard Murray, Zexiang Li, and Shankar Sastry. A Mathematical Introduc-
tion to Robotic Manipulation. CRC Press, 1994.

[7] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library
(PCL). Proc. IEEE International Conference on Robotics and Automation
(ICRA), pages 1 – 4, 2011.

[8] Shashank Sharma, Gerhard K. Kraetzschmar, Christian Scheurer, and
Rainer Bischoff. Unified Closed Form Inverse Kinematics for the KUKA
youBot. Proc. of ROBOTIK 2012; 7th German Conference on Robotics,
pages 1 – 6, 2012.

[9] Sigurd Skogestad and Ian Postlethwaite. Multivariable Feedback Control -
Analysis and design. John Wiley & Sons, Ltd, 2005.

37

http://www.cs.umd.edu/class/spring2002/cmsc420-0401/pbasic.pdf
http://www.cs.umd.edu/class/spring2002/cmsc420-0401/pbasic.pdf

	Abstract
	Nomenclature
	Introduction
	Related work

	Hardware
	KUKA youBot
	youBot Arm
	youBot Base

	The ASUS Xtion PRO

	Software
	ROS
	Webots
	PCL
	Fuzzylite

	Torque control
	Dynamical model
	Manipulator inertia matrix
	Coriolis matrix
	Force vector

	Computed-torque control
	Tuning of the feedback controller gain matrices

	Motor controllers
	Trajectories
	Self-tuning fuzzy logic controller

	Object detection
	Downsampling of the Point Cloud
	Removal of the planes
	Cluster Extracting
	Bounding boxes

	Experimental results
	Computed-torque control on the KUKA youBot
	Object detection and grasping

	Discussion
	Torque controller
	Object detection and grasping
	Future Work

	Orocos
	Coordinate frames
	YouBot coordinate frame
	Kinematic coordinate frame
	Dynamic coordinate frame

