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Today’s exercise session replaced

Lecture 01 - Introduction to Computer Vision and Visual Odometry Scaramuzza
21.09.2023 . . . .
Exercise: Camera Notation Tutorial Leonard, Jiaxu
Lecture 02 - Image Formation: perspective projection and camera models Scaramuzza
28.09.2023 . . . .
Exercise 01- Augmented reality wireframe cube Leonard, Jiaxu
Lecture 03 - Camera Calibration Leonard
U2 Exercise 02 - PnP problem Leonard, Jiaxu
Lecture 03 continued
12.10.2023 |Lecture 04 - Filtering & Edge detection Scaramuzza
Exercise session replaced by continuation of Lecture 4
19.10.2023 Lecture 05 - Point Feature Detectors, Part 1 Scaramuzza
o Exercise 03 - Harris detector + descriptor + matching Leonard, Jiaxu
26.10.2023 Lecture 06 - Point Feature Detectors, Part 2 Leonard
o Exercise 04 - SIFT detector + descriptor + matching Leonard, Jiaxu
02.11.2023 Lecture 07 - Multiple-view Geometry 1 Scaramuzza
o Exercise 05 - Stereo vision: rectification, epipolar matching, disparity, triangulation Leonard, Jiaxu
09.11.2023 Lecture 08 - Multiple-view Geometry 2 Scaramuzza
o Exercise 06 - Eight-Point Algorithm Leonard, Jiaxu
16.11.2023 Lecture 09 - Multiple-view Geometry 3 Scaramuzza
o Exercise 07 - P3P algorithm and RANSAC Leonard, Jiaxu
23.11.2023 Lecture 10 - Multiple-view Geometry 4 Scaramuzza
o Continuation of Lecture 10 + Exercise session on Intermediate VO Integration Leonard, Jiaxu
1st hour: seminar by Dr. Jeff Delaune from NASA-JPL: "Vision-Based Navigation for Mars Helicopters." [NASA
30.11.2023 |2nd hour: Lecture 11 - Optical Flow and KLT Tracking Leonard
Exercise 08 - Lucas-Kanade tracker Leonard, Jiaxu
Lecture 12a (1st hour) - Place Recognition Scaramuzza
Lecture 12b (2nd hour) - Dense 3D Reconstruction Scaramuzza
07.12.2023 . . .
Lecture 12c (3rd and 4th hour, replaces exercise) - Deep Learning Tutorial Leonard
Optional Exercise on Place Recogntion
Lecture 13 - Visual inertial fusion Scaramuzza
14.12.2023 Exercise 09 - Bundle Adjustment Leonard, Jiaxu
Lecture 14 - Event-based vision + lab visit after the lecture Scaramuzza
21.12.2023 . . . . ;
Exercise session: Final VO Integration Leonard, Jiaxu

oy lecture




Today’s Outline

* Low-pass filtering
e Linear filters
 Non-linear filters

* Edge Detection
e Canny edge detector



Image filtering

* The word filter comes from frequency-domain processing, where “filtering” refers to the process of accepting or
rejecting certain frequency components

* We distinguish between low-pass and high-pass filtering
* A low-pass filter smooths an image (retains low-frequency components)
* A high-pass filter retains the contours (also called edges) of an image (high frequency)

Low-pass filtered image/




Today’s Outline

e Linear filters
 Non-linear filters

[- Low-pass filtering ]

* Edge Detection
e Canny edge detector



Low-pass filtering applied to noise reduction

* Salt and pepper noise: random occurrences of black and
white pixels

* Impulse noise: random occurrences of white pixels

e Gaussian noise: variations in intensity drawn from a
Gaussian distribution

Salt and pepper noise and Impulse noise are caused by
e data transmission errors,

* failure in memory cell, or

* analog-to-digital converter errors.

Impulse noise Gaussian noise



Additive Independent and Identically Distributed Gaussian noise

It is Independent and Identically Distributed (I.1.D.) noise drawn from a zero-
mean Gaussian distribution:

n(x,y)~N(0, o)

Ideal image  Noise
Ix,y) = TI'(xy) + nkxy)

How can we reduce the noise to recover the “ideal image”?



Moving average

e Replaces each pixel with an average of all the values in its neighborhood

e Assumptions:
* Expect noise process to be i.i.d. Gausian
* Expect pixels to be like their neighbors



Moving average

e Replaces each pixel with an average of all the values in its neighborhood

e Moving average in 1D:




Weighted Moving Average

. iform weights: [1,1,1,1,1] /5




Weighted Moving Average

. -uniform weights: [1, 4, 6, 4, 1] / 16
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This operation is called convolution

* Example of convolution between two signals
* One of the sequences is flipped (right to left) before sliding over the other
* Notation: axb
* Nice properties: linearity, associativity, commutativity, etc.

Input sngnal a
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This operation is called convolution

* Example of convolution between two signals
* One of the sequences is flipped (right to left) before sliding over the other
* Notation: axb
* Nice properties: linearity, associativity, commutativity, etc.
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2D Filtering via 2D Convolution

* Flip the filter in both dimensions (bottom to top, right to left) (=180 deg turn)

* Then slide the filter over the image and compute sum of products

I'[x,y] = Zk: Zk: I[x —u,y —v]H|u,v] ) H

u=—-k v=-~k

, 180 deg turn
I =1+H

* Convolution replaces each pixel with a weighted sum of its neighbors

* The filter H is also called “kernel” or “mask”

14



Review: Convolution vs. Cross-correlation

Convolution: I'=1xH

* Properties: linearity, associativity, commutativity

K k
I'[x,y] = Z z I[x —u,y — v]H|[u, v]

u=-k v=—~k

For a Gaussian or box filter, will the

lati = 7 output of convolution and correlation
Cross-correlation: =1Q be different?

Properties: linearity, but no associativity and no commutativity

k k

I'[x,y] = z z I[x +u,y +v]H|u,v]

u=—k v=—-k
15
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“box filter”
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Box Filter

Input image Filtered image

Ix,y] I'[x,y]
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Box Filter

Input image Filtered image
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original

Box Filter

Box filter:
white = max value, black = zero value

filtered
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Gaussian Filter

What if we want center pixels to have higher influence on the output?

This kernel is the
approximation of a
Gaussian function:

23



Gaussian Filter

24



Comparison with Box Filter

This “web”-like effect is called aliasing
and is caused by the high frequency
components of the box filter

25



 Box filter:

 Gaussian filter:

e Sobel filter:

Separable Filters

1 PRI N Y PP
9_1 1 1 3_1_ 3
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Separable Filters

2

* A convolution with a 2D filter of w X w pixel size requires w“ multiply-add operations

per pixel

e 2D convolution can be sped up if the filter is separable, i.e., can be written as the product
of two 1D filters (i.e., H = v - h'): first perform a 1D horizontal convolution with h
followed by a 1D vertical convolution with v:

I'=1xH={*h")*v

» Separable filters require only 2w multiply-add operations per pixel

» Box filters and Gaussian filters are separable



Gaussian Filter

What parameters matter?
e Size of the kernel

* NB: a Gaussian function has infinite support, but discrete filters use finite kernels

o =5 pixels o =5 pixels
with 10 X 10 pixel kernel with 30 X 30 pixel kernel

Which one approximates better the ideal Gaussian filter, the left or the right one?

28



Gaussian Filter

What parameters matter?
* Variance of Gaussian: controls the amount of smoothing

* Recall: standard deviation = o [pixels], variance = o? [pixels?]

o = 2 pixels o =5 pixels
with 30 X 30 pixel kernel with 30 X 30 pixel kernel

29



Gaussian Filter

o is called “scale” of the Gaussian kernel, and controls the amount of smoothing.

H .
10
20
30

0 10 20 30 0 10 20 30 0 10 20 30

30



>>
>>
>>

>>

>>

>>

>>
>>

Sample Matlab code

hsize = 20;
sigma = 5;
h = fspecial ('gaussian',
mesh (h) ; 3
. | e
imagesc (h) ;

Q
im = imread('panda.jpg');
outim = imfilter (im, h);
imshow (outim) ;

hsize,

sigma) ;

outim

31



Boundary issues

 What about near the image edges?
* the filter window falls off the edges of the image
* need to pad the image borders
* methods:

32



Boundary issues

 What about near the image edges?
* the filter window falls off the edges of the image
* need to pad the image borders
* methods:
e zero padding (black)
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Boundary issues

 What about near the image edges?
* the filter window falls off the edges of the image
* need to pad the image borders
* methods:
e zero padding (black)
* wrap around
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Boundary issues

 What about near the image edges?
* the filter window falls off the edges of the image
* need to pad the image borders
* methods:
e zero padding (black)
* wrap around
e copy edge
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Boundary issues

 What about near the image edges?

* the filter window falls off the edges of the image
* need to pad the image borders
* methods:

e zero padding (black)

* wrap around

e copy edge

* reflect across edge

36



Summary on (linear) smoothing filters

* Smoothing filter

* has positive values (also called coefficients)
* sums to 1 — preserve brightness of constant regions
* removes “high-frequency” components; “low-pass” filter



* Low-pass filtering
* Linear filters

[

* Non-linear filters ]

* Edge Detection
e Canny edge detector

Today’s Outline

38



Effect of smoothing filters

Linear smoothing filters do not alleviate salt and pepper noise!

39



e |tis a non-linear filter

e Removes spikes:
good for “impulse noise”
and “salt & pepper noise”

Median Filter

Input patch

Median value

\

10 15 20 23 |27

Output patch

10{15/20
23|90| >*=—p Element to be
33(31/30 replaced

1 Sort

30 31 33 90

10|15|20
23 e Replace element
33(31{30




Median Filter

e |tis a non-linear filter

Salt and
pepper noise

Median
filtered

e Removes spikes:
good for “impulse noise”
and “salt & pepper noise”

: 3 e

: Wl A
w W‘I ’J ol i, W’H “U

0 ' A 4 '
xH 3% o S0 i o [Le] 200 00 <0 = 00

Plots of one row of the image
41



e |tis a non-linear filter

e Removes spikes:
good for “impulse noise”

and “salt & pepper noise”

e Differently from linear filters,
it preserves strong edges

Median Filter

INPUT

& 9" & & 8 58

MEDIAN

MEAN

42



Gaussian vs. Median Filter

* Gaussian filters do not preserve strong egdes (discontinuites). This is because they apply the same kernel
everywhere.

* Median filters do preserve strong edges but don’t smooth as good as Gaussian filters with Gaussian noise.

Image patch Kernel

o -
I*n\
CEI.

Gaussian filter 43




Bilateral Filter

 Bilateral filters solve this by adapting the kernel locally to the intensity profile, so they are patch-content
dependent

* Bilateral filters only smooth pixels with brightness similar to the center pixel and ignore influence of pixels
with different brightness across the discontinuity

Image patch Kernel

o -
I*n\
A - Kl

Bilateral filter 44




Bilateral Filter

1D Gaussian range spatial
component component
byl = Z Z 1T =,y = V]G, (Ix =,y = v] = I, Y1)y [t, ]
o X, y] -
u=—-kv=-k A
1
- Wiyl
smoothed image norr?aaclliartion input image adaptive filter

k

k
Woloyl = Y > 6o (lx —wy = v] = 1%, yDGy, [, v]

u=—-kv=-=k

Normalization factor

(so that the filter values sum to 1)
45



input

larger neighborhoods
are smoothed

Bilateral Filter

Stronger edges are
are smoothed

;= 0.25

G— 0
(Gaussian blur)
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* Low-pass filtering
e Linear filters
 Non-linear filters

[° Edge Detection ]
e Canny edge detector

Today’s Outline

47



Edge Detection

* Goal: to find the boundaries (edges) of objects within images




Edge Detection

* Edges look like steep cliffs in the I(x,y) function

F

Original image I(x, y) Image plotted as I(x, y) function

49



Derivatives and Edges

* An edge is a place of fast change in the image intensity function

intensity function
image (along horizontal scanline) first derivative

\ |

edges correspond to
local extrema of derivative



Differentiation and Convolution

* For a continuous function I(x, y) the partial derivative along x is:

al(x,y) _ liml(x +¢&y)—1(x,y)
0x -0 g

* For a discrete function, we can use adjacent or central finite differences:

Al(x,y) I(x+1,y)—I1(x,y) Al(x,y) Ix+1,y)—I(x—1,y)
~ or ~
dx 1 0x 2

What would be the respective filters along x and y to implement the partial derivatives as a
convolution?

51



Partial Derivatives using Adjacent Differences

al(x,y)
ox

52



Partial Derivatives using Central Differences

-1 0 1 -1 -1 -1
Prewitt filter ¢, = [—1 0 1] , G, = [ 0o 0 0 ]
-1 0 1 1 1 1
-1 0 1 -1 -2 -1
Sobel filter Gy = [—2 0 2] , G, = [ 0 0 O ]
-1 0 1 1 2 1
Sample Matlab code
>> im = imread('lion.jpg'):;
>> h = fspecial ('sobel');
>> outim = imfilter (double (im), h);

>> 1magesc (outim) ;
>> colormap gray;



Image Gradient

The image gradient: VI = [al ol

The gradient points in the direction of steepest ascent:

7= [2,0] T VIW v=[5

Vi= [o,g—;

dl dl

The gradient direction (perpendicular to the edge) is given by: 9 = atan? <a >
y 0X

ar\* (ol
The edge strength is given by the gradient magnitude VI = J(ﬁ) + (@)

dl 0l

)

ax’ﬁ

54



Effects of Noise

e Consider a single row or column of the image

1(x)

.....................................................

|
0 200 400 600 800 1000 1200 1400 1600 1800 2000

dl(x)
0x

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?



Solution: smooth first

Sigma = 50

Kernel

Convolution

Differentiation

Signal

200 400 600 800 1000 1200 1400 1600 1800 2000
"""" I I | I I B I T‘_ [
200 400 600 800 1000 1200 1400 1600 1800 2000
. . D
Location of edges: look for peaksin — (I * H)



Alternative: combine derivative and smoothing filter

* Differentiation property of convolution: i(] xH) =1 *
0x 0x

Sigma = 50

.................................................

I ®
E .................................................................................................
)] h h
2
, , , | ] .......... ; .......... ; .......... I”.”-”] ........ _
1] 200 400 600 800 1000 1200 1400 1600 1800 2000
0x
| | | | | | | | |
1] 200 400 600 800 1000 1200 1400 1600 1800 2000
5
OH = : :
o : :
% — g : :
dx 8 ; ;
Op--—-- | I I 1 I I . B

0 200 400 600 800 1000 1200 1400 1600 1800 2000



Derivative of Gaussian filter G along x

0.0030
0.0133
0.0219
0.0133
0.0030

0.0133
0.0596
0.0983
0.0596
0.0133

(I*G)*xH=1x*(G=*H)

0.0219
0.0983
0.1621
0.0983
0.0219

0.0133
0.0596
0.0983
0.0596
0.0133

0.0030
0.0133
0.0219
0.0133
0.0030
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Derivative of Gaussian Filters

2

x-direction y-direction

59



1(x)

0°H
dx?

0°H
k
dx2

Laplacian of Gaussian

02 02
gz H) =1x55

I | | I | I | I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

................................................................

acian of Gaussian
. operator |

|
) 200 400 600 800 1000 1200 1400 1600 1800 2000

Convolution
o
T
f

i | | i | i | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Location of edges: look for Zero-crossings of I *

2

0x?2



Laplacian of Gaussian (LoG)

* The Laplacian of Gaussian is a circularly symmetric filter defined as:

902G, N 926G,

V%G, =
c  0x% @ 0y?

V2 is the Laplacian operator: V? =

62

0x2

* Two commonly used approximations of LoG filter:

0 1 0
1 —4 1
0 1 O

1

1

11

1 1]
-8 1
1 1.
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Example: Convolving an Image with V4G,

62



Example: Convolving an Image with V4G,
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Example: Convolving an Image with V4G,

sigma = 3.1296

64



Example: Convolving an Image with V4G,

sigma = 4.8972

65



Summary on Linear Filters

* Smoothing filter

* has positive values (also called coefficients)
* sums to 1 — preserve brightness of constant regions
* removes “high-frequency” components; “low-pass” filter

* Derivative filter:
* has opposite signs used to get high response in regions of high contrast
* sums to 0 — no response in constant regions
* highlights “high-frequency” components: “high-pass” filter



* Low-pass filtering
e Linear filters
 Non-linear filters

* Edge Detection
[ e Canny edge detector ]

Today’s Outline
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The Canny Edge-Detection Algorithm (1986)

Despite invented in 1986, the Canny edge detector is still the
most popular edge detection algorithm today

This image is called Lenna image and was a standard
benchmark in edge detection and image processing: —_—
https://en.wikipedia.org/wiki/Lenna

Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence,
(T-PAMI), 1986. PDF. 68


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.3300&rep=rep1&type=pdf
https://en.wikipedia.org/wiki/Lenna

The Canny Edge-Detection Algorithm (1986)

1. Take a grayscale image. If RGB, convert it into a grayscale
I(x,y) by replacing each pixel by the average value of its
R, G, B components.

Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence,
(T-PAMI), 1986. PDF. 69


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.3300&rep=rep1&type=pdf

The Canny Edge-Detection Algorithm (1986)

Convolve the image [ with x and y derivatives of Gaussian
filter and compute the edge strength ||V I||

ol G,
—_— ) —
dx ax

al G,
—_— = ] *

dy dy

Edge strength: ||VI|| = \/(g—i)z + (g—;)z N

Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence,
(T-PAMI), 1986. PDF. 70


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.3300&rep=rep1&type=pdf

The Canny Edge-Detection Algorithm (1986)

3. Thresholding: set to 0 all pixels of ||V I|| whose value is
below a given threshold

Thresholded ||V I|| —

Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence,
(T-PAMI), 1986. PDF.


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.3300&rep=rep1&type=pdf

The Canny Edge-Detection Algorithm (1986)

4. Thinning: look for local-maxima in the edge strength in the
direction of the gradient

Thresholded ||V I|| —

Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence,
(T-PAMI), 1986. PDF.


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.3300&rep=rep1&type=pdf

The Canny Edge-Detection Algorithm (1986)

4. Thinning: look for local-maxima in the edge strength in the
direction of the gradient

* This can be done by taking the directional derivative of the
edge strength in the direction of the gradient and then

looking for zero-crossing (i.e., adjacent pixel locations where
the sign changes value)

* The desired directional derivative is mathematically equivalent
to convolving the image I(x, y) with the Laplacian of Gaussian

V(VG,*l) = V2G, = 1

Edge image: each pixel that is a local maximum of the edge
strength in the direction of gradient is set to 1

—_

Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence,
(T-PAMI), 1986. PDF.


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.3300&rep=rep1&type=pdf

The Canny Edge-Detection Algorithm (1986)

What parameters can we tune to remove high frequency details?




Today: Deep Learning-based Edge Detection

Supervised learning from human annotations

HED!l: CNN-based Detector in 2015 EDTER!2!: State-of-the-art approach
* >30% better performance * Fine edges detection using Transformer model
* less computation than Canny * Integration with global information

(f) HED: side odtput 4

(h) Canny: 0 = 4 (i) Canny: 0 =8

(g) Canny: 0 =

[1] Xie et al., Holistically-Nested Edge Detection, International Conference on Computer Vision (ICCV), 2015. PDF.

[2] Pu et al., EDTER: Edge Detection with Transformer, Conference on Computer Vision and Pattern Recognition (CVPR), 2022. PDF. e


https://arxiv.org/pdf/1504.06375.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Pu_EDTER_Edge_Detection_With_Transformer_CVPR_2022_paper.pdf

Summary (things to remember)

Image filtering (definition, motivation, applications)

Moving average

Linear filters and formulation: box filter, Gaussian filter
Boundary issues

Non-linear filters

Median & bilateral filters

Edge detection

Derivating filters (Prewitt, Sobel)

Combined derivative and smoothing filters (deriv. of Gaussian)
Laplacian of Gaussian

Canny edge detector



Readings

e Ch. 3.2, 3.3, 7.2.1 of Szeliski book, 2" Edition



Understanding Check

Are you able to:

* Explain the differences between convolution and cross-correlation?

Explain the differences between a box filter and a Gaussian filter?

* Explain why one should increase the size of the kernel of a Gaussian filter if 20 is close to the size of the kernel?
* Explain when we would need a median & bilateral filter?

* Explain how to handle boundary issues?

* Explain the working principle of edge detection with a 1D signal?

* Explain how noise does affect this procedure?

* Explain the differential property of convolution?

* Show how to compute the first derivative of an image intensity function along x and y?
* Explain why the Laplacian of Gaussian operator is useful?

* List the properties of smoothing and derivative filters?

* |llustrate the Canny edge detection algorithm?

* Explain what non-maxima suppression is and how it is implemented?
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