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Abstract


For mobile robots to be able to work with and for people and thus operate 
in our everyday environments, they need to be able to acquire knowledge 
through perception. In other words they need to collect sensor measure­
ments from which they extract meaningful information. This thesis covers 
some of the essential components of a robot perception system combining 
omnidirectional vision, odometry, and 3D laser range finders, from modeling 
to extrinsic calibration, from feature extraction to ego-motion estimation. 
We covers all these topics from the “point of view” of an omnidirectional 
camera. The contributions of this work are several and are listed here. 

The thesis starts with an overview of the geometry of central omnidirec­
tional cameras and gives also an overview of previous calibration methods. 
The contributions of this section are three. The first two are a new generalized 
model for describing both dioptric and catadioptric cameras and a calibration 
method which takes advantage of planar grids shown around the cameras, like 
the method in use for standard perspective cameras. The third contribution 
is the implementation of a toolbox for Matlab (called OCamCalib and freely 
available on-line), which implements the proposed calibration procedure. 

The second part of the thesis is dedicated to the extraction and matching 
of vertical features from omnidirectional images. Vertical features are usu­
ally very predominant in indoor and outdoor structured environments and 
can then be very useful for robot navigation. The contribution of this part 
is a new method for matching vertical lines. The proposed method takes ad­
vantage of a descriptor that is very distinctive for each feature. Furthermore, 
this descriptor is invariant to rotation and slight changes of illumination. 

The third part of the thesis is devoted to the extrinsic calibration of an 
omnidirectional camera with the odometry (i.e. wheel enco ders) of a mobile 
robot. The contribution of this part is a new method of automatic self­
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calibration while the robot is moving. The method is based on an extended 
Kalman filter that combines the enco der readings with the bearing angle 
observations of one ore more vertical features in the environment. Further­
more, an example of robot motion estimation is shown using the so calibrated 
camera-odometry system. 

The fourth part of the thesis is dedicated to the extrinsic calibration of 
an omnidirectional camera with a 3D laser range finder. The contribution 
of this method is that it uses no calibration object. Conversely, calibration 
is performed using laser-camera correspondences of natural points that are 
manually selected by the user. The novelty of the method resides in a new 
technique to visualize the usually ambiguous 3D information of range find­
ers. We show that is possible to transform the range information into a new 
image where natural features of the environment are highlighted. Therefore, 
finding laser-camera correspondences becomes as easy as image pairing. 

The last part of the thesis is devoted to visual odometry for outdoor 
ground vehicles. We show a new method to recover the trajectory of a cali­
brated omnidirectional camera over several hundred of meters by combining 
a feature based with an appearance based approach. 

All the contributions of this thesis are validated through experimental 
results using both simulated and real data. 
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Abstract (Italiano)


Affinché un robot mobile sia capace di lavorare con e per le persone ed operare 
nella vita di tutti i giorni, questo deve esser in grado di acquisire conoscenza 
per mezzo della percezione. In altre parole, deve acquisire misure dai sen-
sori, da cui poi estrarre informazioni significative. Questa tesi copre alcuni 
dei componenti essenziali del sistema di percezione di un robot, che combina 
visione omnidirezionale, odometria e laser 3D: dalla modellazione alla cali­
brazione estrinseca, dall’estrazione di features alla stima del moto. Questi 
aspetti sono trattati dal “punto di vista” di una telecamera omnidirezionale. 
I principali contributi di questa tesi sono listati qui di seguito. 

La tesi inizia con una revisione generale della geometria di telecamere 
centrali omnidirezionali e riassume precedenti lavori sulla calibrazione. 
contributi di questa sezione sono tre. I primi due sono la concezione di un 
modello unificato per telecamere diottriche e catadiottriche ed una procedura 
di calibrazione che utilizza griglie planari mostrate dall’utente intorno alla 
telecamera, simile ai metodi standard per telecamere prospettiche. Il terzo 
contributo è l’implementazione di un toolbox per Matlab (detto OCamCalib 
e disponibile on-line), che implementa la procedura di calibrazione proposta. 

La seconda parte di questa tesi è dedicata all’estrazione e all’accoppiamento 
di linee verticali in immagini omnidirezionali. Linee verticali sono predom­
inatin in ambienti strutturati sia interni che esterni e possono essere molto 
utili per la navigazione di robot. Il contributo di questa parte è un nuovo 
metodo per l’accoppiamento di verticali. Tale metodo fa uso di un descrittore 
che è distintivo per ogni verticale. Inoltre tale descrittore è invariante alla 
rotazione e a lievi cambiamenti di illuminazione. 

La terza parte della tesi è dedicata alla calibrazione estrinseca di una 
telecamera omnidirezionale con l’odometria di un robot mobile. Il contributo 
di questa parte è un nuovo metodo di auto-calibrazione durante il moto del 
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robot. Il metodo è basato sull’uso di un filtro di Kalman esteso che inte­
gra le letture odometriche con gli angoli di osservazione di uno o più verticali 
nell’ambiente. Inoltre si mostra anche un esempio di stima del moto del robot 
che utilizza il sistema camera-odometria cosi’ calibrato. 

La quarta parte della tesi è dedicata alla calibrazione estrinseca di una 
telecamera omnidirezionale con un laser 3D. Il contributo di questo metodo 
risiede nel fatto che non fa uso di oggetti di calibrazione. Al contrario, la 
calibrazione viene fatta utilizzando corrispondenze tra punti naturali estratti 
manualmente dall’utente dagli output di telecamera e laser. La novita’ risiede 
in una tecnica per visualizzare l’ambigua informazione 3D dei laser. Si mostra 
che è possibile trasformare l’informazione 3D in una nuova immagine 2D in 
cui i dettagli dell’ambiente risultano enfatizzati. In tal modo la ricerca di 
corrispondenze diventa facile come quella tra immagini. 

L’ultima parte della tesi è dedicata all’odometria visuale per veicoli da 
strada. Si presenta un nuovo metodo per ricostruire la traiettoria di una tele­
camera omnidirezionale già calibrata su alcune centinaia di metri combinando 
un approccio basato sull’estrazione di features con uno basato sull’apparenza 
delle immagini. 

Tutti i contributi di questa tesi sono validati tramite risultati sperimentali 
su dati simulati e reali. 
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Chapter 1


Introduction 

1.1 Preface 

V ISION is an extraordinarily powerful sense. The ability to perceive the 
environment allows for movement to be regulated by the world. Hu­

mans do this effortlessly but still lack the understanding of how perception 
works. In the case of visual perception, many researchers, from psychologists 
to engineers, are working on this complex problem. In this work, we want to 
understand how a robot can use images, which convey only 2D information, 
in a robust manner to drive its actions in 3D space. 

A critical component of any perceptual system, human or artificial, is 
the sensing modality used to obtain information about the environment. In 
the biological world, for example, one striking observation is the diversity of 
“ocular” geometries. The majority of insects and arthropods benefit from a 
wide field of view and their eyes have a spacevariant resolution. To some 
extent, the perceptual capabilities of these animals can be explained by their 
specially adapted eye geometries. Similarly, in this work, we explore the ad­
vantages of having large fields of view by using an omnidirectional camera 
with a 360◦ azimuthal field of view. 

Once images have been acquired by the omnidirectional camera, a ques­
tion arises as what to do with them. Should they form an internal repre­
sentation of the world? Furthermore, should they or should they not be 
combined with the information gathered by other sensors to help a robot to 
self-localize or autonomously navigate in unknown environments? How can 
they be used to model the environment? These fundamental questions have 
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2 1. INTRODUCTION 

long been addressed by the robotics community and go to the heart of our 
current research. 

1.2 Sensors for robot perception 

Navigation is the process used by a mobile robot to move from an initial po­
sition to a final position with respect to an initial reference frame. In order 
for a robot to navigate, it must first localize itself. In general, the term lo­
calization means the determination of the locality (position) of an object. In 
robotics, localization refers to methods through which a robot can calculate 
or update its position through information gathered from sensors. A robot 
must achieve localization in its operational environment in order for path 
planning and navigation algorithms to work effectively. 

Mobile robots work with and for people and thus operate in our everyday 
environments. To do that, they need to be able to acquire knowledge through 
perception. In other words they need to collect sensor measurements from 
which they extract meaningful information. 

Perception is achieved through sensors. A sensor is a device that measures 
or detects internal robot conditions (i.e. proprioceptive sensors) or external 
environmental conditions (exteroceptive sensors). Proprioceptive sensors are, 
for instance, wheel enco ders, compass, inclinometers, accelerometers, and 
gyroscopes. Exteroceptive sensors are, for instance, cameras, laser range 
finders, and sonar. There are a wide variety of sensors used in mobile robots. 
In this work, we concentrate on omnidirectional cameras, odometry, and 3D 
laser range finders. 

1.3 Motivation and objectives 

In this thesis, we analyze the preliminary steps of robot perception using 
camera, odometry, and 3D laser range finder, from modeling to extrinsic 
calibration, from feature extraction to ego-motion estimation. We covers all 
these topics from the “point of view” of an omnidirectional camera but the 
primary goal remains describing the models of these sensors and how to relate 
them among each other (extrinsic calibration). In fact, while in computer 
vision many methods are known and are already standards for calibrating 
multiple cameras or camera arrays, in the robotics world, calibration between 
different sensors is often poorly documented. In this work, we want to review 



3 1.3. MOTIVATION AND OBJECTIVES 

these methods and provide novel and practical solutions. Here, we list and 
briefly describe the objectives of this thesis. 

Extrinsic sensor calibration 

To obtain accurate environment maps and also localize a mobile robot, every 
sensor must be precisely modeled and its relation (position and orientation) 
with the other sensors must be also correctly measured. The estimation of 
the extrinsic parameters among different sensors has to be very accurate for 
many applications. For example, in the frame-work of multi-robot localiza­
tion, where the bearing observations (angle of sight) among the robots are 
very informative, an error of 1cm in estimating the position of the vision sen­
sor with respect to the robot’s enco der would produce a bearing angle error 
of 0.2 deg if the distance between the robots is 3m. To this end, camera and 
robot’s encoders must be extrinsically calibrated. 

Another application is in the contest of automatic environment mapping. 
Digital 3D models of the environment are needed in autonomous navigation, 
rescue and inspection robotics, facility management, and architecture. Au­
tonomous mobile robots equipped with 3D laser range finders are well suited 
for this task. However, to create realistic virtual models, visually-perceived 
information from the environment has to be acquired and it has to be pre­
cisely mapped onto the laser points. To accomplish this task, camera and 3D 
laser range finder must be also extrinsically calibrated. 

Omnidirectional camera modeling and intrinsic calibration 

To accomplish the tasks given above, we take advantage of an omnidirec­
tional camera as its use has become largely diffused in the last decades in 
the robotics community. Omnidirectional cameras, by definition, are cameras 
that provide a 360◦ field of view of the scene. Such enhanced field of view 
can be obtained using multiple synchronized cameras, combinations of per­
spective cameras and mirrors, or just cameras with wide-angle lenses. In this 
work, we concentrate only on the last two mentioned types of omnidirectional 
cameras that are built by combining a standard camera with a shaped mirror 
or with a wide-angle lens; this cameras are respectively called catadioptric 
and dioptric cameras. 

Catadioptric and dioptric cameras overcome the synchronization problems 
of panoramic multiple cameras and are also cheaper but, conversely, they have 
lower resolution. Furthermore, the presence of the mirror (or lens) introduces 



4 1. INTRODUCTION 

distortions that must be accurately modeled in order to produce undistorted 
perspective views that can be further manipulated by the standard algorithms 
commonly used for perspective cameras. Thus, before facing the problem of 
extrinsic sensor calibration, we need to define a unified imaging model for 
omnidirectional cameras (both catadioptric and dioptric) and also a method 
to calibrate them. 

Robust feature extraction and matching 

The previous two objectives described the goal but not the methods to 
perform calibration. Our methods are based on visual feature extraction. 
Throughout this thesis, we use several types of features, like Harris, SIFT, 
and line features. We concentrate particularly on line features as they are 
more predominant in structure environments; we show that, by using an ap­
propriate descriptor, these line features can me robustly and stably matched 
under different work conditions. 

Ego-motion estimation 

The last objective of this thesis is to show that also a single calibrated om­
nidirectional camera can be used alone, in place of other sensors, to perform 
robot motion estimation. 

1.4 Original contributions 

Before this work began, there was no simple way to model and calibrate 
omnidirectional sensors in both catadioptric and dioptric configurations. We 
devised a unified imaging model for omnidirectional cameras and a method 
to calibrate them. This led to four publications [1–4] and to an opensource 
toolbox for Matlab (called OCamCalib) available on the author’s webpage [5]. 

An another important step is the calibration between camera and robot’s 
encoders. We devised a method of self-calibration that allows to automati­
cally and extrinsically calibrate the camera while the robot is moving. The 
method is called self-calibration because it requires no user interaction but 
only the capability of robustly and visually tracking line features among im­
ages. This work led to two publications [6, 7]. 

Another contribution is a robust method to extract and match vertical 
lines in omnidirectional images, that are used for calibrating the camera with 
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the encoders and also for motion estimation. The novelty of the method 
resides in the use of a line descriptor that is invariant to rotation and slight 
changes of illumination. This work led to a publication [8]. 

Another important step is the calibration between camera and 3D laser 
range finder. Although 3D scanners have diffused only in the last years, cal­
ibration consisted always in the use of a pattern viewed from both sensors 
and shown by the user at different positions and orientations. Unlike previous 
works, we devised a method of calibration from natural scenes, which uses 
no ad-hoc pattern but only points correspondences that are hand-selected by 
the user from a single laser-camera acquisition of a normal scene. This work 
led to a publication [9]. 

The final contribution regards ego-motion estimation for outdoor ground 
vehicles. We devised a method that uses point features and an appearance 
based approach to perform visual odometry. This work led to a publication 
[10] and at the moment when this PhD thesis is being published, we have been 
notified that it was also conditionally accepted for the IEEE Transactions of 
Robotics. 

1.5 Outline of the thesis 

The outline of this thesis is the following. 

1.5.1 Chapter 2 

We define the concept of central omnidirectional camera and review several 
imaging models that have been proposed in the last decades. There, we also 
introduce our unified imaging model, called Taylor model. 

1.5.2 Chapter 3 

We deal with omnidirectional camera intrinsic calibration, that is, we want 
to find the function that links 3D scene points to their 2D projections on the 
camera image plane. We describe our approach for calibrating our Taylor 
model, which leads to our opensource toolbox for Matlab. 
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1.5.3 Chapter 4 

We describe how to extract and robustly match vertical lines in omnidirec­
tional images. We define our descriptor and demonstrate that it is very 
distinctive. 

1.5.4 Chapter 5 

We deal with extrinsic calibration of an omnidirectional camera with robot’s 
encoders. We define the problem and propose a solution that uses an ex­
tended Kalman filter. The method takes advantage of the line tracking tech­
nique of Chapter 4. In the end, we give also an example of robot motion 
estimation using odometry and visual features. 

1.5.5 Chapter 6 

We face the problem of extrinsic calibration of an omnidirectional camera 
with a 3D laser range finder. We define the problem and devise a practical 
method to establish the pose between the two sensors using a single camera-
laser acquisition of a natural scene. In the end, we give different examples of 
mapping for several environments using also different omnidirectional cam­
eras. 

1.5.6 Chapter 7 

We close the thesis showing an application of a calibrated omnidirectional 
camera to the problem of visual odometry. We describe our method and give 
an example of car trajectory recovery using, as only input, images provided 
by a single omnidirectional camera. 

1.6 Structure of the chapters 

The structure of each chapter is the following: 

•	 Abstract: summary of the content of the chapter

Introduction:
• 

–	 State of the art: previous works on the same topic 
–	 Outline of the chapter 

•	 Theory: main content of the paper

Results:
• 

–	 Simulations 
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–	 Real experiments 

•	 Conclusion: summary of the chapter, main contributions, and discus­
sions 
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Chapter 2


Geometry of central 
omnidirectional cameras 

In this chapter, we give a brief overview of the imaging models that 
have been proposed to describe central omnidirectional cameras, 
that is, cameras possessing a single effective viewpoint. We review 
these models for both catadioptric and dioptric configurations, the 
former using a combination of mirror and lenses, the latter just 
lenses with wide field of view (e.g. fisheye lenses). Finally, we 
propose our unified imaging model (called Taylor model) which 
encompasses both catadioptric and dioptric systems. 

2.1 Introduction 

2.1.1 The single effective viewpoint property 

A vision system has a single effective viewpoint whenever it measures the 
intensity of light traveling along rays which intersect in a single point 

in 3D (the projection center). Vision systems satisfying the single viewpoint 
constraint are called central projection systems (Fig. 2.1). 
The perspective camera is an example of a central projection system (Fig. 
2.1(a)). In this case, the mapping in homogeneous coordinates of points 
in the scene into points in the image is linear and can be described by a 
3 × 4 projection matrix P (pin-hole model) [11]. Perspective projection can 
be modeled by intersecting a plane with a pencil of lines going through the 
scene points and the projection center. 

9 
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There are central projection systems whose geometry can not be described 
using the conventional pin-hole model because of the very high distortion 
introduced by the imaging device. These systems are central omnidirectional 
cameras and can appear as a combination of mirror and lenses (i.e. catadiop­
tric, Fig. 2.3(a)) or just lenses (i.e. dioptric, Fig. 2.3(b)). 
When an imaging system does not maintain a single viewpoint, then a caustic 
(i.e. a locus of viewpoints in three dimensions) is formed and the system has 
to be treated as a non-central one (Fig. 2.2). 
In this thesis, we concentrate on central omnidirectional cameras, both diop­
tric and catadioptric. The reason a single effective viewpoint is so desirable 
is that it permits the generation of geometrically correct perspective images 
from the pictures captured by the omnidirectional camera. This is possible 
because, under the single view point constraint, every pixel in the sensed 
image measures the irradiance of the light passing through the viewpoint in 
one particular direction. When the geometry of the omnidirectional camera 
is known, that is, when the camera is calibrated, one can precompute this 
direction for each pixel. Therefore, the irradiance value measured by each 
pixel can be mapped onto a plane at any distance from the viewpoint to form 
a planar perspective image. 
Another reason why the single view point property is important is that it 
allows applying the known theory of epipolar geometry [11], which easily 
permits to perform ego-motion estimation and structure from motion from 
image correspondences only. 

2.1.2 State of the art of omnidirectional models 

The concept of central catadioptric cameras appeared already in the presen­
tation of René Descartes in 1637 in Discours de la Methode [12]. He showed 
that refractive as well as reflective ovals (conical lenses and mirrors) focus 
light into a single point if they are illuminated from another properly chosen 
point. The idea was later rephrased, e.g, by Feynman et al. in 1963 [13] 
or Hecht and Zajac in 1974 [14], and popularized into a modern language 
and introduced to the computer vision community in 1998 by Baker and Na­
yar [15–17]. 

Baker and Nayar derived the complete class of catadioptric sensors that 
have a single viewpoint and which can be constructed using just a single con­
ventional lens and a single mirror under the assumption of a pinhole camera 
model. They showed that the 2-parameter family of mirrors that can be used 
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Image�plane�(CCD) 

Image�plane�(CCD) 

Single�effective�viewpoint 

Single�effective�viewpoint 

a b 

Figure 2.1: Two examples of vision systems satisfying the single effective 
viewpoint property: (a) perspective pin-hole camera, (b) omnidirectional 
camera with hyperbolic mirror. 

Caustic 

Image�plane�(CCD) Image�plane�(CCD) 

a b 

Figure 2.2: Two examples of vision systems that do not possess a single 
effective viewpoint: (a) perspective camera, (b) catadioptric omnidirectional 
camera. 
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is exactly the class of rotated (swept) conic sections. Within this class of 
solutions, they identified four possible configurations of camera and mirror 
that are not degenerate and two configurations that are degenerate: 

•	 The four non-degenerate configurations combine an orthographic cam­
era with a paraboloidal mirror or a perspective camera with with a 
hyperboloidal, ellipsoidal, or planar mirror (Fig. 2.4). 
•	 Conversely, the two degenerate configurations combine a perspective 

camera with a spherical or conical mirror (Fig. 2.5). 

Observe that the degenerate configurations cannot be used to construct cam­
eras with a single effective view point. Indeed, a sphere is the limit of an 
ellipse when the two focal points coincide; thus, the single viewpoint prop­
erty would require to place the camera in the center of the sphere (i.e. inside) 
meaning that the camera would see only itself. Similarly, a conical mirror is 
the limit of a pinhole camera; thus, to have the single view point property, 
one should place the camera at the vertex of the cone, meaning that the 
camera would see nothing (Fig. 2.5). 
A unifying theory for all central catadioptric systems was proposed in 2000 
by Geyer and Daniilidis [18]. They showed and proved that every catadiop­
tric (parabolic, hyperbolic, elliptical) and standard perspective projection is 
isomorphic to a projective mapping from a sphere (centered in the effective 
viewpoint) to a plane with the projection center on the perpendicular to the 
plane (Fig. 2.6). 
In 2004, Ying and Hu [19] indicated that the unified imaging model by Geyer 
and Daniilidis can be used for some types of fisheye lenses. The approxima­
tion of a fisheye lens model by a catadioptric one is usually possible, however, 
with limited accuracy only. 
Finally, in [20], Micusik proposed a new formalism for representing all cen­
tral imaging models, both dioptric and catadioptric (including perspective 
models). By his formalism, he showed that it is possible to describe the rela­
tion between the image points and the corresponding 3D vectors to the real 
points by means of two functions h and g. Furthermore, he derived the two 
functions for the unified imaging model by Geyer and Daniilidis and several 
fisheye lens cameras. 
In 1998, Svoboda et al. [21, 22] first introduced the concept of epipolar ge­
ometry to central catadioptric cameras. They showed that the epipolar con­
straint for central catadioptric cameras holds for 3D ray direction vectors 
corresponding to image points. They also proved that epipolar lines (known 
from perspective images) are replaced by conics since the epipolar planes are 
projected to the image plane as conics. 
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a b 

Figure 2.3: (a) Catadioptric and (b) dioptric case (courtesy of Micusik [20]). 

Relations that exist between multiple views of a static scene, where the 
views can be taken by any mixture of para-catadioptric, perspective or affine 
cameras, were described by Sturm [23]. The usage of this theory for motion 
estimation, 3D reconstruction or (self-)calibration was also indicated. 

2.1.3 Outline of the chapter 

In this chapter, we use the same notation and formalism introduced by Mi­
cusik [20]. By using this formalism, we briefly review the unified imaging 
model by Geyer and Daniilidis for central catadioptric cameras and that pro­
posed by Micusik himself for fisheye cameras (Section 2.2). Then, in Section 
2.3 we present our new imaging model (called Taylor model) that is suit­
able for both dioptric and catadioptric central omnidirectional cameras. The 
novelty of our approach in comparison to previous works is that we describe 
the camera imaging model in terms of a Taylor polynomial expansion whose 
coefficients are the calibration parameters. The contributions of our work 
were first published in [1,2] and further developed in [3,4]. In Chapter 3, we 
will describe our calibration procedure for the proposed imaging model. 
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Planar mirror Ellipsoidal mirror 

Hyperboloidal mirror Paraboloidal mirror 

Figure 2.4: The four non-degenerate catadioptric configurations derived by 
Baker and Nayar, which satisfy the single view point property (courtesy of 
Baker and Nayar [17]). 
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Conical mirror Spherical mirror 

Figure 2.5: The two degenerate catadioptric configurations (courtesy of Baker 
and Nayar [17]). 

P 

Q
P' 

Q' 

Figure 2.6: Stereographic projection used by Geyer and Daniilidis (courtesy 
of Geyer and Daniilidis [18]). 
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a b 

Figure 2.7: Central camera models. (a) The standard perspective model not 
distinguishing scene points lying on opposite half-lines. (b) The spherical 
model distinguishing two scene points lying on opposite half-lines (courtesy 
of Micusik [20]). 

2.2 Omnidirectional camera models 

The standard perspective camera model maps all scene points X from a line 
passing through the optical center of the camera to one image point x (Fig. 
2.7(a)), so that [11]: 

λx = P X, (2.1) · 
X = [X, Y, Z], x = [x, y, 1] are the normalized image coordinates, and 

P ∈ R3×4 is the projection matrix, that is, P = [R T], where R ∈ SO(3) |
and T ∈ R

3 express the relation between the camera reference frame and the 
world reference frame. 
In this representation, every image point is the projection of scene points 
that are in front as well as behind the camera. Thus, it allows to represent 
only scene points lying in a half-space including an image plane as a border. 
Conversely, real omnidirectional cameras with angle of view larger than 180◦ 

project points in front of the camera to one point and points behind the 
camera to a different point. Therefore, omnidirectional cameras have to be 
represented by half-lines, (Fig. 2.7(b)). 

According to the Micusik formalism [20], image points of omnidirectional 
cameras can be represented in a spherical model as a set of unit vectors in R3 
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such that one vector corresponds just to one of half one-dimensional subspaces 
of R3 . It means that one image point represents all scene points lying on a 
half-line emanating from the camera center in contrast to the perspective 
model, where one image point represents all scene points lying on whole 
line passing through the optical center. Thus, the projection equation for 
omnidirectional cameras can be written as: 

λq = P X, λ > 0, (2.2) · 
where q = [x, y, z] is a unit vector (i.e. �q� = 1) representing the image point. 

When dealing with omnidirectional cameras, the following assumptions 
are always commonly taken: 

1. The mirror (or fisheye lens for dioptric cameras) is rotationally sym­
metric with respect to its axis. This symmetry is guaranteed by man­
ufacturing. 

2. The mirror (lens) axis is perpendicular to the sensor plane. 

In the following, we will assume central omnidirectional cameras. A fisheye 
lens will be used in the illustrative images; however, equations hold for both 
dioptric and catadioptric cameras. 

Suppose we are observing a scene point X by an omnidirectional camera 
(Fig. 2.8, 2.9(a)). By using the spherical model given by Equation (2.2), 

′′ ′′ there exists always a vector p = x ′′T , z with the same direction as q, 
′′ ′′ which is mapped to the point u on the sensor plane so that u is collinear 

′′ with x . This can be formalised as: 
� 

′′ ′′ 
� 

′′ h (�u �) u 
p = 

g (�u �) , (2.3) ′′ 

′′ where h and g are two functions R → R, which depend on the distance �u 
′′ 

�
of the point u to the sensor axis origin (the center of symmetry). This de­

′′ pendency on u is due to the assumption that the mirror (lens) is rotationally 
symmetric. 

Functions h, g differ for various types of lenses and mirrors. For fisheye 
lenses, these functions depend on the type of the lens (e.g. equisolid, equian­
gular, etc.) and for mirrors they depend on the shape of the mirror (e.g. 

′′ parabolic, hyperbolic, elliptical). The mapping of vector p to the sensor 
′′ plane point u through functions h, g is shown in Fig. 2.9 for a fisheye lens 
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and a hyperbolic mirror. 
′′ In the case of fisheye lenses, it holds that h = 1 and thus vector p is mapped 

′′ orthographically to the point u on the sensor plane. 
′′ ′′ In the case of mirrors, vector p is mapped to u through a perspective cam­

era with optical center C (the optical center can lie at infinity for parabolic 
′′ mirrors). We can also say that vector p is projected orthographically to the 

′′ ′′ point h (�u �) u on the sensor plane. 

At this point, the reader might be wondering why we need both functions 
h, g and not just one function g/h. As observed by Micusik [20], the reason is 
that g can be seen as the function describing the profile of the mirror, while 
h can be seen as the projection through the perspective camera (e.g. for the 
orthographic projection h = 1). For our Taylor model (Section 2.3), we will 
actually use g/h. 

The mapping to the sensor plane can be specialized to obtain the standard 
perspective projection and omnidirectional projection as follows: 

� 

′′ 
� 

1u 
Perspective projection: 

1 
(2.4) 

� 

′′ ′′ 
� 

Omnidirectional projection: 
h (�u �) u 

′′ g (�u �) 

In the remainder of this section, we give the expressions of h and g valid for 
the catadioptric and dioptric cameras. 

2.2.1 Micusik’s representation for catadioptric cameras 

As we mentioned in Section 2.1.2, the unified model for catadioptric cameras 
by Geyer and Daniilidis [18] states that every catadioptric (i.e. parabolic, 
hyperbolic, elliptical) and standard perspective projection is isomorphic to a 
projective mapping from a sphere (centered in the effective viewpoint) to a 
plane with the projection center on the perpendicular to the plane (Fig. 2.6). 
According to the Micusik’s formalism, every such mapping can be rewritten 
to the form of Equation (2.4) with 
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′′ Figure 2.8: The mapping of a scene point X to the point u on the sensor 
plane (courtesy of Micusik [20]). 

l(l+m)+
√
�u ′′�2(1−l2 )+(l+m)2

′′ =h (�u �) 
�u ′′�2+(l+m)2 , 

2 
l�u ′′ � +(l+m)

√
�u ′′�2(1−l2)+(l+m)2 

′′ =g (�u �) 
�u ′′�2+(l+m)2 , 

where constants l, m, depend on the type of catadioptric projection (i.e. 
parabolic, hyperbolic, elliptical). Their expressions can be found in [18]. 

2.2.2 Micusik’s representation for dioptric cameras 

Recently, a number of high quality, cheap, and widely available lenses with a 
field of view larger that 180◦ appeared: for instance the Nikon FC-E8 fisheye 
converter, COOLPIX digital camera, or the Sigma 8mm-f4-EX fisheye lens 
for cameras with 35mm film format. Fisheye lenses with so wide a field of 
view can be regarded as dioptric central omnidirectional cameras (Fig. 2.3). 

As we already mentioned in Section 2.1.2, Ying and Hu [19] indicated 
that the unified imaging model by Geyer and Daniilidis can be used for 
some types of fisheye lenses. The approximation of a fisheye lens model 
by a catadioptric one is usually possible, however, with limited accuracy 
only. Depending on the desired accuracy, models with various number of 
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parameters can be derived. Here, we resume three models for fisheye lenses 
that have been derived by Micusik [20, 24], The simpler model is not very 
accurate, however it is precise enough to reject many bad outliers. The more 
complicated model is more accurate but is more computational complex and 
needs more points to be estimated. 

Linear model 

The linear model assumes that: 

′′ θ = a0 �u (2.5) 

This model holds approximately true for fisheye lenses with equiangular pro­
jection [25], where a0 is a parameter and θ is the angle between a ray and the 

′′ optical axis (Fig. 2.3). The relationship between the 3D vector p emanating 
from the optical center C towards a scene point and the corresponding point 
′′ u on the sensor plane (Fig. 2.10) can be expressed according to Equation 

(2.3) in the lens Cartesian coordinate system as follows: 

� � � 

′′ 
� 

� 

′′ 
� ′′ u 

′′ u u 
p = 

g (�u �) = �u ′′ = �u ′′ , (2.6) ′′ �
′′tan θ

� 
tan(a0�u �) 

Non-linear models 

Respectively for the Nikon and the Sigma fisheye lenses, Micusik used two 
more precise 2-parameter non-linear models: 

′′ 

Nikon: θ = 
a0 �u 

′′

�
�21+a1�u 

� � 

(2.7) 
′′ 

Sigma: θ = a
1 
1 

arcsin 
a1�u � 

,a0 

where a0, a1 are different for the two lens models. In general, the models may 
have various forms determined by the lens design and by the desired accuracy. 

′′ According to Equation (2.7), vector p for the Nikon and the Sigma fisheye 
lenses becomes: 
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a b 

′′ Figure 2.9: The mapping of a scene point X to the point u on the sensor 
plane: (a) a fisheye lens and (b) a hyperbolic mirror (courtesy of Micusik [20]). 

 

′′ 
 

� 

′′ 
� u 

u ′′ 

Nikon: p ′′ = �u ′′ 

tan θ

� = 
 

 

�u � 
tan 

� 

a0 �u ′′� 
1+a1�u ′′�2 

� 

 

 

(2.8) 
 

′′ 
 

� 

′′ 
� u 

u ′′ 

Sigma: p ′′ = �u ′′ 

tan θ

� = 
 

 

�u � 
tan 

� 

1 
a1 

arcsin 

� 

a1�u ′′� 
a0 

�� 

 

 

In [20], Micusik derived also an expression of a0 as a function of a1. In this 
way, he reduced the number of calibration parameters from two to one. He 
also proposed a calibration procedure to estimate the calibration parameters 
for each of these models. 
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ρ 

g( ) ρ 

Figure 2.10: The geometrical interpretation of fisheye lens projection. Pro­
jection of the vector q → p → u onto the sensor plane π through function 
g(ρ) (courtesy of Micusik [20]). 

2.2.3 Projection onto the camera plane 

In the general central camera model, we identify two distinct reference sys­
tems: the camera image plane and the sensor plane . The camera image plane 
coincides with the camera CCD, where the points are expressed in pixel co­
ordinates. The sensor plane is a hypothetical plane orthogonal to the mirror 
(or fisheye lens) axis, with the origin located at the plane-axis intersection 
(i.e. camera optical center). 

Until now, we described the projection of the scene onto the sensor plane. 
However, the camera image plane is never perfectly perpendicular to the 
sensor axis (i.e. a small misalignment is often present). Furthermore, the 
digitization process has also to be taken into account (i.e. pixels are non-
square and are aligned in a linear but non-rectangular grid). In order to 
take also into account the orientation of the camera plane with respect to the 
sensor plane, we should add to our model a three degree-of-freedom rotation 
Rc SO(3). Concerning the digitization process, we should also introduce ∈
the so called intrinsic parameter matrix Kc ∈ R3×3 . The composition of 
these two matrices is Hc = KcRc that is a Homography tranformation from 
the sensor plane to the camera plane. As observed in [20], when the mis­
alignment between the camera and sensor plane is small, the Homography 
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transformation is well approximated by an Affine tranformation that trans­
forms the circular field of view into an elliptical one in the digital image (Fig. 
2.11(b), 2.11(c)). The Affine transformation is: 

′′ ′ u = Au + t, (2.9) 

′ where u , expressed in pixels, is a point in the camera image plane, A ∈ R
2×2 ,


and t ∈ R.

In Fig. 2.11(b), 2.11(c), the two reference axes are shown for the case of a


′′ catadioptric system. In the dioptric case, the sign of u would be reversed 
because of the absence of a reflective surface. 
From now on, all coordinates will be expressed in the coordinate system 
placed in O, with the z-axis aligned with the sensor axis (see Fig. 2.11(a)). 

The complete image formation model capturing the projection of a scene 
′ point X to the digital image point u can be divided into three parts: 

′′ 1. A central projection of scene point X to vector p . 
2. A non-perspective optics or mirror reflection described by functions h, 

′′ ′′ g mapping p to u . 
′′ 3. A digitization process transforming point u (on the sensor plane) to 

′ u (on the digital image plane). 

The complete image formation model can be written as: 

� 

′′ ′′ 
� � 

′ ′ 
� 

′′ h (�u �) u h (�Au + t�) (Au + t)
p = = ′′ ′ g (�u �) g (�Au + t�) . (2.10) 

Thus, by using (2.10) and by combining it with Equations (2.2), (2.3), the 
complete projection equation for omnidirectional cameras is: 

� 

′ ′ 
� 

λp = λ
h (�Au + t�) (Au + t)′′ 

g (�Au + t�) = P · X. (2.11) ′ 

2.3 The Taylor model 

In this section, we present our unified model for dioptric and catadioptric 
central omnidirectional cameras [1,2]. Instead of using two distinct functions 
h, g, we chose to use just one function g/h. This allows us to write h = 1 
and thus we have to determine g that verifies the projection equation: 

′′ 
′′ u 

λp = λ ′′ = P X (2.12) 
g (�u �) · 
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a b c 

Figure 2.11: (a) Coordinate system in the catadioptric case. (b) Sensor plane 
(metric coordinates). (c) Camera image plane (pixel coordinates). (b) and 
(c) are related by an Affine transformation. 

Instead of using a specific expression for g depending on the sensor in use 
(as in Sections 2.2.1, 2.2.2), we chose a generalized parametric form which is 
suitable to different kinds of sensors. The reason of doing so is that we want 
this model to compensate for any misalignment between the focus point of 
the mirror (or the fisheye lens) and the camera optical center. Furthermore, 
we desire our generalized function to approximately hold with those sensors 
where the single viewpoint property is not exactly verified (e.g. generic fisheye 
cameras). In [1], we proposed the following polynomial form for g: 

′′ ′′ ′′ 2 ′′ N 
g(�u �) = a0 + a1�u + ... + aN �u (2.13) �+ a2�u 

where the coefficients a0, a1, ..., aN and the polynomial degree N are the 
calibration parameters; they will be determined in Chapter 3. As we observed 
in [2], this polynomial description of g can be further simplified by considering 
that all previous definitions of g (as in Sections 2.2.1, 2.2.2) always satisfy 
the following: 

dg � 
� = 0, (2.14) 

dρ ρ=0 

′′ with ρ = �u �. This property holds for hyperbolic, parabolic, elliptical 
mirrors as well as for fisheye cameras (see [20, 22, 25]). This simplification 
allows us to impose a1 = 0 and thus (2.13) can be rewritten as: 

′′ ′′ 2 ′′ N 
g(�u �) = a0 + a2�u + ... + aN �u (2.15) 

As a consequence, the number of calibration parameters reduced from N + 1 
to N . 

Using (2.15), we can rewrite the image formation model (2.10) as: 
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� 

′′ 
� 

′′ ′′ 
� 

u′′ h (�u �) u 
=p = 

g (�u ′′ �) a0 + a2�u ′′ 
2 

+ ... + aN �u ′′ 
N � � 

(2.16) 

′′ ′ with �u � = Au + t 

Thus, using (2.12) our projection equation for central omnidirectional cam­
eras can be read as: 

� 

′′

′′ u


λp = λ = P X 
a0 + a2�u ′′ 

2 
+ ... + aN �u ′′ 

N · � � 
(2.17) 

′′ ′ with �u � = Au + t 

In the remainder of this thesis, we will always use the Taylor model. 
Our calibration procedure to determine the parameters of this model will be 
described in Chapter 3. 

2.4 Conclusion 

In this chapter, we explained the concept of central cameras, that is, camera 
possessing a single effective viewpoint. As we mentioned in Section 2.1.1, the 
reason the single viewpoint property is so desirable is that it permits the gen­
eration of geometrically correct perspective images from the highly distorted 
omnidirectional images. Furthermore, it allows to extend to omnidirectional 
cameras the already known epipolar geometry that is valid for standard per­
spective cameras. 

Central omnidirectional cameras exist in dioptric and catadioptric form. 
The former uses lenses with a field of view larger than 180◦ (i.e. fisheye 
lenses), the latter uses a combination of mirrors and lenses. As proved by 
Baker and Nayar in [16], the class of catadioptric sensors satisfying the single 
view point property can be built by combining an orthographic camera with a 
paraboloidal mirror or a perspective camera with with a hyperboloidal, ellip­
soidal, or planar mirror. Concerning dioptric cameras, Micusik et all. [20,24], 
showed that in the recent years fisheye lenses have been built to satisfy the 
single viewpoint property (e.g. Nikon, Sigma lenses). 

In Section 2.2, we used the Micusik’s formalism to review the unified 
imaging model by Geyer and Daniilidis [18] for omnidirectional catadioptric 
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cameras (e.g. paraboloidal, hyperboloidal, ellipsoidal mirror) and the Mi-
cusik’s models for some dioptric cameras (e.g. Nikon, Sigma lenses). Finally 
in Section 2.3, we described our new unified imaging model that uses a sim­
plified Taylor polynomial expansion. 

Due to its generality and despite its simplicity, we will see in the next 
chapters that the Taylor model has great properties such as: 

•	 it is able to fit very well both catadioptric and dioptric cameras; 
•	 especially for dioptric cameras, where an exact analytic model cannot 

be inferred, the Taylor model provides an approximation whose perfor­
mance is comparable with those proposed in previous works and can 
then be used in lieu of them; 
•	 because of the linearity of the model with respect to its coefficients, it 

leads to a closed form solution for the calibration parameters that can 
be solved using linear minimization followed by non-linear refinement; 
•	 thanks to the efficiency of computing the calibration parameters, cal­

ibration methods can be devised that do not require the visibility of 
the circular external boundary of the mirror or lens (see 3.2.4 or [26]). 

In the remainder of this thesis, we will always use our Taylor model. 
The calibration procedure to determine the parameters of this model will be 
described in Chapter 3. 



Chapter 3


Omnidirectional camera 
calibration 

In this chapter, we present a novel and flexible technique for cal­
ibrating central omnidirectional cameras. This technique takes 
advantage of the Taylor model introduced in the previous chapter. 
The proposed method only requires the camera to observe a pla­
nar pattern shown at a few different positions and orientations. 
Either the camera or the pattern can be freely moved. No a priori 
knowledge of the motion is required, nor a prior initialization of 
the camera model. A closed form solution is given for the param­
eters of the camera model. The performance of the approach is 
evaluated through experiments on both simulated and real data. 
Furthermore, the implementation of a toolbox for Matlab, which 
implements the proposed calibration procedure, is described. Com­
pared with classical techniques, which rely on a specific model of 
the omnidirectional camera, the proposed procedure is independent 
of the sensor, easy to use, and flexible. 

3.1 Introduction 

3.1.1 State of the art 

ACCURATE calibration of a vision system is necessary for any computer 
vision task requiring to extract metric information of the environment 

from 2D images, like in ego-motion estimation and structure from motion. 

27 
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While a number of calibration methods has been developed for standard per­
spective cameras [11, 27], little work on omnidirectional cameras has been 
done. 

Previous works on omnidirectional camera calibration can be classified 
into two different categories. The first one includes methods which exploit 
prior knowledge about the scene, such as the presence of calibration pat­
terns [28,29] or plumb lines [30]. The second group covers techniques that do 
not use this knowledge; this includes calibration methods from pure rotation 
or planar motion of the camera [31], and self-calibration procedures, which 
are performed from point correspondences and epipolar constraint through 
minimizing an objective function [24, 32]. 

All mentioned techniques allow obtaining accurate calibration results but 
primarily focus on particular sensor types (e.g. hyperboloidal and paraboloidal 
mirrors or fisheye lenses). Furthermore, some of them require special setting 
of the scene and expensive equipment [29, 31]. For instance in [29] a fisheye 
lens with a 183◦ field of view is used as an omnidirectional sensor. Then, 
the calibration is performed by using a half-cylindrical calibration pattern 
perpendicular to the camera sensor, which rotates on a turntable. 
In [30, 32], the authors treat the case of a parabolic mirror. In [30], it is 
shown that vanishing points lie on a conic section which encodes the entire 
calibration information. Thus, the projections of two sets of parallel lines 
suffice for the intrinsic camera calibration. However, this property does not 
apply to non-parabolic mirrors. Therefore, the proposed technique cannot 
be easily generalized to other kinds of sensors. 

In contrast with the techniques mentioned so far, the methods described 
in [24, 32, 33] fall in the self-calibration category. These methods require no 
calibration pattern, nor a priori knowledge about the scene. The only as­
sumption is the capability to automatically find point correspondences in a 
set of panoramic images of the same scene. Then, calibration is directly per­
formed by epipolar geometry by minimizing an objective function. In [32], 
this is done by employing a parabolic mirror, while in [24, 33] a fisheye lens 
with a view angle greater than 180◦ is used. However, besides focusing on 
particular sensor types, the mentioned self-calibration techniques may suffer 
in case of tracking difficulties and of a small number of features points [34]. 

The calibration methods described so far focus on particular sensor types, 
such as parabolic and hyperbolic mirrors or fish-eye lenses. In contrast with 
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these methods, in the last years, novel calibration techniques have been de­
veloped, which apply to any central omnidirectional camera. For instance, 
in [33], the authors extend the geometric distortion model and the self-
calibration procedure described in [24], including mirrors, fisheye lenses, and 
non-central cameras. In [19, 35], the authors describe a method for central 
catadioptric cameras using geometric invariants. They show that any central 
catadioptric system can be fully calibrated from an image of three or more 
lines. In [36], the authors present a general imaging model which encompasses 
most projection models used in computer vision and photogrammetry, and 
introduce theory and algorithms for a generic calibration concept. Finally, 
in [37, 38] the authors presented a calibration method for calibrating central 
omnidirectional cameras which uses a checkerboard-like calibration pattern; 
the authors used the unified imaging model by Geyer and Daniilidis [18]. 

3.1.2 Motivation and outline 

The work described in this chapter also focuses on calibration of any cen­
tral omnidirectional camera but aims at providing a technique that is very 
easy to apply also for the inexpert user. Indeed, this technique requires the 
use of a chessboard-like pattern that is shown by the user at a few different 
positions and orientations. The calibration points are the corner points of 
the chessboard and they are detected automatically using the “chessboard 
detection” algorithm described in [39]. 

The procedure described in this chapter is an extension of the work we 
published in [1–4]. On the author’s webpage, we also provide a toolbox for 
Matlab that implements the proposed calibration procedure [5]. At the same 
time as this toolbox was written and the first results were published [1], we 
found that Mei had also implemented a similar toolbox for Matlab [40]. Al­
though Mei’s toolbox uses a different imaging model, we will briefly discuss 
the main differences with respect to our toolbox in Section 3.5. 

The outline of this chapter is the following. Section 3.2 describes the pro­
posed calibration procedure. Section 3.3 shows several experimental results 
both on simulated and real data. Section 3.4 introduces our Matlab toolbox 
(named OCamCalib) that implements the proposed calibration procedure. 
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3.2 Camera calibration 

According to the Taylor imaging model that has been introduced in Section 
2.3, to calibrate an omnidirectional camera we need to estimate parameters 

′ A, t, a0, a2, ..., and an so that all vectors g(Au + t) satisfy Equation 2.17. 

In our approach, we decided to separate the estimation of these parame­
ters into two stages. In the first one, we estimate the affine parameters A, t. 

′
  

n 

In the other one, we estimate coefficients a0, a2, ..., and an.

Parameters A, t describe the Affine transformation that relates the sensor

plane to the camera plane (Fig. 2.11(b) and 2.11(c)). A is the stretch matrix

and t is the translation vector OcCc (Fig. 2.11(c)).

To estimate A, t, we introduce a method which, unlike other previous works,

does not require the visibility of the circular external boundary of the mirror

(sketched by the ellipse in Fig. 2.11(c)). This method is based on an iterative

procedure that starts by setting A equal to the identity matrix I and t = 0.

This assumption means that the camera plane and the sensor plane initially

coincide. The correct elements of A will be estimated afterwards by non­

linear refinement, while t will be estimated by an iterative search algorithm.

This approach will be detailed in Section 3.2.4 and 3.2.5.

According to this, from now on we assume A = I and t = 0, which means

′′ ′ u = u . Thus, by substituting this relation in Equation (2.17), our projec­

tion equation can be read as follows: 

u 
′′′ λp = λ v  = P X (3.1) 

′ 2 ′ N 
· 

a0 + a2ρ + ...+ aN ρ 

′ ′ ′ ′ ′ where ρ = �u and u , v are the pixel coordinates of the image point u . 
Also observe that now only parameters a0, a2, ..., a need to be estimated. 
From now on, we will refer to these parameters as intrinsic parameters. 

i
j 

During the calibration procedure, a planar pattern of known geometry is 
shown at different unknown positions and orientations which are related to 
the sensor coordinate system by a rotation matrix R ∈ SO(3) and a trans­
lation T ∈ R

3 R and T will be referred to as extrinsic parameters. 
, Y

. 
Let Ii be an observed image of the calibration pattern, Mi

j 
i
j 

i
j[X ,Z ]= 

i
jthe 3D coordinates of its points in the pattern coordinate system, and m = 

[uij , v
i
j ] the correspondent pixel coordinates in the image plane. In this no­

tation, superscript i indicates the observed pattern and subscript j indicates 
the j-th point on the i-th pattern. 
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Since we assumed the pattern to be planar, without loss of generality we have 
i
j = 0. Then, equation (3.1) becomes: Z

i
j 

i
j · 

 

 

 

 

u
i
j 

i
j 

i
jλ = λ v· p 

N2i
j 

i
ja2ρ + ... + aN ρa0 + 

= Pi X· i
j 
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Y  (3.2) = r r · 

i 
1, ri 2

i 
3 are the column vectors of Ri .where r , r

Therefore, in order to solve for camera calibration, the extrinsic parameters 
have also to be determined for each pose of the calibration pattern. 

3.2.1 Estimation of the extrinsic parameters 

Before describing how to determine the extrinsic parameters, let us eliminate 
the dependence from the depth scale λij . This can be done by multiplying 

i
jboth sides of equation (3.2) vectorially by p : 

i 
2 Ti
� 

· 

 

 

i
j 

 

X
i
j 

i
j × p ij 

i
j 

i 
1 

i
j 

1 
Y λ 0· p = p × r r = 

i
j 
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 

i
j 

 

Xu
i
j 

i 
2 Ti
� 

·  i 
1 r i

j 

1 
Y  0. (3.3) v  × r = 

N2i
j 

i
ja0 + a2ρ + ... + aN ρ

Now, let us focus on a particular observation i of the calibration pattern. 
From (3.3), we have that each point pj on the pattern contributes three ho­
mogeneous equations (we removed superscript i to facilitate the reading): 
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vj (r31Xj + r32Yj + t3) − g(ρj ) (r21Xj + r22Yj + t2) = 0 (3.4) 

g(ρj ) (r11Xj + r12Yj + t1) − uj (r31Xj + r32Yj + t3) = 0 (3.5) 

uj (r21Xj + r22Yj + t2) − vj (r11Xj + r12Yj + t1) = 0 (3.6) 

Nwith g(ρj ) = a0 +a2ρj 
2 +...+aN ρj . Observe that here Xj , Yj , Zj are known 

and so are uj , vj . Also, observe that only (3.6) is linear in the unknown r11, 
r12, r21, r22, t1, t2. Thus, by stacking all the unknown entries of (3.6) into a 
vector, we can rewrite Equation (3.6) for L points of the calibration pattern 
as a system of linear equations: 

M H = 0, (3.7) · 

where 

H = [r11, r12, r21, r22, t1, t2]T 

and 
  

−v1X1 −v1Y1 u1X1 u1Y1 −v1 u1 

M = 
 . . . . . . . . . . . .  
 . . . . . .  

−vLXL −vLYL uLXL uLYL −vL uL 

A linear estimate of H can be obtained by minimizing the least-squares 
2 2

criterion min �M , subject to �H� = 1. This is accomplished by using H�· 
the Singular Value Decomposition (SVD). The solution of (3.7) is known up 
to a scale factor which can be determined uniquely since vectors r1, r2 are 
orthonormal. Because of the orthonormality, the unknown entries r31, r32 

can also be computed uniquely. 

To resume, the first calibration step allows us to determine the extrinsic 
parameters r11, r12, r21, r22, r31, r32, t1, t2 for each pose i of the calibra­
tion pattern except for the translation parameter t3. Parameter t3 will be 
computed in the next step which concerns the estimation of the intrinsic 
parameters. 
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3.2.2 Estimation of the intrinsic parameters 

In the previous step, we exploited Equation (3.6) to find the camera extrin­
sic parameters. Now, we substitute the estimated values in Equations (3.4), 
(3.5), and solve for the camera intrinsic parameters a0, a2, ..., an that describe 
the shape of the imaging function g. At the same time, we also compute the 
unknown ti for each pose of the calibration pattern. 3 

Similarly to what we did above, we stack all the unknown entries of (3.4), 
(3.5) into a vector and rewrite the equations as a system of linear equations. 
But now, we incorporate all K observations of the calibration pattern. We 
obtain the following system: 
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where 
i
j 

i
j 

i X21 + r i
j 

i Y22 + ti ,2A = r

i
j 

i
j 

i
j 

i X31
i
j 

i Y32B + r= v r , 

i
j 

i
j 

i X11 + i
j 

i Y12 + ti ,1C = r r

i
j 

i
j 

i
j 

i X31 + r i
j 

i Y32D = u r . 

The linear least-squares solution of (3.8) can be obtained through the 
pseudoinverse-matrix method and so the intrinsic parameters a0, a2, ..., an 
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are determined. 

To compute the best polynomial degree N , we start from N = 2; then, 
we increase N by unitary steps and compute the average reprojection error 
of all calibration points. The procedure stops when the error is below a given 
threshold ǫ. 

3.2.3	 Linear refinement of the intrinsic and extrinsic pa­
rameters 

To resume, the second linear minimization step described in Section 3.2.2 
computes the intrinsic parameters of the camera and simultaneously calcu­
late the remaining extrinsic ti .3 

The next two steps, which are going to be described here, aim at refining 
this primary estimation. This refinement is still performed by linear mini­
mization. In Section 3.2.5, we will apply a non-linear refinement based on 
the maximum likelihood criterion. The structure of the linear refinement al­
gorithm is the following: 

1. The first step uses intrinsic parameters a0, a2, ..., an that were esti­
mated in Section 3.2.2 and recomputes all extrinsic parameters r11, 
r12, r21, r22, r31, r32, t1, t2, t3 by solving all together Equations (3.4), 
(3.5),(3.6). The problem leads to a linear homogeneous system which 
can be solved, up to a scale factor, using SVD. Then, the scale fac­
tor is determined uniquely by exploiting the orthonormality between 
vectors r1, r2. 

2. In the second step, the extrinsic parameters recomputed in the first 
stage are substituted into Equations (3.4), (3.5) to further refine the 
intrinsic parameters. The problem leads to a linear system, which can 
be solved as usual by using the pseudoinverse-matrix method. 

3.2.4	 Detection of the center of distortion 

A peculiarity of our calibration technique is that it requires the minimum 
user interaction. One of the features that accomplishes this task is its capa­
bility of identifying the center of the distortion Oc (Fig. 2.11(c)) even when 
the external boundary of the mirror (or lens) is not visible in the image. 

At the beginning of Section 3.2, we made the following assumptions for A 
and t, namely A = I and t = 0. Then, we derived the equations for solving 
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Figure 3.1: (a) When the position of the center is correct, the 3D points of the 
checker board do correctly back-project (green rounds) onto the calibration 
points (red crosses). (b) Conversely, when the position of the center is wrong, 
the points do not back-project onto the real calibration points. 

for the intrinsic and extrinsic parameters, which are valid only under those 
assumptions. 
In Fig. 3.1(a), can be seen what happens when the position of the center is 
correct. The red crosses are the input calibration points selected by the user. 
The green rounds are the 3D points reprojected onto the images according 
to the intrinsic and extrinsic parameters estimated by the calibration. As 
can be seen, the 3D points perfectly overlay the input points, meaning that 
the calibration worked properly. Fig. 3.1(b) shows the result when the input 
position of the center is wrong, that is, when the reprojection error is large. 
Motivated by this observation, we performed many calibration trials using 
different center positions and, for each trial, we computed the Sum of Squared 
Reprojection Errors (SSRE). As a result, we verified that the SSRE always 
has a global minimum at the correct center location. 
This result leads us to an exhaustive search of the center of distortion Oc, 
which stops when the difference between two potential center locations is 
smaller than a certain ǫ (we used ǫ = 0.5 pixels). The algorithm is the fol­
lowing: 

1. At each step of this iterative search, a fixed number of candidate center 
locations is uniformly selected from a given image region (see Fig. 3.2). 

2. For each one of these points, calibration is performed using that point 
as a potential center location and SSRE is computed. 

3. The point providing the minimum SSRE is taken as a potential center. 
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Figure 3.2: An omnidirectional image used for calibration with a chessboard 
used as a calibration pattern. The red points identify the candidate center 
locations taken during the first step of the algorithm. At each step, the candi­
date points occupy a smaller and smaller region around the final convergence 
point. 

4. The search proceeds by selecting other candidate locations in the re­
gion around that point and steps 1, 2, and 3 are repeated until the 
stop-condition is satisfied. 

Observe that by using a binary search algorithm the computational cost 
of this iterative search is very low. Indeed, each calibration trial, which im­
plements the technique described in the previous sections, can be performed 
in Matlab in a negligible amount of time. Using eleven iterations, the algo­
rithm takes less than 2 seconds on a normal notebook to stop. 

At this point, the reader might be wondering how we estimate the ele­
ments of matrix A. In fact at the beginning of Section 3.2 we assumed A = I. 
The iterative algorithm mentioned above exhaustively searches the location 
of the center Oc without modifying A. The reason of doing so is that the 
eccentricity of the external boundary of an omnidirectional image is usually 
close to zero, which means A ≈ I. Therefore, we chose to estimate A in a 
second stage by using a non-linear minimization method. This is described 
in Section 3.2.5. 
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3.2.5 Non-linear refinement 

The linear solution given in Sections 3.2.3 and 3.2.4 is obtained through min­
imizing an algebraic distance which is not physically meaningful. Because of 
this, we chose to refine the calibration parameters through maximum likeli­
hood inference. 

Let us assume that we are given K images of the calibration pattern, 
each one containing L corner points. Furthermore, let us assume that the 
image points are corrupted by independent and identically distributed noise. 
Then, the maximum likelihood estimate can be obtained by minimizing the 
following functional: 

K L 

E = �uj
i − û(Ri , Ti , A, Oc, a0, a2, ..., aN , X

i
j ) 
�2 

(3.9) 
i=1 j=1 

where û(Ri , Ti , A, Oc, a0, a2, ..., aN , Xi
j ) is the reprojection of the scene 

point Xi on the i-th pattern according to Equation (3.2) and Ri and Ti 
j 

describe the orientation and position of the pattern. In our implementation, 
Ri is parameterized by a 3×1 vector related to Ri by the Rodrigues formula. 
Observe that in 3.9 we incorporated both the stretch matrix A and the center 
of distortion Oc. 

By minimizing the functional defined in (3.9), we actually find the cali­
bration parameters which minimize the reprojection error. In order to speed 
up the convergence, we decided to split the non-linear minimization into two 
steps. The first one refines the extrinsic parameters, ignoring the intrinsic 
ones. The second step uses the extrinsic parameters just estimated and re­
fines the intrinsic ones. By performing many simulations, we found that this 
splitting does not affect the final result with respect to a global minimization. 

To minimize (3.9), we used the Levenberg-Marquadt algorithm [41,42] as 
implemented in the Matlab function lsqnonlin. The algorithm requires an 
initial guess which can be obtained using the linear technique described in 
Section 3.2.3. As a first guess for A, we used the identity matrix I, while for 
Oc we used the position estimated through the iterative procedure explained 
in Section 3.2.4. 
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Figure 3.3: A picture of our simulator showing several calibration patterns 
and the virtual omnidirectional camera at the axis origin. 

3.3 Results 

In this section, we evaluate the performance of the proposed calibration pro­
cedure through several experimental results on both simulated and real data. 

3.3.1 Simulations 

The reason for using simulation is that we can monitor the actual performance 
of the calibration and compare the results with a known ground truth. The 
simulator we developed allows us to choose both the intrinsic parameters 
(i.e. imaging function g) and the extrinsic parameters (i.e. the rotation and 
translation matrices of the simulated pattern, that is, Ri , Ti). Furthermore, 
we can also choose the size of the virtual pattern and the number of calibra­
tion points as in the real case. A pictorial image of the simulated scenario is 
shown in Fig. 3.3. 

Our virtual calibration pattern is a planar grid containing 48 corner points 
which are arranged in 6 rows and 8 columns (in the remainder of this section 
these points will be also referred to as calibration points). The size of the 
simulated pattern is 150× 210mm. Concerning g, we chose a 4th order poly­
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Figure 3.4: The RMS reprojection error as a function of the noise level σ.
For every σ, 100 calibration trials were performed. Results with the linear
minimization alone (dashed line in blue) and with the non-linear refinement
(solid line in red). Both units are in pixel.

nomial whose parameters are set according to those obtained by calibrating
a real omnidirectional camera. Then, we set to 900 × 1200 pixels the image
size of the virtual camera.

Performance with respect to the noise level

In this simulation experiment, we studied the robustness of our calibration
technique in case of inaccuracy in detecting the calibration points. To this
end, we generated 14 synthetic poses of the calibration pattern and all cali-
bration points were reprojected onto the camera plane. Then, Gaussian noise
with zero mean and standard deviation σ was added to the reprojected image
points. We varied the noise level from σ = 0.1 pixels to σ = 3.0 pixels and for
each σ we performed 100 independent calibration trials. The results shown
are the average.

Figure 3.4 plots the Root Mean Square (RMS) reprojection error as func-
tion of σ. The reprojection error is defined as the distance in pixels between
the reprojected 3D points and the input image points. Figure 3.4 shows both
the plots obtained using either the linear minimization method alone or with
non-linear refinement. As can be seen, the error increases linearly with the
noise level in both cases. Observe that the error of the non-linear estimation
is always less than that of the linear estimation. Furthermore note that when
σ = 1.0 pixels, which is larger than the noise introduced by the user in prac-
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Figure 3.5: An image of the calibration pattern, projected onto the simulated 
omnidirectional image. Calibration points are affected by noise with σ = 3.0 
pixels (blue rounds). Ground truth (red crosses). Reprojected points after 
the calibration (red squares). 

tical situations (e.g. when clicking on the points), the error of the non-linear 
method is less than 0.4 pixels. 

Figure 3.5 shows the points of a simulated grid after reprojection onto the 
image. The ground truth is represented by red crosses, while the blue rounds 
represent the calibration points perturbed by noise with σ = 3.0 pixels. Note 
that despite the large amount of noise, calibration was able to compensate 
for the large error introduced. Indeed, after calibration the reprojected cali­
bration points (red squares) appear very close to the ground truth. 

We also wanted to evaluate the accuracy in estimating the extrinsic pa­
rameters Ri and Ti of each pattern. To this end, Fig. 3.6 plots the mean 

) as a 
function of σ, while Fig. 3.7 plots the mean absolute error of the plane nor­
mal. The results are shown for all 14 poses of the pattern. 

Observe that the position error in most cases increases linearly with σ. 
Furthermore, observe that the error ranges on average between 0 and 4mm. 
There is however one case (the first plot upper left in Fig. 3.6) where the 
position error reaches 40mm; in fact, this error belongs to the most angled 
and distant view of the pattern (i.e. the pattern labeled as no. 1 in Fig. 3.3). 
The same comment concerns Fig. 3.7. In this case, the error of the plane 
normal ranges on average between 0 and 2 degrees. In some cases the error 

iZ, 0
iY, 0 

iabsolute error (measured in ) of the grid origin (i.e. Xmm 0
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Figure 3.6: The absolute error (mm) of the grid positions vs. σ (pixels). 
The error along the x, y, and z coordinates is represented respectively in red, 
blue, and green. 
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Figure 3.7: The absolute error (degrees) of the plane normals vs. σ (pixels). 
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Figure 3.8: Mean reprojection error vs. the number of images for different 
polynomial degrees: 2nd order (black ×), 3rd order (blue and 4th order ·) 
(red ◦). 

is even smaller than 1 degree. As before, the largest error occurs for the first 
plot upper left. 

3.3.2 Real experiments 

Performance w.r.t. the number of images and to the polynomial 
degree 

In this section, we present some calibration results on real data. In these 
experiments, we calibrated a catadioptric system composed of a KAIDAN 
360◦ One VR hyperbolic mirror and a SONY CCD camera the resolution of 
900 × 1200 pixels. In the first experiment, we investigated the performance 
of our technique with respect to the number of images of the calibration grid 
for a given polynomial degree. We varied the number of images from 2 to 11, 
and for each set we performed calibration and computed the RMS reprojec­
tion error. The RMS error as a function of the number of images is plotted 
in Fig. 3.8 for different polynomial degrees. Note that the error decreases as 
the number of images increases. Furthermore, by using a 4th-order polyno­
mial we obtain the minimum RMS error (equal to 0.27 pixels when using 11 
images). A 3rd-order polynomial also provides a similar performance when 
more than four images are taken. Conversely, when using a 2nd-order poly­
nomial, the RMS error is larger. Thus, in practical situations we always used 
a 4th-order polynomial. 

In Table 3.1, the RMS error and the standard deviation (STD) after non­
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Figure 3.9: Two sample images of the calibration pattern used during our 
experiments. The red “+” are the input points, while the “o” are the repro­
jected points. 

linear refinement are shown for all eleven images contained in the dataset; 
the results are obtained using a 4th-order polynomial. In Fig. 3.10, the 
cartesian distribution of the reprojection error for all images of the set is 
shown; different colors are used to distinguish the contribution of each image. 

Table 3.1: Reprojection error for the hyperbolic mirror 

Pattern RMS (pixels) STD (pixels) 

1 0.27 0.21 
2 0.31 0.17 
3 0.29 0.22 
4 0.30 0.15 
5 0.24 0.12 
6 0.28 0.14 
7 0.30 0.14 
8 0.30 0.19 
9 0.28 0.16 
10 0.27 0.16 
11 0.34 0.17 

Performance with different cameras 

As we mentioned in Section 2.3, our camera model encompasses both cata­
dioptric and dioptric central omnidirectional cameras. To evaluate the cal­
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Figure 3.10: Reprojection error 

ibration performance on different cameras, we tested the Nikon and Sigma 
fisheye lenses and parabolic and hyperbolic mirrors. For each sensor, we 
collected ten images and applied the calibration procedure described in this 
chapter. The values of RMS error and standard deviation for each camera 
are shown in Table 3.2. 

Table 3.2: Reprojection error for different cameras 

Pattern RMS (pixels) STD (pixels) 

Hyperbolic mirror 0.28 0.20 
Parabolic mirror 0.31 0.18 
Nikon fisheye 0.30 0.23 
Sigma fisheye 0.33 0.18 

Structure from motion 

An indirect method to evaluate the quality of calibration for a real camera 
is by recovering the 3D structure of an object from its images and checking 
then the quality of the reconstruction. This problem is well known in the 
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Figure 3.11: Trihedron 

computer vision community as “structure from motion”. 

The object we used in this experiment was a trihedron made up of three 
orthogonal chessboard-like patterns of known geometry (Fig. 3.11). After 
calibrating the camera, we took two images of the trihedron from two differ­
ent unknown positions (Fig. 3.12). Then, we selected manually several point 
correspondences from both views and we applied the 8-point algorithm [43,44] 
followed by bundle adjustment. The results of the reconstruction, before and 
after rendering, are shown in Fig. 3.13 and 3.14 respectively. 

As the reconstruction with one single camera can be done up to a scale 
factor, we recovered the scale factor by comparing the average size of a re­
constructed checker with the real size of a checker. In the end, we computed 
the angles between the three planes fitting the reconstructed points and we 
found the following values: 94.6◦, 86.8◦ and 85.3◦ . Moreover, the average 
distances of these points from the fitted planes were respectively 0.05 cm, 
0.75 cm and 0.07 cm. Finally, being the size of each checker 6.0 cm × 6.0 
cm, we also calculated the dimension of every reconstructed checker and we 
found an average error of 0.3 cm. These results comply with the expected 
orthogonality of the surfaces and the size of the checkers in the ground truth. 

3.4	 Implementation of the OCamCalib Tool­
box 

The reason we implemented the OcamCalib Toolbox for Matlab is to allow 
any user to easily and quickly calibrate his own omnidirectional camera. The 
OCamCalib toolbox can be freely downloaded from our webpage (or google 
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Figure 3.12: Input images for “structure from motion” with the points to be 
recovered (in red). 

Figure 3.13: Result of “structure from motion”. 

Figure 3.14: Three views of two recovered faces after rendering. 
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Figure 3.15: The graphical user interface of the OCamCalib Toolbox 

for "ocamcalib"). The outstanding features of the toolbox are the following: 

1. Capability of calibrating different kinds of central omnidirectional 
cameras without any knowledge about the parameters of the camera 
or about the shape of the mirror. 

2. Automatic detection of the center. 
3. Visual feedback about the quality of the calibration result by repro­

jecting the 3D points onto the input images. 
4. Completely automatic detection of the corner points of the pattern. 

The user interface of the toolbox is depicted in Fig. 3.15. After having 
collected a few pictures of a chessboard shown all around the omnidirectional 
camera (see figure 3.9), the images can be loaded for calibration (i.e. use 
"Read names"). In the second step, the user can start selecting the corner 
points of the pattern using the "Extracting grid corners" tool. By this tool, 
the toolbox attempts to find all corner points of each view of the pattern by 
following the algorithm described in [39]. In case it fails, the user is asked to 
click on the missing points. To achieve high accuracy in the selection of the 
input points, the clicking is assisted by a Harris corner detector [45]. 

In the third step, the calibration can be done by means of two tools. The 
"Calibration" tool will ask the user to specify the position of the center in case 
he knows it; if not, the user can directly use the "Find center" tool, which 
applies the center detection algorithm described in 3.2.4. In both cases, cal­
ibration is done using the linear estimation technique mentioned in Section 
3.2.3. The optimal calibration parameters in the maximum likelihood sense 
can be estimated by the "Calibration Refinement" tool, which implements 
the non-linear minimization method described in Section 3.2.5. After the 
previous steps, the user can choose among several tools: 

1. "Show Extrinsic" visualizes the reconstructed 3D poses of the grid in 
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the camera reference frame (as in Fig. 3.3). 
2. "Analyze error" visualizes the reprojection error of each calibration 

point along the xy-axes (Fig. 3.10). 
3. "Reproject on images" reprojects all the 3D points onto the images 

according to the calibrated parameters (Fig. 3.9). 
4. "Recompute corners" attempts to recompute automatically the posi­

tion of every corner point that was hand-selected by the user. This is 
done by using the reprojected 3D points as initial guess locations for 
the corners. 

After the calibration, all parameter can be accessed through structure ocammodel. 
The calibrated camera model can then be used for other applications by 
means of the following two functions: 

1. m = world2cam(M, ocammodel) reprojects the 3D point M onto the 
image and returns its pixel coordinates m. 

2. M = cam2world(m, ocammodel) for every image point m returns the 
3D coordinates of the correspondent vector M emanating from the 
single effective viewpoint. This function is the inverse of the previous 
one. 

3.5 Conclusion 

In this chapter, we presented a new technique and toolbox for calibrating 
central omnidirectional cameras, which use the new unified imaging model 
(i.e. Taylor model) presented in Section 2.3. 
The proposed procedure is very fast and completely automatic as the user 
is only asked to collect a few images of a chessboard-like pattern, while the 
detection of the input points is performed automatically by the toolbox itself. 
No a priori knowledge of the motion of the pattern is required, nor a prior 
initialization of the camera model. The calibration parameters (i.e. the coef­
ficients of the Taylor polynomial, the Affine transformation, and the extrinsic 
parameters Ri , Ti) are estimated by solving a four-step least-squares linear 
minimization problem (Section 3.2.3), followed by a non-linear refinement 
which is based on the maximum likelihood criterion (Section 3.2.5). 

Unlike all previous methods, we described also an algorithm to compute 
the center of distortion in omnidirectional images without exploiting the vis­
ibility of the external border of the mirror (or lens). The center is automati­
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cally computed starting from the input points themselves (Section 3.2.4). 

Furthermore, we used simulated data to study the robustness of our cal­
ibration technique in case of inaccuracy in detecting the calibration points. 
We showed that the non-linear refinement significantly improves the calibra­
tion accuracy and that accurate results can be obtained by using only a few 
images (Section 3.3.1). 

Then, we calibrated four different and real omnidirectional cameras, both 
dioptric and catadioptric (Section 3.3.2). The calibration was very accurate 
as for all cameras we obtained a reprojection error of about 0.3 pixels with 
an image resolution of 900×1200 pixels. We also showed the accuracy of the 
result with a “structure from motion” experiment (Section 3.3.2). 

In Section 3.4, we provided a toolbox for Matlab (named OCamCalib) 
which implements the entire calibration procedure; this toolbox is available 
on-line at the authors’ web page [5]. 
Furthermore, as we mentioned in Section 3.1.2, recently a similar toolbox for 
Matlab for calibrating central omnidirectional cameras has been implemented 
by Mei [40]. In contrast to our method, Mei’s toolbox takes advantage of the 
unified imaging model by Geyer and Daniilidis [18]. 
A comparison between the two methods is not the purpose of this chapter, 
however, except for the different imaging models they use, the two methods 
mainly differ in the way the center of distortion is computed. In Mei’s toolbox 
this is done by exploiting the visibility of the circular external border of the 
mirror; in particular, a circle is fitted to the border and the coordinates of the 
center are then extracted from this circle. Conversely, our method does not 
rely on the visibility of the mirror border; indeed, it just uses the coordinates 
of the input points to run the iterative algorithm described in Section 3.2.4. 
This allows our method to work also when the mirror boundary is not visible. 
Nevertheless, a comparison of the performance between ours and Mei’s method 
has been recently published by Frank et all. in [26]. 



Chapter 4


Feature extraction and 
matching 

This chapter presents a new and robust method for extracting and 
matching vertical features in omnidirectional images. Matching 
robustness is achieved by creating a descriptor which is unique and 
distinctive for each feature. Furthermore, the proposed descriptor 
is invariant to rotation and slight changes of il lumination. The 
robustness of the approach is validated through real experiments 
with a wheeled robot equipped with an omnidirectional camera. We 
show that vertical lines are very well extracted and tracked during 
the motion of the robot. 

4.1 Introduction 

4.1.1 State of the art 

One of the most important problems in vision based robot navigation systems 
is the search for correspondences in images taken from different viewpoints. 
In the last decades, the feature correspondence problem has been largely in­
vestigated for standard perspective cameras. Furthermore, several works have 
provided robust solutions for wide-baseline stereo matching, structure from 
motion, ego-motion estimation, and robot navigation (see [46–53]). Some of 
these works normalize the region around each detected feature using a local 
affine transformation, which attempts to compensate for the distortion in­
troduced by the perspective projection. However, such methods cannot be 

51 
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directly applied to images taken by omnidirectional imaging devices because 
of the non-linear distortions introduced by their large field of view. 

In order to apply those methods, one needs first to generate a perspective 
view out of the omnidirectional image, provided that the imaging model is 
known and that the omnidirectional camera possesses a single effective view­
point [15]. An application of this approach can be found in [54]. There, the 
authors generate perspective views from each region of interest of the om­
nidirectional image. This image unwrapping removes the distortions of the 
omnidirectional imaging device and enables the use of state-of-the-art wide-
baseline algorithms designed for perspective cameras. 
Nevertheless, other researchers have attempted to apply to omnidirectional 
images standard feature detectors and matching techniques which have been 
traditionally employed for perspective images. In [55], for instance, the au­
thors check the candidate correspondences between two views using RANSAC 
algorithm. 

Finally, other works have been developed, which extract one-dimensional 
features from new images called Epipolar plane images, under the assumption 
that the camera is moving on a flat surface [56]. These images are generated 
by converting each omnidirectional picture into a 1D circular image, which 
is obtained by averaging the scan lines of a cylindrical panorama. Then, 1D 
features are extracted directly from such kinds of images. 

In this chapter, we deal with real world vertical features because they 
are predominant in structured environments. In our experiments, we used a 
wheeled robot equipped with a catadioptric omnidirectional camera with the 
mirror axis perpendicular to the plane of motion (Fig. 5.4). If the environ­
ment is flat, this implies that all world vertical lines are mapped to radial 
lines on the camera image plane. 

The use of vertical line tracking is not new in the Robotics community. 
Since the beginning of machine vision, roboticians have been using vertical 
lines or other sorts of image measure for autonomous robot localization or 
place recognition. 
Several works dealing with automatic line matching have been proposed for 
standard perspective cameras and can be divided into two categories: those 
that match individual line segments; and those that match groups of line 
segments. Individual line segments are generally matched on their geometric 
attributes (e.g. orientation, length, extent of overlap) [57–59]. Some such 
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Figure 4.1: The robot used in our experimets equipped with encoder sensors 
on the wheels, an omnidirectional camera, and two laser range finders 

as [60–62] use a nearest line strategy which is better suited to image tracking 
where the images and extracted segments are similar. Matching groups of 
line segments has the advantage that more geometric information is available 
for disambiguation. A number of methods have been developed around the 
idea of graph-matching [63–66]. The graph captures relationships such as 
“left of”, “right of”, cycles, “collinear with” etc, as well as topological con­
nectedness. Although such methods can cope with more significant camera 
motion, they often have a high complexity and again they are sensitive to 
error in the segmentation process. 

Besides these methods, other approaches to individual line matching ex­
ist, which use some similarity measure commonly used in template matching 
and image registration (e.g. Sum of Squared Differences (SSD), simple or 
Normalized Cross-Correlation (NCC), image histograms [67]). 
An interesting approach was proposed in [68]. Besides using the topological 
information of the line, the authors also used the photometric neighbourhood 
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of the line for disambiguation. Epipolar geometry was then used to provide a 
point to point correspondence on putatively matched line segments over two 
images and the similarity of the line’s neighbourhoods was then assessed by 
cross-correlation at the corresponding points. 

A novel approach, using the intensity profile along the line segment, was 
proposed in [69]. Although the application of the method was to wide baseline 
point matching, the authors used the intensity profile between two distinct 
points (i.e. a line segment) to build a distinctive descriptor. The descriptor 
is based on affine invariant Fourier coefficients that are directly computed 
from the intensity profile. 

The methods cited above were defined for perspective images but the same 
concepts have been also used by roboticians in omnidirectional images under 
certain circumstances. The use of omnidirectional vision even facilitated the 
task because of the 360◦ field of view (see [70–72]). However, to match ver­
tical lines among different frames only mutual and topological relations have 
been used (e.g. neighborhood or ordering constraints) sometimes along with 
some of the similarity measures cited above (e.g. SSD, NCC). 

4.1.2 Outline 

In this chapter, we describe how we built our robust descriptor for vertical 
lines. We show that the descriptor is unique and very distinctive for each 
feature and is invariant to rotation and slight changes of illumination. We 
characterize the performance of the proposed descriptor on a large image 
dataset by taking into account the sensitiveness to image noise and to other 
different parameters of the descriptor. The robustness of the descriptor is 
validated through real experiments using our robot. This chapter extends 
our previous work [8]. 

The outline of the chapter is the following. First, we describe our proce­
dure to extract vertical lines (Section 4.2) and build the feature descriptor 
(Section 4.3). In Section 4.4, we provide our matching rules. In Section 4.5, 
we compare it with other similarity measures, while the analysis of the per­
formance and the results of tracking are respectively presented in Sections 
4.6 and 4.7. 
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4.2 Vertical line extraction 

Our platform consists of a wheeled robot equipped with an omnidirectional 
camera looking upwards (see Fig. 5.4). In our arrangement, we set the 
camera-mirror system perpendicular to the floor where the robot moves. This 
setting guarantees that all vertical lines are mapped to radial lines on the 
camera image plane (Fig. 4.2) In this section, we detail our procedure to 
extract prominent vertical lines. Our procedure consists of five steps. 
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Figure 4.2: An image taken by our omnidirectional camera. 

The first step towards vertical line extraction is the detection of the image 
center (i.e. the point where all radial lines intersect in). As the circular exter­
nal boundary of the mirror is visible in the image, we used a circle detector to 
determine the coordinates of the center. Note that because the diameter of 
the external boundary is known and does not change dramatically during the 
motion, the detection of the center can be done very efficiently and with high 
accuracy on every frame (this guarantees to cope also with the vibrations of 
the platform). 

The second step is the computation of the image gradients. We compute 
the two components Ix, Iy of the image gradient by convolving the input im­



� 

56 4. FEATURE EXTRACTION AND MATCHING 

age I with the two Sobel masks. From Ix, Iy, we can calculate the magnitude 
M and the phase Φ of the gradients as 

2M = Ix 
2 + Iy , Φ = atan2(Iy, Ix). (4.1) 

Then, we do a thresholding on M, Φ by retaining those vectors whose orien­
tation looks towards the image center up to ±5◦ . This 10◦ tolerance allows 
us to handle the effects of floor irregularities on the appearance of vertical 
lines. After this thresholding, we apply edge thinning and we obtain the 
binary edge map depicted in Fig. 4.3. 
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Figure 4.3: Edge image of Fig. 4.2. 

The third step consists in detecting the most reliable vertical lines. To 
this end, we divide the omnidirectional image into 720 predefined uniform 
sectors, which give us an angular resolution of 0.5◦ . By summing up all bi­
nary pixels that vote for the same sector, we obtain the histogram shown in 
Fig. 4.4. Then, we apply non-maxima suppression to identify all local peaks. 

The final step is histogram thresholding. As observed in Fig. 4.3, there 
are many potential vertical lines in structured environments. In order to keep 
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Figure 4.4: Number of binary pixels voting for a given orientation angle. 

the most reliable and stable lines (e.g. Fig. 4.5), we put a threshold on the 
line length. As observed in Fig. 4.4), we set our threshold equal to 50% of 
the maximum allowed line length, i.e. Rmax − Rmin. Obviously, this choice 
is purely arbitrary and a different criterion could be used depending on the 
purpose (for instance, one can decide to have always a constant number of 
lines per each frame). Another criterion is to have this threshold adaptive. 

¯This can be done by computing the mean l and the standard deviation σl 
of all line lengths in the observed image and keeping only those lines whose 

¯length l satisfies l ≥ l + 3σl. 
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Figure 4.5: Extraction of the most reliable vertical features from an omnidi­
rectional image. 

4.3 Building the descriptor 

In Section 4.4, we will describe our method for matching vertical lines between 
consecutive frames while the robot is moving. To make the feature correspon­
dence robust to false positives, each vertical line is given a descriptor which 
is unique and distinctive for each feature. Furthermore, this descriptor is 
invariant to rotation and slight changes of illumination. In this way, finding 
the correspondent of a vertical line can be done by looking for the line with 
the closest descriptor. In the next subsections, we describe how we built our 
descriptor. 

4.3.1 Rotation invariance 

Given a radial line, we divide the space around it into three equal non-

overlapping circular areas such that the radius ra of each area is equal to

(Rmax −Rmin)/6 (see Fig. 4.7).

Then, we smooth each area with a Gaussian window (Fig. 4.6) with σG =

ra/3 and compute the image gradients (magnitude M and phase Φ) within
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each of these areas.

Concerning rotation invariance, this is achieved by redefining the gradient

phase Φ of all points relatively to the radial line’s angle θ (see Fig. 4.7).


Figure 4.6: Gaussian smoothing filter 

4.3.2 Orientation histograms 

To make the descriptor robust to false matches, we split each circular area 
into two parts and consider each one individually (Fig. 4.8). In this way, we 
preserve the information about what we have on the left and right sides of 
the feature. 

For each side of each circular area, we compute the gradient orientation 
histogram (Fig. 4.9). The whole orientation space (from -π to π) is divided 
into Nb equally spaced bins. In order to decide how much of a certain gradient 
magnitude m belongs to the adjacent inferior bin b and how much to the 
adjacent superior bin, each magnitude m is weighted by the factor (1 − w), 
where 

w = Nb 
ϕ − b

, (4.2) 
2π 

with ϕ being the observed gradient phase in radians. Thus, m(1−w) will vote 
for the adjacent inferior bin, while mw will vote for the adjacent superior bin. 

According to what we mentioned so far, each bin contains the sum of the 
weighted gradient magnitudes which belong to the correspondent orientation 
interval. We observed that this weighted sum made the orientation histogram 
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Figure 4.7: Extraction of the circular areas. To achieve rotation invariance, 
the gradient phase Φ of all points is redefined relatively to the radial line’s 
angle θ. 

more robust to image noise. Finally, observe that the orientation histogram 
is already rotation invariant because the gradient phase has been redefined 
relatively to the radial line’s angle (Section 4.3.1). 

To resume, in the end we have three pairs of orientation histograms: 

H1 = [H1,L, H1,R ] 

H2 = [H2,L, H2,R ] (4.3) 

H3 = [H3,L, H3,R ] 

where subscripts L, R identify respectively the left and right section of each 
circular area. 
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Figure 4.8: The two sections of a circular area. 
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Figure 4.9: An example of gradient orientation histograms for the left and 
right sides of a circular area. 
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4.3.3 Building the feature Descriptor 

From the computed orientation histograms, we build the final feature de­
scriptor by stacking all three histogram pairs as follows: 

H = [H1, H2, H3] (4.4) 

To have slight illumination invariance, we pre-normalize each histogram Hi to 
have unit length. This choice relies on the hypothesis that the image intensity 
changes linearly with illumination. However, non-linear illumination changes 
can also occur due to camera saturation or due to illumination changes that 
affect 3D surfaces with different orientations by different amounts. These 
effects can cause a large change in relative magnitude for some gradients, 
but are less likely to affect the gradient orientations. Therefore, we reduce 
the influence of large gradient magnitudes by thresholding the values in each 
unit histogram vector so that each bin is no larger than 0.1, and then renor­
malizing to unit length. This means that matching the magnitudes for large 
gradients is no longer as important, and that the distribution of orientations 
has greater emphasis. The value of 0.1 was determined experimentally and 
will be justified in Section 4.6. 

To resume, our descriptor is an N -element vector containing the gradient 
orientation histograms of the circular areas. In our setup, we extract 3 circu­
lar areas from each vertical feature and use 32 bins for each histogram; thus 
the length of the descriptor is 

N = 3areas 2parts · 32bins = 192 (4.5) · 

Observe that all feature descriptors are the same length. 

4.4 Feature matching 

As every vertical feature has its own descriptor, its correspondent in consec­
utive images can be searched among the features with the closest descriptor. 
To this end, we need to define a dissimilarity measure (i.e. distance) between 
two descriptors. 

In the literature, several measures have been proposed for the dissimilar­
ity between two histograms H = {hi} and K = {ki}. These measures can be 
divided into two categories. The bin-by-bin dissimilarity measures only com­
pare contents of corresponding histogram bins, that is, they compare hi and 
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ki for all i, but not hi and ki for i = j. The cross-bin measures also contain 
terms that compare non-corresponding bins. Among the bin-by-bin dissimi­
larity measures, fall the Minkoski-form distance, the Jeffrey divergence, the 
χ2 statistics, and the Bhattacharya distance. Among the cross-bin measures, 
one of the most used is the Quadratic-form distance. An exhaustive review 
of all these methods can be found in [73–75]. 

In our work, we tried the dissimilarity measures mentioned above but the 
best results were obtained using the L2 distance (i.e. Euclidean distance) 
that is a particular case of the Minkoski-form distance. Therefore, in our 
experiments we used the Euclidean distance as a measure of the dissimilarity 
between descriptors, which is defined as: 

� N 

d(H,K) = � hi − ki 2 (4.6) | |
i=1 

By definition of distance, the correspondent of a feature, in the observed 
image, is expected to be the one, in the consecutive image, with the mini­
mum distance. However, if a feature is no longer present in the next image, 
there will be a closest feature anyway. For this reason, we defined three 
tests to decide whether a feature correspondent exists and which one the cor­
respondent is. Before describing these tests, let us introduce some definitions. 

Let {A1,A2, . . . ,ANA 
} and {B1,B2, . . . ,BNB 

} be two sets of feature 
descriptors extracted at time tA and tB respectively, where NA, NB are the 
number of features in the first and second image. 
Then, let 

Di = {d(Ai,Bj), j = 1, 2, . . . , NB )} (4.7) 

be the set of all distances between a given Ai and all Bj (j = 1, 2, · · · , NB ). 
Finally, let minDi = mini (Di) be the minimum of the distances between 
given Ai and all Bj. 

4.4.1 First test 

The first test checks that the distance from the closest descriptor is smaller 
than a given threshold, that is: 

minDi = F1. (4.8) 
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Table 4.1: The distances between the descriptor A1 at time tA and all de­
scriptors Bj , j = 1, 2, .., NB at time tB 

B1 B2 B3 B4 B5 B6 B7 
2.38 5.42 4.55 5.79 5.66 6.17 5.43 

Table 4.2: The parameters used by our algorithm with their empirical values 

F1 = 1.05 F2 = 0.75 F3 = 0.8 

By this criterion, we actually set a bound on the maximum acceptable dis­
tance to the closest descriptor. 

4.4.2 Second test 

The second test checks that the distance from the closest descriptor is smaller 
enough than the mean of the distances from all other descriptors, that is: 

minDi = < Di > (4.9) F2· 

where < Di > is the mean value of Di and F2 clearly ranges from 0 to 1. 
This criterion comes out of experimental results. In Table 4.1, we show an 
example of real comparison among the distances between descriptor A1 at 
time tA and all descriptors Bj at time tB . Observe that descriptor B1 is the 
correct correspondent of A1. Also note that its distance is smaller than the 
mean of all other distances. 

4.4.3 Third test 

Finally, the third test checks that the distance from the closest descriptor is 
smaller than the distance from the second closest descriptor: 

minDi = F3 · SecondSmallestDistance, (4.10) 

where F3 clearly ranges from 0 to 1. As in the previous test, the third test 
raises from the observation that, if the correct correspondence exists, then 
there must be a big gap between the closest and the second closest descriptor. 

Factors F1, F2, F3 are to be determined experimentally. The empirical 
values used in our experiments are shown in Table 4.2. The choice of these 
values will be motivated in Section 4.6. 
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4.5	 Comparison with other image similarity 
measures 

A good method to evaluate the distinctiveness of the descriptors in the ob­
served image is to compute a similarity matrix S where each element S(i, j) 
contains the distance between the ith and jth descriptor. That is, 

S(i, j) = d(Hi, Hj),	 (4.11) 

where Hi is the descriptor of the ith radial line and distance d is defined as 
in (4.6). Observe that to build this matrix we compute the the radial line’s 
descriptor for every θ ∈ [0◦ , 360◦]. We used a θ increment of 1◦ and thus 
i = 1, 2, . . . , 360. Furthermore, note that S is symmetric and that S(i, j) = 0 
for i = j. The similarity matrix computed for the image of Fig. 4.7 is shown 
in Fig. 4.11. 

In this section, we want to compare our descriptor with other two im­
age similarity measures that are very used in image registration but are also 
commonly used for matching individual lines, that is, Sum of Squared Differ-
ences (SSD) and Normalized Cross-Correlation (NCC) (their definitions can 
be found in [67]). When using SSD and NCC for comparing two patterns, the 
pattern descriptor can be seen as the pattern intensity. In our case, we take 
as a pattern the rectangular region around the observed radial line as shown 
in Fig. 4.10. As we did to build the similarity matrix for our descriptors, 
we compare given pattern Pi with pattern Pj using either SSD or NCC and 
build the respective similarity matrices, that is: 

SSSD(i, j) = SSD(Pi, Pj), (4.12) 

SNCC(i, j) = NNC(Pi, Pj), (4.13) 

The two similarity matrices for the image in Fig. 4.7 is shown in Fig. 4.12 
and 4.13. Concerning the size win of the patterns for computing SSD and 
NCC, we chose win = 2ra. Observe that this choice is reasonable as 2ra 

is also the size (diameter) of the three circular areas used to build our de­
scriptor. Furthermore observe that, for SSD, maximum similarity between 
two patterns occurs when SSD=0; conversely, for NNC, maximum similarity 
(correlation) occurs when NCC=1 (this explains why the diagonal axis in 
Fig. 4.13 is white instead of black. 

To interpret the similarity matrix, consider points along the diagonal axis 
in Fig. 4.11. Each point is perfectly similar to itself, so all the points on the 
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diagonal are dark. Starting from a given point on the diagonal, one can com­
pare how its correspondent descriptor relates to its neighbors forward and 
backward by tracing horizontally or vertically on the matrix. To compare 
given descriptor Hi with descriptor Hi+n, simply start at point (i, i) on the 
matrix and trace horizontally to the right to (i, i + n). 

In the similarity matrix for SSD, one can see large blocks of dark which in­
dicate that there are repeating patterns in the image or that the patterns are 
poorly textured. Rectangular blocks of dark that occur off the diagonal axis 
indicate reoccurring patterns. This can be better understood by observing 
Fig. 4.10. As can be seen, there are poorly textured objects and repeating 
structure. 

Similar comments can be done regarding the similarity matrix for NCC, 
but we have to invert word “dark” with “light”, due to the inverse definition 
of NCC. However, observe that the behavior of NCC is better than SSD: first, 
the size of the blocks along or off the diagonal axis is smaller; then, points 
on the diagonal are much lighter than points off the diagonal. 

Regarding the similarity matrix of our descriptor, the diagonal axis is well 
demarcated, in fact points on the diagonal are much darker than those off the 
diagonal; the contrast with the regions off the diagonal is higher than NCC. 
Finally, observe that blocks along or off the diagonal axis are much smaller 
or lighter than SSD and NCC; this indicates that even on poorly textured 
surfaces our descriptor is distinctive. 

In the concept, our method is similar to SIFT [76], which also uses gra­
dient histograms to build distinctive descriptors of image keypoints. 
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Figure 4.10: This is the same image of Fig. 4.7 after unwrapping into a 
cylindrical panorama. The rectangular region used to compute SSD and 
NCC is also shown. 
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Figure 4.11: Similarity matrix for descriptors. 
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Figure 4.12: Similarity matrix for SSD. 
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Figure 4.13: Similarity matrix for NCC. 
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4.6 Performance Evaluation 

In this section, we characterize the performance of our descriptor on a large 
image dataset by taking into account the sensitiveness to different parame­
ters, which are image saturation, pixel noise, number of histogram bins, and 
use of overlapping circular areas. Furthermore, we also motivate the choice 
of the empirical values for F1, F2, and F3, which are shown in Table 4.2. 

Ground truth 

To generate the ground truth for testing our descriptor, we used a database 
of 850 omnidirectional pictures that is a subset of the whole video sequence 
used in Section 4.7. About 10 verticals were extracted in average from each 
image; then we matched each feature individually against the whole database 
using the matching method of the previous section. To insure that matching 
was correct, we visually inspected every single correspondence individually. 
Correspondent features were labeled with the same ID. The images were 
taken from the hallway of our department. Figure 4.21 shows six sample 
images from our dataset. The images show that the illumination conditions 
vary strongly. Due to big windows, a mixture of natural and artificial lighting 
produces difficult lighting conditions like highlights and specularities. With 
regard to the viewpoint change, the pictures of our dataset were taken such 
that each vertical line could be continuously observed for at least 2 meters 
of motion. 

Image saturation 

As we mentioned in Section 4.3.3, we threshold the values of the histogram 
vectors to reduce the influence of image saturation. The percent of correct 
matches for different threshold values is shown in Fig. 4.14. The results 
show the percent of verticals that find a correct match to the single closest 
neighbor among the whole database. As the graph shows, the maximum 
percent of correct matches is reached when using a threshold value of 0.1. In 
the remainder of this paper, we will always use this value. 

Image noise 

The percent of correct matches for different amounts of gaussian image noise 
(from 0% to 10%) is shown in Fig. 4.15. Again, the results show the per­
cent of correct matches found using the single nearest neighbor among the 
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Figure 4.14: Influence of saturation on correct matches. 

all database. As this graph shows, the descriptor is resistant even to large 
amount of pixel noise. 

Histogram bins and circular areas 

There are two parameters that can be used to vary the complexity of our 
descriptor: the number of orientation bins, Nb, in the histograms, and the 
number of circular areas. Although in the explanation of the descriptor we 
used 3 non overlapping circular areas, we evaluated the effect of using 5 
overlapping areas with 50% overlap between two circles. The results are 
shown in Fig. 4.16. As the graph shows, there is a slight improvement in using 
5 overlapping areas (the amelioration is only 1%). Also, the performance is 
quite similar using 8, 16, or 32 orientation bins (we used powers of 2 because 
they can be computed more efficiently). Following this considerations, the 
best choice would seem to use 3 areas and 8 histograms bins in order to 
reduce the dimension of the descriptor. Conversely, as in this graph the 
percent of correct matches is found only using the nearest closest descriptor, 
we observed that the best matching results, when using the rules of Section 
4.4, are obtained with 32 orientations. Thus, in our implementation we used 
3 areas and 32 histogram bins. 
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Influence of noise level on correct matches 
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Figure 4.15: Influence of noise level (%) on correct matches. The correct 
matches are found using only the nearest descriptor in the database. 

Matching rules 

Figure 4.17 shows the Probability Density Function (PDF) for correct and 
incorrect matches in terms of the distance to the closest neighbor of each 
keypoint. In our implementation of the first rule, we chose F1 = 1.05. As 
observed in the graph, by this choice we reject all matches in which the 
distance to the closest neighbor is greater than 1.05, which eliminates 50% 
of the false matches while discarding less than 5% of correct matches. 

Similarly, Fig. 4.18 shows the PDFs in the terms of the ratio of closest 
to average-closest neighbor of each keypoint. In our implementation of the 
second rule, we chose F2 = 0.75. As observed in the graph, by this choice we 
reject all matches where the ratio between the closest neighbor distance and 
the mean of all other distances is greater than 0.75, which eliminates 45% of 
the false matches while discarding less than 8% of correct matches. 

Finally, Fig. 4.19 shows the PDFs in terms of the ratio of closest to 
second-closest neighbor of each keypoint. In our implementation of the third 
rule, we chose F3 = 0.8; in this way we reject all matches in which the 
distance ratio is greater than 0.8, which eliminates 92% of the false matches 
while discarding less than 10% of correct matches. 
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Influence of number of bins on correct matches 
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Figure 4.16: Influence of number of bins on correct matches. 
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Figure 4.17: The probability density function that a match is correct accord­
ing to the first rule. 
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Figure 4.18: The probability density function that a match is correct accord­
ing to the second rule. 
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Figure 4.19: The probability density function that a match is correct accord­
ing to the third rule. 
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Figure 4.20: Floorplan of the institute showing the robot path (in red). 

4.7 Results 

In our experiments, we adopted a mobile robot with a differential drive system 
equipped with enco der sensors on the wheels. Furthermore, we equipped the 
robot with an omnidirectional camera (the same used also in Section 3.3.2) 
consisting of a KAIDAN 360◦ One VR hyperbolic mirror and a SONY CCD 
camera. We set the image resolution to 640× 480 pixels. A picture of the all 
settings is depicted in Fig. 5.4. In this section, we show the performance of 
our feature extraction and matching method by capturing pictures from our 
robot in a real indoor environment. 

The robot was moving at about 0.15 m/s and was acquiring frames at 
3 Hz, meaning that during straight paths the traveled distance between two 
consecutive frames was 5 cm. The robot was moved in the hallway of our 
institute along the red path shown in Fig. 4.20. 1852 frames were extracted 
during the whole path. Figure 4.21 shows six sample images from the dataset. 
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Figure 4.21: Omnidirectional images taken at different locations. 

The images show that the illuminations conditions vary strongly. Due to big 
windows, a mixture of natural and artificial lighting produces difficult light­
ing conditions like highlights and specularities. 

The result of feature tracking is shown only for the first 150 frames in Fig. 
4.22. This result was obtained using only the three matching rules described 
in Sections 4.4.1, 4.4.2, 4.4.3. No other constraint, like mutual and topolog­
ical relations, has been used. This plot refers to a short path of the whole 
trajectory while the robot was moving straight (between frame no. 0 and 
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Figure 4.22: Feature tracking during the motion of the robot. In y-axis is
the angle of sight of each feature and in the x-axis the frame number. Each
circle represents a feature detected in the observed frame. Lines represent
tracked features. Numbers appear only when a new feature is detected.

46), then doing a 180◦ rotation (between frame no. 46 and 106), and moving
straight again. As observed, most of the features are correctly tracked over
the time. Indeed, most of the lines appear smooth and homogeneous. The
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lines are used to connect features that belong to the same track. When a new 
feature is detected, this feature is given a label with progressive numbering 
and a new line (i.e. track) starts from it. In this graph, there are three 
false matches that occur at the points where two tracks intersect (e.g. at the 
intersection between tracks no. 1 and 58, between track no. 84 and 86, and 
between track no. 65 and 69). Observe that the three huge jumps in the graph 
are not false matches; they are only due to the angle transition from −π to π. 

Observe that our method was able to match features even when their 
correspondents were not found in the previous frames. This can be seen by 
observing that sometimes circles are missing on the tracks (look for instance 
at track no. 52). When a correspondence is not found in the previous frame, 
we start looking into all previous frames (actually up to twenty frames back) 
and stop when the correspondence is found. 

By examining the graph, can be seen that some tracks are suddenly given 
different numbers. For instance, observe that feature no. 1 - that is the first 
detected feature that starts at frame no. 0 - is correctly tracked until frame 
no. 120 and is then labeled as feature no. 75. This is because at this frame 
no correspondence was found and then the feature was labeled as a new entry 
(but in fact is a false new entry). Another example is feature no. 15 that 
is then labeled as no. 18 and no. 26. By a careful visual inspection, one 
can find only a few other examples of false new entries. Indeed, tracks that 
at a first glance seem to be given different numbers, belong in fact to other 
features that are very close to the observed one. 

After visually inspecting every single frame of the whole video sequence 
(composed of 1852 frames), we found 37 false matches and 98 false new en­
tries. Comparing these errors to the 7408 corresponding pairs detected by 
the algorithm over the whole video sequence, we had 1.8% of mismatches. 
Furthermore, we found that false matches occurred every time the camera 
was facing objects with repetitive texture (like in Fig 4.10 or in the fourth 
image of Fig. 4.21). Thus, ambiguity was caused by the presence of verti­
cal elements which repeat almost identical in the same image. On the other 
hand, a few false new entries occurred when the displacement of the robot 
between two successive images was too large. However, observe that when a 
feature matches with no other feature in previous frames, it is better to believe 
this feature to be new rather than commit a false matching. The evolution 
of the recognition rate during the whole video sequence is shown in Table 4.3. 
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As we already mentioned above, the results reported in this section were 
obtained using only the three matching rules described in Sections 4.4.1, 4.4.2, 
4.4.3. Obviously, the performance of tracking could be further improved by 
adding other constraints like mutual and topological relations among features. 

Table 4.3: Recognition rate 

Frame Number Rate of Rate of Rate of 
interval of matches correct false false 

matches (%) matches (%) new entries (%) 
0-200 735 97.48 0.53 1.98 

200-400 972 98.58 0.20 1.22 
400-600 823 98.68 0.35 0.96 
600-800 857 97.83 0.80 1.37 
800-1000 685 98.13 0.57 1.29 
1000-1200 740 98.40 0.26 1.33 
1200-1400 906 98.26 0.43 1.30 
1400-1600 784 97.75 0.62 1.62 
1600-1852 771 98.34 0.76 1.89 

4.8 Conclusion 

In this chapter, we presented a robust method for matching vertical lines 
among omnidirectional images. The basic idea to achieve robust feature 
matching consists in creating a descriptor which is unique and distinctive for 
each feature. Furthermore, this descriptor is invariant to rotation and slight 
changes of illumination. 

We characterized the performance of the descriptor on a large image 
dataset by taking into account the sensitiveness to the different parameters of 
the descriptor. The robustness of the approach was also validated through a 
real navigation experiment with a mobile robot equipped with an omnidirec­
tional camera. The performance of tracking was very good as many features 
were correctly detected and tracked over long time. Furthermore, because 
the results were obtained using only the three matching rules described in 
Section 4.4, we expect that the performance would be notably improved by 
adding other constraints like mutual and topological relations among features. 
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The visual tracking procedure described in this chapter will be used in 
Chapter 5 to automatically and extrinsically calibrate a camera with the 
reference system of a mobile robot. An example of vision based robot motion 
estimation will be also given. 
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Chapter 5


Calibration between 
camera and odometry 

This chapter presents a new technique to determine the pose of 
an omnidirectional camera with respect to the robot’s reference 
system. The proposed technique takes advantage of an extended 
Kalman filter which fuses the encoder readings with the image 
coordinates of one or more features tracked during the motion. 
The novelty of the technique is that the two sensors are self-
calibrated while the robot is moving. Furthermore, no a priori 
knowledge about the environment is required. The strategy is the­
oretically validated through an observability analysis which takes 
into account the system nonlinearities. This analysis shows that 
the system contains all the necessary information to perform self-
calibration. The performance of the proposed method is evaluated 
through several simulations and experiments performed on a real 
robot equipped with encoder sensors and an omnidirectional cam­
era. 

5.1 Introduction 

WHEN a mobile robot is equipped with a vision sensor, it is sometimes 
required to determine accurately the extrinsic parameters that es­

tablish the pose of the camera with respect to the robot’s reference system 
(i.e. the odometry system). The estimation of the extrinsic parameters has 
to be very accurate for many applications. For example, in the frame-work 

81 
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of multi-robot localization, where the bearing observations among the team 
members are very informative [77, 78], an error of 1cm in estimating the po­
sition of the vision sensor with respect to the robot’s frame would produce a 
bearing error of 0.2 deg if the distance between the robots is 3m. 

In this chapter, we present a completely new strategy based on the Ex­
tended Kalman Filter (EKF) to automatically perform the estimation of 
the extrinsic parameters while the robot is moving. Although in this the­
sis we deal with omnidirectional cameras, more in general our strategy can 
be adopted to calibrate any robot bearing sensor. We call this strategy “self­
calibration” because we use no prior knowledge about the environment and 
because the calibration is done while the robot is moving. The only prerequi­
site is the capability of robustly and visually tracking one or more features in 
the space. In our experiments, we will use the feature extraction and match­
ing method that has been described in Chapter 4. 

This chapter is organized as follows. In Section 5.2, we define the problem, 
while the strategy to perform the self-calibration is introduced in Section 
5.3. To simplify the explanation, we will first describe the method for the 
case of tracking a single feature and then we will extend the method to the 
general case of multiple features (5.6). Finally, the proposed method will 
be theoretically validated through an observability analysis which takes into 
account the system nonlinearities (Section 5.4) and experimentally validated 
through real experiments and accurate simulations (Section 5.5). 

5.2 The problem 

In order to simplify the problem, we do the following assumptions; in partic­
ular, we assume that the robot is moving in a flat environment and that it is 
equipped with an omnidirectional camera whose z-axis is parallel to the z-axis 
of the robot, that is, the mirror axis is perpendicular to the floor (the same 
assumptions were done also in Chapter 4). Furthermore, we assume that 
the omnidirectional camera is already intrinsically calibrated (as described 
in Chapter 3). According to this, the three-dimensional camera-odometry 
calibration problem becomes a two-dimensional problem. 

The first goal is the estimation of the three parameters φ, ρ, and ψ which 
characterize the transformation between the two references frames attached 
respectively on the robot and on the camera (see Fig. 5.1). 
The second goal is to perform the calibration automatically and during the 
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motion of the robot.

The available data are the robot wheels displacements delivered by the en­

coder sensors and the bearing angles of several features in the camera refer­

ence frame (β in Fig. 5.1).

From now on, we will explain the method for the case of one single feature.

In Section 5.6, we will extend the equations to the case of tracking multiple

features.
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Robot Reference 

Camera Reference 

Feature Feature Reference 

Figure 5.1: The two reference frames respectively attached to the robot and 
to the camera. All parameters used in this chapter are also indicated. 

As we consider the case of a mobile robot moving in a 2D environment, its 
configuration is described through the state XR = [xR, yR, θR]T containing 
its position and orientation (as indicated in Fig. 5.1). Furthermore, we 
consider the case of a robot equipped with a differential drive system. The 
robot configuration XR can then be estimated by integrating the encoder 
data. In particular, we have: 

 � 

δθi 
� 

 
= xRi + δρicos θRi + 2xRi+1 

� 

δθi 
� 

= yRi + δρisin θRi + 2 
, (5.1) yRi+1 

 

= θRi + δθiθRi+1 

where the quantities δρ and δθ are related to the displacements δρR and δρL 

(respectively of the right and left wheel) directly provided by the encoders 
through: 
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δρ = 
δρR + δρL 

, δθ = 
δρR − δρL 

(5.2) 
2 b 

where b is the distance between the wheels. 

Regarding the bearing angle β we obtain the following analytical expres­
sion (see Fig. 5.1): 

β = π − ψ − θR − φ + α (5.3) 

with 

yR + ρsin(θR + φ)
α = tan −1 (5.4) 

xR + ρcos(θR + φ) 

5.3 EKF based calibration 

An intuitive procedure to determine the three parameters φ, ρ, and ψ could 
be to use the data from the enco ders to estimate the robot configuration 
(provided that the initial robot configuration is known). Then, by measuring 
the bearing angle β at several different robot configurations (at least three) 
would be possible to obtain the parameters φ, ρ, and ψ by solving a non 
linear system in three unknowns. However, the drawback of this method is 
that, when the robot configuration is estimated by using only the encoder 
data, the error integrates over the path. This means that this procedure can 
be applied only for short paths and therefore the achievable accuracy on the 
estimation of φ, ρ, and ψ is limited. Furthermore, the initial robot configu­
ration has to be known with high accuracy. 

One way to overcome these problems is to integrate the enco der data 
with the bearing angle measurements to estimate the robot configuration. 
This can be performed by introducing an augmented state Xa containing the 
robot configuration and the calibration parameters φ, ρ, and ψ: 

Xa = [xR, yR, θR, φ, ρ, ψ]T (5.5) 
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An EKF can be adopted to estimate the state Xa. The inputs u of the 
dynamics of this state are directly provided by the encoder data and the ob­
servations z are the bearing angles provided by the vision sensor. According 
to this, we can write: 

Xai+1 
= f (Xai 

, ui) (5.6) 

zi = h (Xi) + wi, (5.7) 

where: 

u = [δρR, δρL]T ; (5.8) 

 � �  

xRi + δρicos θRi + δθi 2 
� 

δθi 
� 

 yRi + δρisin θRi + 2  

� �  θRi + δθif Xai+1 
, ui =   (5.9) 

 φi  

  

 ρi  

ψi 

yR + ρsin(θR + φ)
h (Xi) = tan −1 

xR + ρcos(θR + φ)
+ π − ψ − θR − φ; (5.10) 

Note that function h in (5.10) is the function describing the dependency 
of the bearing angle β on the state Xa and is given by expressions (5.3) and 
(5.4). w is a stochastic quantity representing the measurement error which 
is assumed to be zero mean, with a Gaussian distribution and independent 
of the enco der errors. Furthermore, < wi wj >= 0 when i = j. 

The previous equations, along with an odometry statistical error model 
(5.25), allow to implement an EKF to estimate Xa . However, before imple­
menting this filter, it is desirable to check if the system contains all the neces­
sary information to perform the estimation with an error which is bounded. 
To answer this question, we have to carry out an observability analysis. In­
deed, when a system is observable, it contains all the necessary information 
to perform the estimation with an error which is bounded [79]. The value of 
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this bound obviously depends on the accuracy of the sensors. 

In the next section, we will perform this observability analysis (by taking 
into account the system non-linearities) and we will show that actually the 
state Xa is not observable. On the other hand, the state Xa contains the 
robot configuration whose estimation is not our goal, indeed we just want to 
estimate the three parameters φ, ρ and ψ. In Section 5.4, we will show that 
by introducing a new state X as in (5.14) the system becomes observable. 
This will be possible by avoiding the dependency of both the state and the 
observation on the full robot configuration. To avoid this dependency observe 
that, by manipulating (5.3) and (5.4), we can rewrite the observation β as: 

−ρsin(θ + φ)
β = tan −1 

−D − ρ cos(θ + φ) 
− θ − φ − ψ (5.11) 

where 

θ = θR − tan −1 yR 
(5.12) 

xR 

and 

D = x2 
R + y2 

R (5.13) 

In Section 5.4, we will show that if instead of the state in (5.5) we consider 
the state 

X = [D, θ, φ, ρ, ψ]T , (5.14) 

the system is observable. Therefore, in the remainder of this section we im­
plement an EKF which estimates the state X. 

5.3.1 Implementing the EKF 

From Equations (5.1), (5.12), (5.13), we obtain the following dynamics for 
the state X (which relates the state to the enco der data): 
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 

 

Di+1 = Di + δρicosθi 
 

 

 

 
θi+1 = θi + δθi − δρi sinθiDi 

(5.15) φi+1 = φi 
 

 

 ρi+1 = ρi 
 

 

ψi+1 = ψi 

The EKF estimates the state X by fusing the information coming from 
the enco der data and the bearing angle observations. To implement the stan­
dard equations of this filter we need to compute the two Jacobians Fx and 
Fu of the dynamics in (5.15) with respect to the state X and with respect to 
encoder readings (δρR and δρL). Finally, we need to compute the Jacobian 
H of the observation function in (5.11) with respect to X. These matrices 
are required to implement the EKF [80]. By a direct computation we obtain: 

  

1 0 0 0−δρ sinθ 
δρ δρ 

 sinθ cosθ 0 0 0  
 D2 1 − D  

Fx =  0 0 1 0 0  , (5.16) 
  

 0 0 0 1 0  

0 0 0 0 1 

 

cosθ cosθ 
 

2 2 
 

1 sinθ 1 sinθ 
 

 b − 2D 2D − b −
Fu =  0 0  (5.17) 

  

 0 0 
0 0 

and 

H = (5.18) 

−ρsin(θ + φ) −Dρ cos(θ + φ)−D2 

= 
D2 + 2ρDcos(θ + φ) + ρ2 

,
D2 + 2ρDcos(θ + φ) + ρ2 

, 

−Dρ cos(θ + φ)−D2 Dsin(θ + φ) 

D2 + 2ρDcos(θ + φ) + ρ2 
,
D2 + 2ρDcos(θ + φ) + ρ2 

, − 1 
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5.4 Observability analysis 

In control theory, a system is defined observable when it is possible to recover 
its initial state by knowing, in a given time interval, the control inputs and 
the outputs [79]. The observability property has a very practical meaning. 
When a system is observable, it contains all the necessary information to 
perform the estimation with an error which is bounded [79]. 

This section consists of two subsections. In the former we perform the 
observability analysis for the system described by the state Xa . In this case 
we will show that the state is not observable. In the latter, we consider the 
state X in (5.14) and we will show that it is observable. In both cases, our 
analysis takes into account the system non-linearities. Indeed, the observ­
ability analysis changes dramatically from linear to non-linear systems [79]. 
First of all, in the non-linear case the observability is a local property. For 
this reason, in the non-linear case the concept of the local distinguishability 
property was introduced by Hermann and Krener [81]. The same authors 
introduced also a criterion, the observability rank condition, to verify if a 
system has this property. This criterion plays a very important role since in 
many cases a non-linear system, whose associated linearized system is not 
observable, has however the local distinguishability property. Regarding the 
localization problem, this was proved in [82] and [83]. Note that it is the 
distinguishability property which implies that the system contains the neces­
sary information to have a bounded estimation error (actually, provided that 
the locality is large enough with respect to the sensor accuracy). 

We now want to remind some concepts in the theory by Hermann and 
Krener in [81]. We will adopt the following notation. We indicate the Kth 

order Lie derivative of a field Λ along the vector fields vi1 
, vi2 

, ..., viK with 
LK Λ. Note that the Lie derivative is not commutative. In particu­vi1 

,vi2 
,...,viK 

lar, in LK Λ it is assumed to differentiate along vi1 
first and along vi1 

,vi2 
,...,viK 

viK at the end. 

Let us indicate with Ω the space spanned by all the Lie derivatives 
LK 
fi1 

,fi2 
,...,fiK 

h(X)|t=0 (i1, ..., iK = 1, 2, ..., M and the functions fij are de­

fined in (5.22)). 
Furthermore, we denote with dΩ the space spanned by the gradients of the 
generators of Ω. 
In this notation, the observability rank condition can be expressed in the 
following way: The dimension of the observable sub-system at a given X0 is 
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equal to the dimension of dΩ. 

5.4.1 Observability analysis for the state Xa 

The dynamics of our system is described through the following equations: 

 

	

ẋR = v cosθR 
 

 ẏR = v sinθR 

	
θ̇R = ω 

(5.19) 
 

	

φ̇ = ρ̇ = ψ̇ = 0 

Our system is affine in the input variables, i.e. the previous equations can 
be written in the following compact form: 

M 

Ẋa = f (Xa, u) = fk (Xa)uk (5.20) 
k=1 

where M is the number of the input controls (which are independent). In our 
case M = 2 and the controls are v and ω. Since these controls are linearly 
related to the true controls, which are the wheels velocities, for our analysis 
we can use v and ω as the controls. 

We found that the computation becomes significantly easier if, for the 
robot position, we adopt the polar coordinates instead of the cartesian ones. 
In these coordinates, the robot configuration is R = [D, χ, θR]T with xR = 
D cosχ and yR = D sinχ. 

Note that χ = θR − θ (see Fig. 5.1). The dynamics defined in (5.19) 
becomes: 

 

Ḋ = v cos(θR − χ) 
 χ̇ = v sin(θR − χ) 
 

D	 (5.21) 
	 θ̇R = ω 
φ̇ = ρ̇ = ψ̇ = 0 

By identifying it with (5.20), we have u1 = v, u2 = ω and 
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� �T
sinθ T

f1 = cos θ, , 0, 0, 0, 0 , f2 = [0, 0, 1, 0, 0, 0] (5.22) 
D 

The observation is defined by Equations (5.3) and (5.4) or by Equation 
(5.11). We remark that this second expression depends on χ and θR only 
through the difference θ = θR − χ. Since also the two vector fields f1 and f2 

depend on χ and θR only through θ, all the elements in dΩ have the structure: 

w = [a1, a2, a3, a4, a5, a6]T with a3 = −a2 

Therefore, the dimension of dΩ cannot be larger than 5 and the system is 
not observable. 

5.4.2 Observability analysis for the state X 

The dynamics of our system is described through the following equations: 

 

˙
 

D = v cosθ 
v sinθ (5.23) θ̇ = ω − D 

 

φ̇ = ρ̇ = ψ̇ = 0 

As in the previous case, we have the two independent input controls u1 = v 
and u2 = ω. By adopting the compact notation as in (5.20) we have: 

� �T
sinθ T

f1 = cos θ, − , 0, 0, 0 , f2 = [0, 1, 0, 0, 0] (5.24) 
D 

. 

The observation is defined by Equation (5.11). 

In order to prove that the state X is observable, it is sufficient to extract 
5 independent vectors from the space dΩ. In the Appendix, we compute 
the following Lie derivatives of the observation function: L0β, L1 β, L1 β,f1 f2 

L2 β, L2 β. Then, we prove that the correspondent gradients are inde­f1 f2 f2f2 

pendent. Therefore, the dimension of dΩ is 5 and the system is observable. 
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5.5 Results 

In this section we present the results obtained through simulations (Section 
5.5.1) and real experiments (Section 5.5.2) performed in order to validate the 
strategy introduced in Section 5.3. 

5.5.1 Simulations 

We simulated a mobile robot with a differential drive system equipped with 
encoder sensors and a vision system able to track a single feature (e.g. a 
vertical line) in the environment. 

The adopted model to characterize the odometry error is that proposed 
by Chong and Kleeman [84]. Accordingly to this model, the translations of 
the right/left wheel as estimated by the encoder sensors are Gaussian random 
variables satisfying the following relation: 

δρR/L = δρaR/L + νR/L νR/L ∼ N(0, K δρR/L ) (5.25) | |
In other words, both δρR and δρL are assumed Gaussian random vari­

ables whose mean values are given by the actual values (respectively, δρaR 
and δρaL) and whose variances increase linearly with the travelled distance. 
Furthermore, it is assumed that δρR and δρL are uncorrelated. With respect 
to the Chong-Kleeman model, we do not consider systematic errors (i.e. we 
assumed an odometry system perfectly calibrated). 

In our simulations, we generated the encoder errors νR/L accordingly to 
the Gaussian distribution in (5.25). We set the parameter K = 10−6m ac­
cordingly with the values obtained in previous experiments [84,85]. The data 
from the encoders are delivered at a frequency equal to 100 Hz. The speed 
of the robot (vR) is set equal to 0.2 ms−1 . 

Regarding the vision sensor, we simulated a sensor able to return the 
bearing angle β with a Gaussian error. In particular, the variance is assumed 
to be σ2 = (1 deg)2, accordingly with experimental results obtained with an β 
omnidirectional camera [6]. The data from this sensor are delivered at 10 Hz. 

We set the three parameters characterizing the robot vision sensor ref­
erence transformation equal to the following values: φ = ψ = 30 deg and 
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ρ = 0.1 m. 

We simulated two kinds of robot trajectories. In both cases the initial 
robot configuration is [2, 0, π/2]T and the feature to track is at the ori­
gin. The first kind of trajectory is random and one example is shown in Fig. 
5.2(a). In this case the robot moves for 1000s. Each dt = 0.01s the robot 
is moved by generating randomly the translation of the right and the left 
wheel. In particular, each translation is generated as a random value, whose 
mean value is equal to vR dt and whose variance is equal to 0.01 vR dt.· · · 
Furthermore, the distance between the wheel is set equal to 0.25 m. 

The second trajectory is shown in Fig. 5.3(a). This trajectory consists of 
pure rotations and pure translations. The length of each segment is about 
1 m while each rotation is approximately 450 deg. The robot moves for 100s. 

Figures 5.2(b), 5.2(c) and 5.2(d) refer to the trajectory shown in Fig. 
5.2(a). They show the results obtained by implementing the EKF introduced 
in Section 5.3 to estimate respectively ρ, φ and ψ. The filter is initialized 
by setting the following values for the three parameters: φ = ψ = 0 deg and 
ρ = 0 m. It is possible to see that all the parameters converge to the actual 
values. However, the error is still of the order of 2 deg for the two angles and 
1 cm for ρ after 200m of navigation. We obtained similar results by moving 
the robot along other random trajectories. 

Figures 5.3(b), 5.3(c) and 5.3(d) refer to the trajectory shown in Fig. 
5.3(a). In this case the convergence is much faster. In particular, only after 
4m of navigation, the error is of the order of 0.1 deg for the two angles and 
0.1 cm for ρ. We performed many simulations and we found that by moving 
the robot along this trajectory, the convergence is much faster than by using 
other trajectories. We remark that this trajectory is not only much more 
preferable with respect to the other ones because of the fast convergence, but 
it is also experimentally feasible because the robot navigates close enough to 
the feature making its detection easy and with high accuracy [6]. 
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a b 

c d 

Figure 5.2: Results obtained by implementing the strategy introduced in 
Section 5.3 to estimate the three parameters ρ (b), φ (c) and ψ (d). The 
considered robot trajectory is displayed in (a). 
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a b 

c d 

Figure 5.3: Results obtained by implementing the strategy introduced in 
Section 5.3 to estimate the three parameters ρ (b), φ (c) and ψ (d). The 
considered robot trajectory is displayed in (a). At each vertex the robot 
performs a pure rotation of approximately 450 deg. 
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5.5.2 Real experiments 

Figure 5.4: The robot used in our experimets equipped with encoder sensors 
on the wheels, an omnidirectional camera, and two laser range finders 

For the experiments, we adopted a mobile robot with a differential drive 
system equipped with encoder sensors on the wheels. We equipped the robot 
with a calibrated omnidirectional camera. This camera is the same as used 
in the experiments of Section 3.3.2 and was intrinsically calibrated according 
to the method described in the Chapter 3. Furthermore, two laser range 
finders (model SICK LMS 200) were also installed on the robot. These laser 
scanners are used in our experiments just for comparison and are considered 
already calibrated with the odometry system according to the specifications 
provided by the manufacturer. A picture of the all settings is depicted in 
Fig. 5.4. 

As a landmark to track, we placed a pole in the middle of the test room 
and we applied the vertical feature extraction and matching method described 
in Chapter 4. The robot was driven along a squared trajectory around the 
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pole, similar to the one used in the simulations (see Fig. 5.3(a)). At each 
vertex of the path, the robot performed a pure rotation of approximately 
450 deg. 

The camera was set on the robot with the following settings: φ ≃ −π, 
πρ ≃ 0.07m and ψ ≃ − 2 , all of them were measured manually. Then, the 

encoder data and the bearing measurements were fused according to the cal­
ibration procedure of Section 5.3. 

The values of the three parameters estimated during the motion are plot­
ted as a function of the distance in Fig. 5.5. It is possible to see that after 3 
meters of navigation they start to converge to a stable value. The final esti­
mated parameters were φ = 3.11rad, ρ = 0.074m, and ψ = −1.58rad. Note −
that they are consistent with the values manually measured. Also observe 
that the plot of ρ starts at 0 since we took the robot origin as initial value 
for the EKF. Nevertheless, its estimation converges to the expected value. 

Figure 5.5: The plots of φ (black), ρ (red), and ψ (blue) estimated during 
the motion versus distance. The adopted units are in this case radians and 
meters. 
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5.6 Extension to multiple features


In this section, we extend the equations derived so far for the case one single 
feature to the general case of tracking multiple features. To this end, observe 
that in the multiple features’ case the state vector X (5.14) can be rewritten 
as: 

X = [DI , θI , DII , θII , . . . , DZ , θZ , φ, ρ, ψ]T , (5.26) 

where the superscript identifies the observed feature. 

Using (5.15), the dynamics of the system is 

 

Di
I + δρicosθ

I 
 

i 
δρi  θi

I + δθi − sinθi
I 
 DI 

i 
	  

DII 
 i + δρicosθi

II 
 

 δρi 
 θII + δθi − DII 

sinθII 


i i 
	 i 
 .	  

	 

Xi+1 = f (Xi, u) = 
 

.. 
 

(5.27) 
	  

 

DZ + δρicosθi
Z 

i 
 δρi  

 
θi
Z + δθi − DZ

sinθi
Z 
 

i	  

	 φi  

	  

	 ρi  

ψi 

Then, we have to determine the Jacobians Fx and Fu of the dynamics. Thus, 
from (5.16-5.17) we have 

 

AI 0 · · · 0 0 0 0 
 

 0 AII · · · 0 0 0 0  
  

 . . . . . .  . . . . . . 
 . . · · · . . . .  

Fx = 
 

 0 0 · · · AZ 0 0 0 
 

 
, (5.28) 

  

 0 0 · · · 0 1 0 0  
  

 0 0 · · · 0 0 1 0  

0 0 · · · 0 0 0 1 
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and 

 

BI 
 

BII 
  

  

 .  
 

. 
. 

 

Fu = 
 BZ 

 
(5.29) 

  

 0  
  

 0  

0 

with 

−δρ sinθi 
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Regarding the observations z, from (5.11) we have: 
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And thus for the Jacobians H of the observations, we have: 

 
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 
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 0 0 H1II H2II 

· · · 
0 0 H3II H4II −1 
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· · · 
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0 0 0 0 H1Z H2Z H3Z H4Z −1· · · 
(5.33) 

where, from (5.18) 
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H1i = 
−ρsin(θi + φ) 

Di2 
+ 2ρDicos(θi + φ) + ρ2 

, (5.34) 

H2i = 
−Diρ cos(θi + φ)−Di2 

Di2 
+ 2ρDicos(θi + φ) + ρ2 

, (5.35) 

H3i = 
−Diρ cos(θi + φ)−Di2 

Di2 
+ 2ρDicos(θi + φ) + ρ2 

, (5.36) 

H4i = 
Disin(θi + φ) 

Di2 
+ 2ρDicos(θi + φ) + ρ2 

. (5.37) 

5.6.1 Results 
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Figure 5.6: Scenario before calibration: (left) vertical features; (right) rays 
of bearing. The rays corresponding to the vertical features do not accurately 
intersect the corners in the laser scan. 

In this section, we present some calibration results for the case of tracking 
several features. 

As we did in Section 5.5.2, we positioned our omnidirectional camera on 
the robot and we measured manually its position relative to the robot. We 
measured the following values: φ ≃ 0 rad, ρ ≃ 0.2 m, ψ ≃ 0 rad. The 
scenario is shown in Fig. 5.6. In this figure, several vertical features used 
for the self-calibration experiment are highlighted. Furthermore, we show 
also a 2D map of the test environment, which is provided by a laser range 
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finder (remember we use the laser data just for the purpose of comparison 
as a ground truth). The robot reference system (in black) and the camera 
reference system (in red) are also indicated. The rays departing from the 
camera origin show the directions of the bearings of the vertical features. In 
this figure, the position of the camera relative to the robot is shown prior cal­
ibration, according to the values we measured manually. Note that, because 
the calibration is inaccurate, the rays of bearing do not intersect properly 
the corners in the map. However, we used these preliminary parameters for 
initializing the EKF. The trajectory chosen for the experiments consisted of 
a straight path, approximately 2.3 m long, and a 180 deg rotation about the 
center of the wheels. The trajectory is depicted in Fig. 5.8. 

The values of the three parameters estimated during the motion are plot­
ted versus the number of frame in Fig. 5.9. The covariances σφ, σρ, σψ 

are also plotted. Observe that after about 65 frames (corresponding to 
2.3 m of navigation) the parameters start suddenly to converge to a sta­
ble value. The resulting estimated parameters are φ = −0.34rad, ρ = 0.23m 
and ψ = 0.33rad. The sudden jump starting at frame no. 60 actually occurs 
when the robot starts to rotate. As we pointed already out in Section 5.5.1, 
the convergence seems to be very fast when the robot performs trajectories 
formed of short straight paths and pure rotations. During the straight paths, 
the estimation of the parameters φ, ρ, and ψ is not good, especially when 
the direction of motion is parallel to the direction of the observation (this is 
quite intuitive to see). Conversely, when the robot performs a pure rotation, 
the parameters start to converge. 

In Fig. 5.7, the scenario after calibration can be compared with the sce­
nario prior calibration of Fig. 5.6. Observe, that the calibration parameters 
are estimated with high accuracy. Indeed, the rays of bearing intersect with 
the expected corners present in the laser map. 
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Figure 5.7: Scenario after calibration: (left) vertical features; (right) rays of 
bearing. The rays corresponding to the vertical features accurately intersect 
the corners in the laser scan. 
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Figure 5.8: The path performed by the robot during self-calibration, i.e. 
straight path followed by a rotation about its center. 
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5.6.2 Robot motion estimation 

We applied our line feature tracker and calibrated camera to an important 
problem of autonomous navigation, that is robot motion estimation. In this 
section, we show only the results as the theory is similar to that derived 
for self-calibration. We used a standard EKF to estimate the motion of the 
robot. In particular, the EKF estimates the vector: 

X = [xr , yr , θr , X1, Y1, ..., XNO , YNO ]T (5.38) 

where [xr , yr , θr ] is the robot configuration, Xi, Yi are the Cartesian coordi­
nates of the i-feature in the map, and NO is the number of observed features. 
The bearing observations provided by the omnidirectional camera consist of 
the vector z whose components are: 

z1 = arctan( 
Y1 − yr 

X1 − xr 
) 

. . . (5.39) 

zNO = arctan( 
YNO − yr 

XNO − xr 
) 

To initialize a new feature in the map, consecutive bearing observations 
as in 5.32, which refer to the same feature, are integrated with the odome­
try. Then, the estimation is improved by integrating the information coming 
from all the bearing observations through the EKF. The result is shown in 
Fig. 5.10 where both the robot trajectory and the position of the features 
are shown. 
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Figure 5.10: The results obtained by implementing a simple EKF based robot 
motion estimation which uses the proposed feature tracker. The black line 
is the trajectory estimated by using the odometry alone. The red line is the 
trajectory estimated by the EKF using both odometry and vertical lines. The 
blue points represent the map ground truth provided by a laser range finder. 
The red circles are the detected verticals features. 
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5.7 Conclusion 

The contribution of this chapter is the development of a novel method to 
estimate the rigid body transformation between an omnidirectional camera 
and the reference frame of a robot (i.e. odometry). The parameters to be es­
timated (also called calibration parameters) are the position and orientation 
of the camera in the robot frame. 

In our analysis, we restricted the problem to the simpler 2D case where 
the robot undergoes pure planar motion and the omnidirectional camera is 
perpendicular to the plane of motion. Under these assumptions, the problem 
consists in estimating the parameters φ, ρ, and ψ that describe the transfor­
mation between the two systems (see Fig. 5.1). 

The novelty of the method is the use of an Extended Kalman Filter that 
automatically estimates the calibration parameters while the robot is moving. 
We call this method self-calibration because no a priori knowledge about the 
environment is required. Its implementation only requires the capability of 
robustly and visually tracking one or more features in the space. Although, 
experiments have been conducted using an omnidirectional camera, more in 
general the proposed method can be adopted to calibrate any robot bearing 
sensor. 

The proposed strategy was deeply validated through a theoretical anal­
ysis. In particular, an observability analysis which takes into account the 
system nonlinearities was carried out and clearly shows that the system con­
tains all the necessary information to estimate the calibration parameters. 
Furthermore, many accurate simulations and experiments performed with a 
real robot and an omnidirectional camera fully validated this strategy. In 
particular, they show that by choosing suitable trajectories it is possible to 
estimate the parameters with high accuracy by moving the robot along very 
short paths (few meters). 

This work has pointed out several areas that deserve further investiga­
tions: 

•	 apply optimal control methods in order to find the best robot trajectory 
which minimizes the error of the estimated parameters; 
•	 consider the effect of a systematic component on the odometry; 
•	 in the case of an omnidirectional camera, introduce other two parame­

ters (e.g. two angles) to take into account the orientation of the mirror 
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axis (here assumed to be perpendicular to the plane of motion). 



Chapter 6


Calibration between 
camera and 3D laser range 
finder 

In this chapter, we face the problem of the extrinsic calibration 
between an omnidirectional camera and a 3D laser range finder. 
Our contribution is a new method that allows to calibrate the two 
sensors on the fly. Indeed, our approach does not require any 
calibration object, conversely it uses point correspondences which 
are manually selected by the user from a scene viewed by the two 
sensors. The proposed method relies on a novel technique to vi­
sualize the range information obtained from a 3D scanner. This 
technique converts the visually ambiguous 3D range information 
into a 2D map where natural features of a scene are highlighted. 
We show that by enhancing the features the user can easily find 
the corresponding points of the camera image points. Therefore, 
visually identifying laser-camera correspondences becomes as easy 
as image pairing. Once point correspondences are given, extrinsic 
calibration is done using the well-known PnP algorithm followed 
by a non-linear refinement process. We show the performance of 
our approach through experimental results. 

107 
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6.1 Introduction 

6.1.1 State of the art 

ONE of the basic issues of mobile robotics is the automatic mapping of 
the environments. Digital 3D models of the environment are needed in 

autonomous navigation, rescue and inspection robotics, facility management, 
and architecture. Autonomous mobile robots equipped with 3D laser range 
finders are well suited for this task. 

Recently, several techniques for acquiring three-dimensional data with 2D 
range scanners installed on a mobile robot have been developed (see [86–88]). 
A popular approach is to use multiple scanners that point towards different 
directions [86]. An alternative is to use pan/tilt devices that sweep the range 
scanner in an oscillating way [89], [87]. More recently, techniques for rotating 
2D range scanners have been developed [88]. 

However, to create realistic virtual models, visually-perceived information 
from the environment has to be acquired and it has to be precisely mapped 
onto the range information. To accomplish this task, camera and 3D laser 
range finder must be extrinsically calibrated, that is, the rigid transformation 
between the two reference systems must be estimated. 

Most previous works on extrinsic laser-camera calibration concern calibra­
tion of perspective cameras to 2D laser scanners (see [90–92]). Furthermore, 
some of these works use visible lasers [93]. In contrast to previous works, in 
this chapter we consider the extrinsic calibration of a general camera with a 
3D laser range finder where the laser points are invisible to the camera. 

Because of the recent development of 3D laser scanners, only little work 
about extrinsic calibration of camera and 3D scanners exists. Furthermore, 
the process of external calibration is often poorly documented. This process 
usually requires some modification of the scene by introducing landmarks 
that are visible by both the camera and the laser. For instance, some ap­
proaches use high reflectance surfaces while other approaches use 3D spheres 
as markers. In the latter, using a fitting procedure along with prior knowl­
edge of the radius of the sphere, the 3D coordinates of the sphere center 
can be estimated quite accurately on condition that there are sufficient laser 
returns off its surface. The spheres can also be easily detected in an image. 
Then, extrinsic calibration can be done using these 3D-2D correspondence 
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pairs of the sphere centers. However, the spheres need to be quite big to be 
accurately detected by the laser. Thus, this method is not portable. 

Well-documented work about extrinsic calibration of camera and 3D scan­
ners can be found in [94,95]. However, in [94], the authors deal with the case 
of visible laser traces. Conversely, for the case of invisible laser in [95], the 
authors propose a method for fast extrinsic calibration of a camera and a 
3D scanner which makes use of a checkerboard calibration target, like the 
one commonly used for the internal calibration of a camera (as in Chapter 
3). Furthermore, they provide a useful laser-camera calibration toolbox for 
Matlab that implements their procedure [96]. Their method requires the user 
to collect a few laser-camera acquisitions where the calibration grid is shown 
at different positions and orientations. Then, the user is asked to manually 
select the region of points in the camera and laser images, which contain the 
grid. Finally, a plane is fitted to the selected points of each view pair and 
calibration is done by minimizing the difference in orientation and distance 
of the planes observed by the two sensors. This technique however needs sev­
eral camera-laser acquisitions of the grid for a sufficiently accurate external 
calibration of the system. 

6.1.2 Motivation and outline 

The work described in this chapter also focuses on the extrinsic calibration of 
a camera and a 3D laser range finder but the primary difference is that we do 
not use any calibration pattern. We use only point correspondences that the 
user hand-selects from a single laser-camera acquisition of a natural scene. 
As we use no calibration target, we name our technique self-calibration. 

This work was motivated while working in the First European Land-
Robot Trial [97]. In that contest, we presented an autonomous Smart car 
(Fig. 6.1) equipped with several 3D laser range finders and cameras (both 
omnidirectional and perspective cameras). The goal was to produce 3D maps 
of the environment along with textures [98]. 

Especially when working in outdoor environments, doing several laser-
camera acquisitions of a calibration pattern can be a laborious task. For 
each acquisition, the pattern has to be moved to another position and this 
process usually takes time. Furthermore, weather conditions (e.g. wind, fog, 
low visibility) can sometimes perturb or even alter the calibration settings. 
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Figure 6.1: Our experimental robotic platform SMARTER with which we 
participated in ELROB (the first European Land Robot Trial) [97]. 

Hence, the calibration must be done quickly. Because of this, we developed 
the procedure presented in this chapter. The advantages are that now we 
need only a single laser-camera acquisition and that the calibration input are 
point correspondences manually selected from a laser-camera acquisition of 
a natural scene. 
Once point correspondences are given, the extrinsic calibration problem be­
comes a camera pose-estimation problem which is well known in computer 
vision and can be solved using standard methods. 

The difficulty resides in visually identifying the point correspondences be­
cause range images in general lack in point features. To bypass this problem, 
we process the range data so that we can highlight discontinuities and orien­
tation changes along specific directions. This processing transforms the range 
image into a new image that we call Bearing Angle image (BA). Using BA 
images, we will show that visually identifying point correspondences between 
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the laser and the camera outputs becomes as easy as image pairing. 

To show the generality of the methodology, in our experiments we will 
use an omnidirectional camera. The BA images and the application of the 
method to an omnidirectional camera are the two main contributions of this 
chapter; the results have been published in [9]. 

The chapter is organized as follows. Section 6.2 describes the projec­
tion model of the system camera-laser. Section 6.3 defines the concept of 
BA images and explains how to compute them. Section 6.4.2 describes the 
calibration procedure. Finally, section 6.5 presents some calibration results. 

6.2 Camera-laser projection model 

6.2.1 Camera model 

Without loss of generality, in this chapter we consider central omnidirectional 
cameras but the same considerations also apply to perspective cameras. 
Furthermore, we assume that our camera is already calibrated (e.g. as in 

′ ′ ′ Chapter 3) and, thus, for every pixel point u = [u , v ] on the camera im­
age plane we can recover the orientation of the vector q emanating from the 
single effective viewpoint to the corresponding scene point X (see Equations 
(2.2), (2.10) and Fig. 2.8). The inverse mapping is also possible; that is, 

′ given q we can remap it to u (see Equations 2.2, 2.11). 

Formally, we can express the direct and inverse relation between q and 
′ u through function F and its inverse F−1 as: 

′ q = F (u ) (6.1) 

′ u = F−1(q) (6.2) 

where q is defined as in 2.2 and holds �q� = 1. F is a function R2 
R

3 →
that depends on h, g as defined in Chapter 2. 

6.2.2 Laser model 

3D laser range finders are usually built by nodding or rotating a 2D scanner 
in a stepwise or continuous manner around its lateral or radial axis (Fig. 6.2). 
Combining the rotation of the mirror inside the 2D scanner with the external 
rotation of the scanner itself, spherical coordinates of the measured points 
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a b 

Figure 6.2: (a) Our custom-built 3D scanner is composed of a SICK LMS 
200 laser range finder mounted on a rotating support. (b) Schematic of the 
sensor used for calibration. 

are obtained. However, since in reality it is impossible to adjust the two cen­
ters of rotation exactly on the same point, the measured parameters are not 
spherical coordinates and offset values exist. These offset values have to be 
estimated by calibrating the 3D sensor by considering its observation model. 

The approach presented in this chapter for the extrinsic calibration of a 
camera with a 3D laser scanner is general and does not depend on the sensor 
model. Therefore, we assume the laser is already calibrated. Neverthless, we 
explain here the scanner model used in our experiments, but a different sen­
sor setup could also be used along with its corresponding observation model. 

The 3D range sensor used in this work is a custom-built 3D scanner (Fig. 
6.2). It is composed of a two-dimensional SICK laser scanner mounted on a 
rotating support which is driven by a Nanotec stepping motor. The sensor 
model can be written as: 

  

    ρij x cicj −cisj si cidx + sidz 
 0  

 y  =  sj cj 0 0  ·  
 0 

 

 

(6.3) 
z −sicj sisj ci −sidx + cidz 1 

with ci = cos(ϕi), cj = cos(θj ), si = sin(ϕi), sj = sin(θj ).

Furthermore, ρij is the j-th measured distance with corresponding orientation
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θj in the i-th scan plane, which makes the angle ϕj with the horizontal plane 
(Fig. 6.2(b)). 
The offset of the external rotation axis from the center of the mirror in the 
laser frame has components dx and dz (as observed in Fig. 6.2(b)). 
[x, y, z]T are the coordinates of each measured point relative to the global 
frame (with its origin at the center of the rotation axis, the x-axis pointing 
forward and the z-axis toward the top). 
The sensor is calibrated as discussed in [99] based on a known ground truth. 

6.3 Bearing angle images 

In this section, we describe how to highlight depth discontinuities and di­
rection changes in the range image so that the user can easily find the cor­
responding points of the camera image points. Such features in the range 
image are called image details. 

Fig. 6.3(b) shows the range image of an office-like environment extracted 
by our 3D scanner. In such an environment, we would like emphasizing key 
points like corners arising from the plane intersections of walls, tables, chairs, 
and other similar discontinuities. 

Fig. 6.3(c) shows the result of directly applying a Sobel edge detector to 
the range image. As observed, edge detection does not directly help for our 
task, since edges are zones of the range image where the depth between two 
adjacent points significantly changes. In fact, many details in the range image 
do not create a big jump in the measured distance. Such edges are called "roof 
edges" and correspond to sharp direction changes (e.g. tetrahedron shaped 
corners). Therefore, a measure of direction should be used to highlight all 
the desired details in the scene. As representative of the surface direction, its 
corresponding normal vector is usually used (see [100, 101]). Surface normal 
vectors are estimated based on the neighborhood of each point. However, for 
our application, we avoid the use of surface normals as representatives of the 
direction. The reason is that we want to highlight the details of the surface 
along some specific directions (e.g vertical, horizontal, and diagonal). We will 
show that treating each dimension separately leads to enhanced estimation 
of the image details. 

Let the range data coming from the 3D scanner be arranged in the form 
of a 2D matrix where its entries are ordered according to the direction of the 
laser beam. This matrix will be referred to as a depth matrix. 
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a 

b c 

Figure 6.3: (a) 3D point cloud of an office. (b) Depth image of the same 
scene. Jet colormap has been used. The color shade (from blue to red) is 
proportional to the depth. (c) Sobel based edge map of the depth image. 
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We compute the surface orientation along four separate directions of the 
depth matrix, namely the horizontal, vertical, and diagonal one (the latter 
having +45◦ and −45◦ orientation). 

We define Bearing Angle (BA) the angle between the laser beam and the 
segment joining two consecutive measurement points (see Fig. 6.4(b)). This 
angle is computed for each point in the depth matrix along the four defined 
directions (that we call also “traces”). More formally: 

BAi = arccos � 
ρi − ρi−1 cos dϕ 

(6.4) 
ρ2 − ρi2 

−1 − ρiρi−1 cos dϕ i 

where ρi is the i-th depth value in the selected trace of the depth matrix 
and dϕ is the corresponding angle increment (laser beam angular step in the 
direction of the trace). 

Performing this calculation for all points in the depth matrix will lead to 
an image that we call BA image. BA images can be computed from the depth 
matrix along any direction to highlight the details of the scene in the selected 
direction. In our application, horizontal, vertical, and diagonal traces suffice 
for a successful enhancement of the details of the scene (Fig. 6.5). However, 
any other direction could be also considered depending on the application. 
As observed in Fig. 6.5, these angular measures show the geometry of the 
scene by highlighting many details that were not distinguishable in the range 
image (Fig. 6.3(b)). Hence, these will be used in the next section for extract­
ing corresponding features. 
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a 

b c 

Figure 6.4: (a) A sample bird-eye-view of a laser scan taken in our labora-
tory. (b) Bearing Angles computed along the given scan plan. (c) Plot of a 
horizontal BA signal. 
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Figure 6.5: BA images for a real scan (top left: vertical, top right: horizontal, 
and bottom: two diagonal directions). Observe that in BA images the scene 
details are very highlighted (e.g. even the corners of the picture hanged on 
the left wall are now well distinguishable; in the range image of Fig. 6.3(a), 
they were not). In this pictures, jet colormap has been used. The color shade 
(from blue to red) is proportional to the BA value. 
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6.4 Laser-camera calibration 

6.4.1 Data Collection 

Our calibration technique needs a single acquisition of both laser and camera. 
The acquisition object can be any natural scene with a sufficient number of 
distinguishable key points (e.g. roof edges or depth discontinuities). 

Our calibration procedure consists of three stages: 

1. Compute the BA images of the acquired range image. 
2. Hand-select several point correspondences (at least four) between the 

BA. image and intensity image (Fig. 6.6). 
3. Perform calibration using a camera pose estimation algorithm followed 

by a non-linear refinement. 

Observe that usually not all four BA images are needed. Depending on 
the scene and the orientation of the laser scanner to the scene, only the hor­
izontal BA image could suffice. However, the remainder BA images can be 
used anyway to check whether there are further details that would be worth 
exploiting. 

At the end of the visual correspondence pairing, we have n laser points in 
the laser frame and their correspondent points on the camera image plane. 
We write the laser and camera points in the following way: 

qC = [qC,1, qC,2, ..., qC,n], 

qL = [qL,1, qL,2, ..., qL,n], (6.5) 

dL = [dL,1, dL,2, ..., dL,n], 

where qC and qL are the unit norm orientation vectors of the camera and 
laser points respectively in their reference frames. dL are the point depths in 
the laser frame. 

6.4.2 Calibration 

Extrinsic calibration of a camera and a 3D laser range finder consists in 
finding the rotation R ∈ SO(3) and the translation T ∈ R3 between the 
laser frame and the camera frame that minimizes a certain error function. In 
photogrammetry, the function to minimize is usually the reprojection error: 
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a 

b 

Figure 6.6: Thanks to BA images, visually identifying point correspondences 
between laser (b) and camera (a) becomes as easy as image pairing. Several 
point correspondences are highlighted in red. (b) BA image, (a) omnidirec­
tional image after unwrapping 
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n 
1 ′ ′ 2

min u (R, T, XLi)� (6.6) �u i − ˆ
R,T 2 

i=1 

′ where û (R, T, XLi) is the reprojection onto the image plane of the laser 
point XLi according to Equations (2.2) and (6.2). 
However, the reprojection error is not theoretically optimal in our application 
because the resolution of the camera is not uniform. A better error function 
uses the Riemann metric associated to a sphere as it takes into account the 
spatial distribution (see [91,95]). This metric minimizes the difference of the 
bearing angles of the camera points and the bearing angles of the laser points 
after reprojection onto the image, that is: 

n
1 � 

min �arccos(q T ˆ
�2 

(6.7) C,i · qC,i) 
R,T 2 

i=1 

′ qC is the unit norm orientation vector corresponding to ˆwhere ˆ u (R, T, XLi). 

According to equation (6.2), each correspondence pair contributes two 
equations. In total, there are 2n equations in 6 unknowns. Hence, at least 3 
point associations are needed to solve for R and T. However, 3 point associ­
ations yield up to four solutions and thus a fourth correspondence is needed 
to remove the ambiguity. This problem has already been theoretically inves­
tigated for a long time and is well known in the computer vision community 
as P nP problem (Perspective from n Points). Some solutions to this problem 
can be found in [102,103]. 

We implemented the P nP algorithm described in [102]. The output of 
the P nP algorithm are the depth factors of the camera points in the camera 
reference frame, that is, dC = [dC,1, dC,2, ..., dC,n]. Finally, to recover R and 
T we used the motion estimation algorithm proposed by Zhang [104]. 

6.4.3 Non-linear optimization 

The drawback of using the P nP algorithm is that the solution is quite sensi­
tive to the position of the input points (that were hand-selected) and also to 
noisy range information. Furthermore, we have to take into account that the 
two sensors can have different resolution and that the rigid transformation 
is recovered by linear least-square estimation. Thus, the solution given in 
Section 6.4.2 is suboptimal. 
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Table 6.1: Results 
T (m) σ R(deg) σ P ixel error σ 

0.207 0.05 0.64 0.21 
0.042 0.017 -1.24 0.85 1.6 1.2 
0.139 0.005 166.95 1.08 

To refine the solution, we minimized (6.7) as a non-linear optimization 
problem by using the Levenberg-Marquardt algorithm [41,42]. This requires 
an initial guess of R and T which is obtained using the method described in 
Section 6.4.2. 

6.5 Results 

The proposed method has been tested on the custom-built rotating scanner 
described in Section 6.2.2 and on the omnidirectional camera used in Section 
3.3.2. The camera resolution was set equal to 640 × 480 pixels. 
The rotating scanner provided 360◦ field of view range measurements with a 
vertical angular resolution of 1◦ and a horizontal resolution of 0.5◦ . The cam­
era was calibrated as described in Chapter 3 while the laser was calibrated 
using a known ground truth as explained in [99]. 

Performance w.r.t. the number of points 

Figure 6.7: Estimation of the translation (meters) versus the number of 
selected points. 
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Figure 6.8: Estimation of the rotation (roll, pitch, and yaw angles) versus 
the number of selected points (the x-axis ranges from 4 to 10). 

We evaluated the robustness of the proposed approach with respect to 
the number of manually selected points. 
In particular, we varied the number of laser-camera correspondences from 4 
to 10 and for each combination we did ten calibration trials using different 
input points. The results shown in Fig. 6.7, 6.8 are the average. 

Observe that after selecting more than 5 points, the values of the esti­
mated R and T become rather stable. This stability occurs when points are 
chosen uniformly from the entire scene viewed by the sensors. Conversely, 
when points are selected within local regions of the scene, the estimated ex­
trinsic parameters are biased by the position of this region. 
We also tried to use more than 10 points but the estimated parameters did 
not deviate from the average values that had been already estimated. 

The estimated R and T were in agreement with the hand-measured val­
ues. Furthermore, the estimated parameters were stable against the position 
of the input points when these input points were picked uniformly from all 
around the scene. 

In Table 6.1, the mean and the standard deviation of R (expressed by 
Euler angles roll, pitch, and yaw) and T (with T = [Tx, Ty , Tz ]) are shown 
for the case of ten correspondence pairs. The results were averaged among 
ten different calibration trials. 
Table 6.1, shows also the reprojection error (in pixel). For data fusion, this er­
ror is the most important. It measures the distance between the laser points 
reprojected onto the image using the estimated R and T, and the image 
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points. In our experiments, the average reprojection error was 1.6 pixels and 
the standard deviation was 1.2 pixels. 

Point cloud texturing 

The reprojection of the laser points onto the image also offers an indirect 
way to evaluate the quality of the calibration. To do this, we chose not to 
reproject all the laser points onto the image. Rather, we reprojected only 
those laser points that represent discontinuities in the range image. 
To select only depth discontinuities automatically, we applied an edge detec­
tor to the BA image. The edge points, as representative of depth discontinu­
ities, were then reprojected onto the image. 
The reprojection results are shown in Fig. 6.9. As observed, the laser edge 
points well reprojected onto the edges of the intensity image. 

In the end, using the estimated R and T, we colored an entire 3D scan by 
reprojecting the scan onto the corresponding image. The results of this color 
mapping are shown in Figures 6.10, 6.11. Figures 6.11(e),(f) are obtained 
using a Spherocam HDR camera [105] while the other figures are obtained 
using the same catadioptric camera mentioned in Section 3.3.2. 
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a b 

c 

Figure 6.9: (a) A detail of the BA image. For visualization, we used a gray 
scale where the intensity is proportional to the BA value. (b) Result of a 
Sobel edge detector on the BA image. (c) The edges are reprojected onto the 
image using the computed R and T. 
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a 

b 

c 

Figure 6.10: (a) An omnidirectional picture unwrapped into a rectangular 
image. The size of the original omnidirectional image was 640 × 480 pixels. 
(b) The 3D point cloud of the same scene extracted by our 3D laser range 
finder. (c) Result of texturing. 
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a b 

c d 

e f 

Figure 6.11: (b), (d), Results of texturing using images (a), (c). (e) A 
panoramic pictured captured with a Spherocam HDR [105] and (f) the tex­
tured 3D point cloud. 
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6.6 Conclusion 

In this chapter, we presented a new approach for the extrinsic calibration of a 
camera with a 3D laser range finder, that can be done on the fly. The method 
uses only correspondent points that are manually selected by the user from 
a single laser-camera acquisition of a natural scene. 

Our method relies on a novel technique to visualize the range information. 
This technique converts the visually ambiguous 3D range information into a 
2D map (called BA image) where natural features of a scene are highlighted. 
In this way, finding laser-camera correspondences is facilitated. Once corre­
spondence pairs have been given, calibration is done using the P nP algorithm 
followed by a non-linear refinement process. 

Real experiments have been conducted using an omnidirectional camera 
and a rotating scanner, but the same approach can be also applied to any 
other type of camera (e.g. perspective) or laser range finder. 
The results showed that by selecting the input points uniformly from the 
whole scene, robust calibration can be done by using only a few correspon­
dences (at least eight or ten). 

The BA images and the application of the method to an omnidirectional 
camera are the two main contributions of this chapter. Furthermore, the im­
plication of the proposed calibration approach is important because it brings 
3D computer vision systems out of the laboratory and into practical use. In 
fact, the proposed approach requires no special equipment and allows the 
user to quickly calibrate the system in those cases where special settings are 
difficult to be arranged (Section 6.1.2). 
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Chapter 7


Visual Odometry


In this chapter, we describe an algorithm for computing the ego-
motion of a vehicle relative to the road. The algorithm uses, as 
only input, images provided by a single calibrated omnidirectional 
camera mounted on the roof of the vehicle. The front ends of the 
system are two different trackers. The first one is a homography­
based tracker that detects and matches robust scale invariant fea­
tures that most likely belong to the ground plane. The second one 
uses an appearance based approach and gives high resolution es­
timates of the rotation of the vehicle. This 2D pose estimation 
method has been successfully applied to videos from an automo­
tive platform. We give an example of camera trajectory estimated 
purely from omnidirectional images over a distance of 400 meters. 
For performance evaluation, the estimated path is superimposed 
onto an aerial image. In the end, we use image mosaicing to 
obtain a textured 2D reconstruction of the estimated path. 

7.1 Introduction 

7.1.1 State of the art 

ACCURATE estimation of the ego-motion of a vehicle relative to the 
road is a key component for autonomous driving and computer vision 

based driving assistance. Using cameras instead of other sensors for comput­
ing ego-motion allows for a simple integration of ego-motion data into other 
vision based algorithms, such as obstacle, pedestrian, and lane detection, 
without the need for calibration between sensors. This reduces maintenance 

129 
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and cost. In the robotics community as well, effective use of video sensors 
for obstacle detection and outdoor navigation has been a goal for many years. 

Most of the work in estimating robot motion has been produced using 
stereo cameras, and can be traced back to Moravec’s work [106]. Similar 
work has been reported also elsewhere (see [107–109]). Furthermore, stereo 
visual odometry has also been successfully used on Mars by the NASA rovers 
since early 2004 [110]. Nevertheless, visual odometry methods for outdoor 
applications have been also produced, which use a single camera alone. 

The problem of recovering relative camera poses and 3D structure from a 
set of 2D camera images has been largely studied for many years and is known 
in the computer vision community as “structure from motion” [11]. Very suc-
cessful results have been obtained over long distances using either perspective 
or omnidirectional cameras (see [109, 111]). In [109], the authors deal with 
the case of a stereo camera but they also provide a monocular solution imple­
menting a fully structure from motion algorithm that takes advantage of the 
5-point algorithm and RANSAC robust estimation. In [111], the authors pro­
vide two approaches for monocular visual odometry based on omnidirectional 
imagery. In the first approach, they use optical flow computation, while in 
the second one full structure from motion. 

Closely related to structure from motion is what is known in the robotics 
community as Simultaneous Localization and Mapping (SLAM), which aims 
at estimating the motion of the robot while simultaneously building and up­
dating the environment map. SLAM has been most often performed with 
other sensors than regular cameras, however in the last years successful re­
sults have been obtained using single cameras alone (see [112–115]). Recently 
in [114], the authors presented a method for mapping large loops with a sin­
gle hand-held camera. There, the authors extend Davison’s work on visual 
3D-SLAM [113] and build outdoor, closed-loop maps much larger than pre­
viously achieved with visual input alone. 

7.1.2 Motivation and outline 

In this chapter, we do not deal with visual SLAM, rather we concentrate on 
the development of a vision based method to estimate the motion of out­
door ground vehicles over long distances. In our approach, we used a single 
calibrated omnidirectional camera mounted on the roof of the car. We as­
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sume that the vehicle undergoes a purely two-dimensional motion over a 
predominant flat ground. Furthermore, because we wanted to perform vi­
sual odometry in city streets, flat terrains, as in well as in motorways where 
buildings or 3D structure are not always present, we chose to estimate the 
motion of the vehicle by tracking the ground plane. 

Ground plane tracking has been already exploited by the robotics commu­
nity for indoor visual navigation and most works have been produced using 
standard perspective cameras [116–119]. In those works, the motion of the 
vehicle is estimated by using the property that the projection of the ground 
plane into two different camera views is related by a homography. 

In this chapter, we propose a similar approach for central omnidirectional 
cameras, but our goal is to estimate the ego-motion of the vehicle in out­
door environments and over long distances. Thanks to the large field of view 
of the panoramic camera, interesting points from all around the car are ex­
tracted and matched from pairs of consecutive frames. Our key points are 
Scale Invariant Features (SIFT) [76], as they proved to work well also with 
omnidirectional pictures [120]. 

Furthermore, we want to extract those key points that only belong to the 
ground plane. To retain only these points and discard all the rest, we use 
a RANSAC based outlier removal, which uses the constraint that coplanar 
points seen from different views are related by a homographic transformation. 
The remaining inliers are then used to compute the rotation and translation 
matrices. To update the motion, we use only the magnitude of the translation 
because the rotation estimated from features alone gives rise to large drift 
errors after several hundreds of meters. Conversely, to estimate the rotation 
angle of the vehicle, we use an appearance based tracker. We show that by 
using this second tracker the drift error stays very low over several hundreds 
of meters. 

The performance of our approach has been evaluated on a real platform. 
We will show an example of camera trajectory estimated purely from omnidi­
rectional images over a distance of 400 meters. For performance evaluation, 
the estimated path is superimposed onto a satellite image of the same test 
environment. Furthermore, we use image mosaicing to obtain a textured 2D 
reconstruction of the estimated path. 

The fusion of a feature based approach and an appearance based method 
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along with its application to an omnidirectional camera are the two main 
contributions of this chapter. This work led to a publication [10] and at 
the moment when this PhD thesis is being published, we have been notified 
that it was also conditionally accepted for the IEEE Transactions of Robotics. 

This chapter is organized as follows. Section 7.2 describes our homog­
raphy based ground plane navigation. Section 7.3 describes the appearance 
based tracker. Section 7.4 details the steps of the whole visual odometry 
algorithm. Finally, section 7.5 presents some experimental results. 

7.2	 Homography Based Ground Plane Navi­
gation 

The motion information that can be extracted by tracking 2D features is 
central to our vehicle navigation system. Therefore, we briefly review here 
a method that uses planar constraints and point tracking to compute the 
motion parameters. 

7.2.1	 Homography and Planar Motion Parameters 

Early work on exploiting coplanar relations has been presented by Tsai and 
Huang [121], Longuet-Higgins [122] and Faugeras and Lustman [123]. The 
coplanar relation between two different views of the same plane can be sum­
marized as follows. Consider two camera-centered coordinate systems, frame 
1 and frame 2, which are related by a rigid body transformation: 

X2 = RX1 + T,	 (7.1) 

where X1, X2 ∈ R
3 are the coordinates of the same 3D point, respectively 

expressed in frame 1 and 2, and R ∈ SO(3), R
3 are the rotation and T ∈

the translation matrices encoding the relative position of the two coordinate 
systems. Now, assume that X1 lies on the plane defined by: 

n TX1 = h,	 (7.2) 
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where n ∈ R
3 is the plane normal and h ∈ R is the distance to the plane. 

Then, from (7.1) and (7.2), we have: 

TnT 

X2 = (R + )X1. (7.3) 
h 

The images x1, x2 of the scene points can then be written as: 

TnT 

λx2 = K(R + )K−1 x1 = Hx1 (7.4) 
h 

where x1, x2 are expressed in homogeneous coordinates as [x, y, 1]T ; K is a 
3 × 3 matrix describing the camera intrinsic parameters; λ is a scalar; H is 
a 3× 3 matrix called homography that relates the two camera projections of 
the same plane points. 

Since (7.4) is defined up to a scale factor, H has only eight degrees of free­
dom. This implies that four corresponding feature pairs (no three collinear) 
are required to linearly determine H. If more than four points are available, 
then a least-square solution can be searched. The algorithm we used in our 
implementation to recover H from a set of consistent point correspondences 
uses the normalized Direct Linear Transformation (DLT) [11]. 

Observe that equation (7.4) suggests also a method to check whether a 
given set of points are coplanar. Namely, if we can select four coplanar cor­
responding point pairs which are in a sufficiently general configuration, then 
H can be computed and used to check whether the other points in the scene 
lie in the same plane. This is actually the principle of the RANSAC based 
outlier removal and will be detailed in Section 7.2.5. 

Note that matrix K in equation (7.4) is defined only for perspective cam­
eras. However, in this chapter we assume that our omnidirectional camera is 
already calibrated and that the image points x1 and x2 are already normal­
ized to have the third component equal to 1. This allows us to write K = I. 
If not stated otherwise, in the remainder of this chapter we will assume that 
the image coordinates are always normalized. To calibrate our omnidirec­
tional camera, we used the method described in Chapter 3. 
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Figure 7.1: The vehicle used in our experiments equipped with the omnidi­
rectional camera (blue circle). The vertical field of view is indicated by the 
red lines. 

7.2.2 Homography or Euclidean Transformation? 

In our experiments, we mounted the omnidirectional camera on the roof of 
the car (Fig. 7.1) with the z-axis of the mirror perpendicular to the ground 
plane (Fig. 7.2). By fixing the origin of our coordinate system in the cen­
ter of projection of the omnidirectional camera (Fig. 7.2), we have that 
n = [0, 0, −1]T . The distance h of the origin to the ground plane can be 
manually measured. 

According to the last considerations, the homography H has the form: 

TnT 

H = R + 
h 

     T 
cos θ − sin θ 0 t1 0

1 
 t2 

  0  
h 

· =  sin θ cos θ 0  + 
0 0 1 0 −1 

  

cos θ − sin θ −t1/h 
=  sin θ cos θ −t2/h  (7.5) 

0 0 1 

where θ is the rotation angle of the camera about the z-axis and t1 and t2 

are the elements of T. 
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Figure 7.2: The omnidirectional camera model. The axis origin coincides 
with the single view point of the camera-mirror system. The camera axis is 
considered to be perpendicular to the ground plane. 

Equation (7.5) describes a Euclidean transformation on the image plane, 
which is a particular case of homography. The Euclidean transformation has 
only three degrees of freedom and allows us a more stable estimation of the 
motion with respect to the homography (i.e. eight degrees of freedom) when 
the motion is constrained to be on the ground plane. However, because of 
the unavoidable vibrations the camera is subject to during the motion of the 
vehicle as well as the misalignments among the axes of the camera, mirror, 
and ground plane normal, the form of H may appear slightly different from 
(7.5). Therefore, a eight degrees-of-freedom homography is more appropriate 
than a Euclidean transformation to describe the relation between the two 
views. 

In the next section, we will see how to decompose the homography to 
extract R and T. We will assume that the image coordinates x1 and x2 are 
correctly matched and satisfy the homography constraint (i.e. coplanarity). 
In section 7.2.5, we will explain how to extract these points. 
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Figure 7.3: (a) Uniform distribution of features. (b) Non uniform distribu­
tion. 

7.2.3 Decomposing H 

If a camera is internally calibrated, it is possible to recover R, T, and n 
from H up to at most a two-fold ambiguity. A linear method for decompos­
ing H was originally developed by Wunderlich [124] and later reformulated 
by Triggs [125]. The algorithm of Triggs is based on the singular value de­
composition of H. The description of this method as well as its Matlab 
implementation can be found in [125]. This algorithm outputs two possible 
solutions for R, T, and n which are all internally self-consistent. In the 
general case, some false solutions can be eliminated by sign (visibility) tests 
or geometric constraints, while in our case we can disambiguate the solu­
tions by choosing the one for which the computed plane normal n is closer 
to [0, 0, 1]T . Once the two solutions are disambiguated, the rotation angle θ 
and the translation parameters t1, t2 with respect to the ground plane can 
be computed. In the remainder of this chapter, we will refer to this method 
as the “Triggs algorithm”. 

In our implementation, we used the Triggs algorithm but we combined 
it also with another method that we are now going to describe. Indeed, the 
Triggs algorithm works in general very well if the image points are spatially 
uniformly distributed on the camera image (see Fig. 7.3.a). If the image 
points are too close to a degenerate configuration or they are spatially dis­
tributed within one side of the whole omnidirectional image (Fig. 7.3.b), 
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then it is better to use the Euclidean approximation given in (7.5). 

Here we describe how to use the Euclidean approximation to derive the 
rotation and translation parameters. From (7.5), we have: 

x2 = cx1 − sy1 − a 
y2 = sx1 + cy1 − b (7.6) 

with c = cos θ, s = sin θ, a = t1/h, b = t2/h, x1 = [x1, y1], and x2 = [x2, y2]. 
Each point pair gives two equations, and hence given two point pairs we can 
linearly recover c, s, a, b. When more point correspondences are given (say 
n corresponding pairs) a linear least-squares solution can be found with the 
pseudo-inverse matrix method. To this end, observe that (7.6) can be rewrit­
ten as: 

  

c 
 s  x20x1 −y1 −1 
  = 

y1 x1 0 −1 
· 
	 a  y2 

b 
  

c 
 s  

� A   = B (7.7) 
 a  
· 

b 

where A is a 2n ×4 matrix and B is a 2n vector. The linear least squares ×1 
solution of (7.7) is [c, s, a, b]T = A+B, where A+ = (ATA)−1AT is the 
pseudoinverse of A. 

Observe that the matrix Q = [c, −s; s, c] may not be orthonormal because 
of the method used to compute its coefficients s and c. However, we can com­
pute an orthonormal matrix that better approximate Q. 
The best rotation matrix R2D to approximate Q in the Frobenius sense is 
R2D = UVT, where [U, S, V] = SV D(Q) and SV D(Q) is the singular value 
decomposition of Q. 
Here, "best" is in the sense of the smallest Frobenius norm of the difference 
R2D −Q, which solves the problem: 

R2D 

�R2D −Q�2min 
F 

subject to R2D · RT = I (7.8) 2D 
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Finally, from R2D the rotation angle θ can be easily computed. At the same 
time, t1, t2 can be directly computed from a and b knowing h. 
In the remainder of this chapter, we will refer to this last method as the 
“Euclidean method”. 

In the final implementation of our algorithm, we implemented both the 
Triggs algorithm and the Euclidean method. The trigger condition to use 
the one or the other is given by the spatial distributions of the image points. 
If the image points occupy both the left and the right half of the omnidirec­
tional image (like in Fig. 7.3.a), then the Triggs algorithm is used. If the 
image points are only in one half (i.e. either the left or the right one) of the 
image (like if Fig. 7.3.b), then the Euclidean method is used. 

7.2.4 Maximum likelihood estimation 

In 7.2.3, we have described two different approaches to recover the transla­
tion parameters and the rotation angle of the vehicle given a set of image 
correspondences that are assumed to lie on a plane. However, the solution 
given by both approaches is obtained by a linear method that minimizes 
an algebraic distance which is not physically meaningful. We can refine it 
through maximum likelihood inference. The maximum likelihood estimate 
can be obtained by minimizing the following functional: 

n 

�x1 
i − ˆi i − ˆimin x1(θ, t1, t2)�2 + �x2 x2(θ, t1, t2)�2 , (7.9) 

θ,t1,t2 
i=1 

x1 = H−1x2, ˆwith ˆ x2 = Hx1. If the Triggs algorithm is used, H is defined 
as in [125], else it is defined as in (7.5). 

To minimize (7.9), we used the Levenberg-Marquadt algorithm. This al­
gorithm requires an initial guess for θ, t1, t2 . As an initial guess, we used 
the linear solutions provided either by the Triggs algorithm or the Euclidean 
method. 

7.2.5 Coplanarity Check 

The equations given in the previous sections assume that the corresponding 
feature pairs x1 and x2 are correctly matched and that the points lie on 
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the ground plane. Even though in omnidirectional images taken from the 
roof of the car the ground plane is predominant, there are also many feature 
points that come from other objects than just the road, like cars, build­
ings, trees, guardrails, etc. Furthermore, there are also many unavoidable 
false matches that are more numerous than those usually output by SIFT on 
standard perspective images (about 20-30% according to [76]) because of the 
large distortion introduced by the mirror. To discard the outliers, we used 
the Random Sample Consensus paradigm (RANSAC) [126]. The RANSAC 
steps in our case are formally the following: 

1. Say A the set of all feature pairs output by SIFT from two consecu­
tive frames. At each iteration, four putative corresponding pairs are 
randomly selected from A and a homography H is instantiated from 
these points (four is the minimum number of point pairs required to 
compute a eight degrees-of-freedom homography). 

2. The instantiated H is used to determine the subset S1 of point pairs 
in A that are within some error tolerance d. This subset S1 is called 
consensus set. 

3. If the number of members in S1 is greater than some threshold t, 
which is a function of the expected number of outliers in A, then S1 

∗is used to compute a new H . 
4. Otherwise, if the number of members in S1 is less than t, then a new 

subset S2 is randomly selected and the above process is repeated. 

If, after some predetermined number of trials, no consensus set with t or 
∗more members is found, then the homography H with the largest consensus 

set is used. The estimation of t as a function of the number of outliers can 
be found in [126]. 

As an error measure to determine the subset S1 of pairs that are within 
the error tolerance d, we used the symmetric transfer error: 

i err = �x i �1i Hx −2 
2 −i 1H−1 x i �2 2 (7.10) + �x 

We reject every pair for which erri > d, where d is computed statistically 
according to the Huber-type skipped means rule [127], that is d = 5.2M AD. 
M.A.D. stands for Median Absolute Deviation and is defined as: 

M AD(err) = mediani{ erri −medianj (errj ) (7.11) | |} 
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7.3 Visual Compass 

In the previous session, we described how to use point features to compute 
the rotation and translation matrices. Unfortunately, when using features 
to estimate the motion, the resulting rotation is extremely sensitive to sys­
tematic errors due to the intrinsic calibration of the camera or the extrinsic 
calibration between the camera and the ground plane. This effect is even 
more accentuated with omnidirectional cameras due to the large distortion 
introduced by the mirror. In addition to this, integrating rotational infor­
mation over the time has the major drawback of generally becoming less and 
less accurate as integration introduces additive errors at each step. An ex­
ample of camera trajectory recovered only using the feature based approach 
described in Section 7.2 is depicted in Fig. 7.8. 

To improve the accuracy of the rotation estimation, we used an appear­
ance based approach. This approach was inspired by a recent work on the 
use of omnidirectional cameras as visual compass [128]. Directly using the 
appearance of the world as opposed to extracting features or structure of the 
world is attractive because methods can be devised that do not need precise 
calibration steps. Here, we describe how we implemented our visual compass. 

For ease of processing, every omnidirectional image is unwrapped into 
cylindrical panoramas (Fig. 7.5). The unwrapping considers only the white 
region of the omnidirectional image that is depicted in Fig 7.6. We call these 
unwrapped versions "appearances". If the camera is perfectly vertical to the 
ground, then a pure rotation about its vertical axis will result in a simple 
column-wise shift of the appearance in the opposite direction. The exact ro­
tation angle could then be retrieved by simply finding the best match between 
a reference image (before rotation) and a column-wise shift of the successive 
image (after rotation). The best shift is directly related to the rotation angle 
undertaken by the camera. In the general motion, translational information 
is also present. This general case will be discussed later. 

The input to our rotation estimation scheme is thus made of appearances 
that need to be compared. To compare them, we used different distance 
metrics. In particular, we have tried a cross correlation, a normalized cross 
correlation, a L1 norm (Manhattan distance), and an L2 norm (Euclidean 
distance). The best results were obtained by using the Euclidean distance. 
A performance comparison with the other metrics is not given in this chapter. 
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The Euclidean distance between two appearances Ii and Ij , with Ij being 
column-wise shifted (with column wrapping) by α pixels, is: 

� h w c 

d(Ii, Ij , α) = � Ii(k, h, l)− Ij (k, h− α, l) 2 (7.12) | |
k=1 h=1 l=1 

where h × w is the image size, and c is the number of color components. 
In our experiments, we used the RGB color space, thus having three color 
components per pixel. 

Being αm the best shift that minimizes the distance 

d(Ii, Ij , αm) ≤ d(Ii, Ij , α),∀α ∈ R, 

then the rotation angle Δϑ (in degrees) between Ii and Ij is: 

360 
Δϑ = α (7.13) m · 

w 

The width w of the appearance is the width of the omnidirectional im­
age after unwrapping and can be chosen arbitrarily. In our experiments, we 
used w = 360, that means the angular resolution was 1 pixel per degree. To 
increase the resolution to 0.1 deg, we used cubic spline interpolation with 
0.1 pixel precision. We also tried larger image widths but we did not get 
any remarkable improvement in the final results. Thus, we used w = 360 as 
the unwrapping can be done in a negligible amount of time. The Euclidean 
distance between the two images in Fig. 7.5 as a function of the column-wise 
shift of the second image is shown in Fig. 7.4. 

The distance minimization in (7.12) makes sense only when the camera 
undergoes a pure rotation about its vertical axis, as a rotation corresponds 
to a horizontal shift in the appearance. In the real case, the vehicle is mov­
ing and translational component is present. However, the "pure rotation" 
assumption still holds if the camera undergoes small displacements or the 
distance to the objects (buildings, tree, etc.) is big compared to the displace­
ment. In the other cases, this assumption does not hold for the whole image 
but an improvement that can be done over the theoretical method is to only 
consider parts of the images, namely the front and back part (Fig. 7.11). 
Indeed, the contribution to the optic flow by the motion of the camera is 
not homogeneous in omnidirectional images; a forward/backward translation 
mostly contributes in the regions corresponding to the sides of the camera 
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Figure 7.4: The Euclidean distance between the two images in Fig. 7.5 as 
a function of the column-wise shift of the second image. The distance is 
computed according to equation (7.12) 

and very little in the parts corresponding to the front and back of the camera, 
while the rotation contributes equally everywhere. 

Because we are interested in extracting the rotation information, only 
considering the regions of the images corresponding to the front and back 
of the camera allows us to reduce most of the problems introduced by the 
translation, in particular sudden changes in appearance (parallax). 

According to the last considerations, in our experiments we used a re­
duced Field Of View (FOV) around the front and back of the camera (Fig. 
7.6). A reduced field of view of about 30 deg around the front part is shown 
by the white window in Fig. 7.5. Observe that, besides reducing the FOV of 
the camera in the horizontal plane, we operated a reduction of the FOV in 
the vertical plane as well, in particular under the horizon line. The reason 
was to reduce the influence of the changes in appearance of the road. The 
resulting vertical FOV was 50 deg above and 10 deg below the horizon line 
(the horizon line is indicated in red in Fig. 7.5). 

The fact of reducing the field of view provided an important improve­
ment over using the whole field of view in terms of stability and sensitivity 
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Figure 7.5: Two unwrapped omnidirectional images. For reasons of space, 
here only one half of the whole 360 deg is shown unwrapped. The central 
part of the image corresponds to the front view of the vehicle (see Fig.7.6). 
The two frames were taken at different times while the car was translating 
and turning right. The upper image is taken at time t −1, the lower image at 
time t. The red line is the horizon line. The white box is the search window 
used in our experiments. 

to prominent features at the sides of the camera. The effect of the size of the 
FOV on the estimation of the camera trajectory is depicted in Fig. 7.10 and 
will be discussed in Section 7.5. 

7.4 Motion Estimation Algorithm 

As we already mentioned, the appearance based approach provides rotation 
angle estimates that are more reliable and stable than those output by the 
pure feature based approach. Here, we describe how we combined the rota­
tion angle estimates of Section 7.3 with the camera translation estimates of 
Section 7.2. 

In our experiments, the speed of the vehicle ranged between 10 and 20 
Km/h while the images were constantly captured at 10 Hz. This means that 
the distance covered between two consecutive frames ranged between 0.3 and 
0.6 meters. For this short distance, the camera configuration (x, y, θ), which 
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Rmin 

Rmax 

FRONT 

BACK 

Figure 7.6: The cylindrical panorama is obtained by unwrapping the white 
region. The front view is the view pointing to the heading direction of the 
vehicle. The reduced FOV around the front and back of the camera is de­
marcated by the two lines. 

contains its 2D position (x,y) and orientation θ, can be approximated in this 
way: 

 

 
xi+1 = xi + δρi cos θ 
yi+1 = yi + δρi sin θ (7.14) 

 

θi+1 = θi + δθi 

where we use δρ = T h and δθ = Δϑ.| |
Observe that T is the same translation vector used in Section 7.2 and thus 
T = norm([t1, t2]), where t1 and t2 are computed as described in sections | |
7.2.3 and 7.2.4. Parameter h is the scale factor (i.e. in our case this is 
the height of the camera to the ground plane). The camera rotation angle 
Δϑ is computed as described in section 7.3. Observe that we did not use at 
all the rotation estimates provided by the feature based method of section 7.2. 

Now, let us resume the steps of our motion estimation scheme, which have 
been detailed in section 7.2 and 7.3. Our omnidirectional visual odometry 
operates as follows: 

1. Acquire two consecutive frames. Consider only the region of the om­
nidirectional image, which is between Rmin and Rmax (Fig. 7.6). 
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2. Extract and match SIFT features between the two frames. Use the 
double consistency check to reduce the number of outliers. Then, use 
the calibrated camera model to normalize the feature coordinates to 
have the third homogeneous component equal to 1. 

3. Use RANSAC to reject points that are not coplanar (section 7.2.5). 
4. Apply the linear algorithm described in section 7.2.3 to estimate R 

and T from the remaining inliers. In doing this, switch between the 
Triggs algorithm and the Euclidean method as described in Section 
7.2.3. Then, refine R and T using maximum likelihood estimation 
(section 7.2.4). 

5. Unwrap the two images and compare them using the appearance 
method described in section 7.3. In particular, minimize (7.12), with 
reduced field of view, to compute the column-wise shift between the 
appearances and use (7.13) to compute the rotation angle Δϑ. 

6. Use δρ = T h and δθ = Δϑ and integrate the motion using (7.14). | |
7. Repeat from step 1. 

7.5 Results 

The approach proposed in this chapter has been successfully tested on a real 
vehicle equipped with a central omnidirectional camera. A picture of our 
vehicle (a Smart) is shown in Fig 7.1. 

Our omnidirectional camera, composed of a hyperbolic mirror (KAIDAN 
360 One VR, the same used in the previous chapters) and a digital color 
camera (SONY XCD-SX910, image size 640 × 480 pixels), was installed on 
the front part of the roof of the vehicle. The frames were grabbed at 10 Hz 
and the vehicle speed ranged between 10 and 20 Km/h. 

The resulting path estimated by our visual odometry algorithm using a 
10 deg FOV is shown in the figures 7.8, 7.11, and 7.12. Our ground truth is 
an aerial image of the same test environment provided by Google Earth (Fig. 
7.11). The units used in the three figures are meters. 

In this experiment, the vehicle was driven along a 400 meter long loop 
and returned to its starting position (pointed to by the yellow arrow in Fig. 
7.11). The estimated path is indicated with red dots in Fig. 7.11 and is 
shown superimposed on a satellite image for comparison. The final error at 
the loop closure is about 6.5 meters. This error is due to the unavoidable 
visual odometry drift; however, observe that the trajectory is very well es­
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timated until the third 90-degree turn. After this turn, the estimated path 
deviates smoothly from the expected path instead of continuing straight. Af­
ter road inspection, we found that this deviation was due to three 0.3 meter 
tall road humps (pointed to by the cyan arrow in Fig. 7.11) that violate the 
planar motion assumption. 

The content of Fig. 7.12 is very important as it allows us to evaluate 
the quality of motion estimation. In this figure, we show a textured top 
viewed 2D reconstruction of the whole path. Observe that this image is 
not a satellite image but is an image mosaicing. Every input image of this 
mosaic was obtained by an Inverse Perspective Mapping (IPM) of the orig­
inal omnidirectional image onto an horizontal plane. This inverse mapping 
is always possible for central cameras, that is, when a camera has a single 
effective viewpoint. After being undistorted through IPM, these images have 
been merged together using the 2D poses estimated by our visual odometry 
algorithm. The estimated trajectory of the camera is shown superimposed 
with red dots. If one visually and carefully compares the mosaic (Fig. 7.12) 
with the corresponding satellite image (Fig. 7.11), it would be possible to 
recognize in the mosaic the same elements that are present in the satellite 
image, that is, trees, white footpaths, pedestrian crossings, roads’ placement, 
etc. Furthermore, can be verified that the location of these elements in the 
mosaic fits well the location of the same elements in the satellite image. 

As we mentioned in Section 7.3, we also evaluated the effect of the FOV 
on the final motion estimation. Fig. 7.10 shows the recovered estimated 
trajectory respectively using FOV=10 deg, FOV=20 deg, FOV=30 deg, and 
FOV=60 deg. Observe that the estimation of the trajectory improves as the 
FOV decreases. Indeed, as we mentioned already in Section 7.3, the fact of 
reducing the field of view allows us to reduce most of the problems introduced 
by the translation, like sudden changes in parallax. The best performance 
in terms of closeness to the ground truth of Fig. 7.11 is obtained when 
FOV=10 deg. 

In Fig. 7.9, the effect of the FOV on the estimation of the heading direc­
tion θ is also shown. Also here, the best performance is when FOV=10 deg. In 
this case in fact 90-degree turns are very well estimated. Furthermore, when 
FOV=10 deg the heading direction stays quite constant after each turn, that 
is when the vehicle covers a straight path. Note that when the vehicle returns 
to its start position, the estimated heading direction is equal to 355 deg, that 
means the orientation error at the loop closure is 5 deg. 
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Figure 7.7 shows the rotation angle δθ estimated for FOV=10 deg as a 
function of the traveled distance. 
Finally, a comparison of the proposed algorithm with the only feature based 
method of Section 7.2 is shown in Fig. 7.8. 
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Figure 7.7: The rotation angle δθ (degrees) estimated by the appearance 
based method vs. the traveled distance (meters) 
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Figure 7.8: A comparison between the camera trajectory recovered through 
two distinct approaches: in red, the trajectory recovered using the whole 
algorithm described in this chapter (feature and appearance based); in blue, 
the trajectory recovered using only the feature based approach described in 
Section 7.2 
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Figure 7.9: The heading direction θ (degrees) vs. the traveled distance (me-
ters). The results are shown for different FOVs: FOV = 10 deg (red), FOV 
= 20 deg (blue), FOV = 30 deg (black), FOV = 60 deg (magenta). 
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Figure 7.10: A comparison of camera trajectory recovered by using different 
FOVs: FOV = 10 deg (red), FOV = 20 deg (blue), FOV = 30 deg (black), 
FOV = 60 deg (magenta). 
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Figure 7.11: The estimated path superimposed onto a Google Earth image 
of the test environment. The scale is shown at the lower right corner. 
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Figure 7.12: Image mosaicing that shows a textured 2D reconstruction of the 
estimated path. The two arrows point out the final error at the loop closure 
(the pedestrian crossing pointed to by the cyan arrow should theoretically 
coincide with that pointed to by the yellow arrow). 
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7.6 Conclusion 

In this chapter, we described an algorithm for computing the ego-motion of 
a vehicle relative to the road. The algorithm uses as only input images pro­
vided by a single omnidirectional camera. The front ends of the system are 
two different trackers. The first one is a feature based tracker that uses SIFT 
features and a RANSAC based outlier removal to track the key points that 
most likely belong to the ground plane. The second one uses an appearance 
based approach to give high resolution estimates of the rotation angle of the 
vehicle. Using the first tracker to compute the vehicle displacement in the 
heading direction and the second tracker to compute the vehicle rotation has 
proved to give very good visual odometry estimates under planar motion as­
sumption. Furthermore, the performance of the motion estimation given by 
the proposed method is better than the pure feature based approach (Fig. 
7.8). 

The proposed algorithm has been successfully applied to videos from an 
automotive platform. We gave an example of camera trajectory estimated 
purely from omnidirectional images over a distance of 400 meters. For perfor­
mance evaluation, the estimated path has been superimposed onto a satellite 
image of the same test environment and a textured 2D reconstruction of the 
path has been done. 

The appearance based method, with reduced field of view, has proved to 
give good estimates of the heading direction of the vehicle even in presence of 
close objects like trees or buildings. Furthermore, straight segments of roads 
as well as 90 degree turns were very well estimated. The accumulated error 
after 400 meters (i.e. error at the loop closure) was about 6.5 meters for the 
distance and 5 degrees for the orientation. This error includes also a smooth 
deviation caused by some road humps present along the path. Other sources 
of error are unavoidably due to the integration of the translation and rotation 
over the time, camera vibrations, or camera calibration. Calibration errors 
can be intrinsic (e.g. position of the image center, camera-mirror model) 
or extrinsic (e.g. perpendicularity of the camera axis to the ground plane). 
Appearance based methods are less sensitive to calibration errors than pure 
feature based approaches but the sensitivity increases when reducing the field 
of view (see [128] for a performance analysis). In our implementation, the 
chosen reduced field of view was a good compromise between accuracy and 
sensitivity. 
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However, many improvements can be still implemented. One of the im­
provements under work is the automatic calibration of the camera during 
motion and a relaxation of the planar motion assumption. 
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Chapter 8


Conclusion


This chapter summarizes the contributions of this thesis and fu­
ture directions of research. 

8.1 Summary 

For mobile robots to be able to work with and for people and thus oper­
ate in our everyday environments, they need to be able to acquire knowledge 
through perception. In other words they need to collect sensor measurements 
from which they extract meaningful information. This thesis covered some 
of the essential components of a robot perception system combining omnidi­
rectional vision, odometry, and 3D laser range finders: 

•	 omnidirectional camera modeling: how to link 3D scene points to their 
2D reprojections on the camera image plane, 
omnidirectional camera calibration: how to determine this model for a • 
given camera, 
•	 feature extraction and matching: how to extract and robustly match 

distinctive line features that are suitable for self-calibration and indoor 
robot motion estimation, 
•	 calibration between camera and odometry: how to establish the relative 

pose between the two reference systems, 
•	 calibration between camera and 3D scanner, 
•	 visual odometry: how to recover the trajectory of a car using the visual 

input alone. 

155 
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We started by reviewing some of the most used imaging model used to 
describe central omnidirectional cameras (Chapter 2). We saw that Geyer 
and Daniilidis proposed a unified imaging model for catadioptric cameras 
(hyperbolic, parabolic, and elliptic), while Micusik devised several models 
for dioptric cameras. Using the Micusik’s formalism, we reviewed all these 
imaging models (Section 2.2) and proposed our new unified model (the Taylor 
model) which encompasses both dioptric and catadioptric cameras (Section 
2.3). This model uses a simplified Taylor series expansion whose coefficients 
need to be estimated by calibration. Camera-mirror-lens misalignments are 
taken into account by considering an Affine relation between the sensor plane 
and the camera image plane. 

We also devised a flexible and practical methodology to calibrate our uni­
fied model (Chapter 3). Our approach takes advantage of a checkerboard-like 
pattern that is shown by the user at different positions and orientations. The 
pattern can be freely moved and no a priori knowledge is used. The calibra­
tion parameters (that are the Taylor coefficients and the Affine parameters) 
are estimated using a four-step linear minimization followed by a non-linear 
refinement which is based on the maximum likelihood criterion. Performance 
evaluations were done on both simulated and real omnidirectional cameras 
(Section 3.3). We showed that calibration is robust against image noise and 
can be improved by increasing the polynomial degree and the number of im­
ages (Section 3.3.2). We also applied our calibration procedure to different 
cameras (dioptric and catadioptric, Section 3.3.2) and showed the accuracy of 
calibration in a “structure from motion” experiment (Section 3.3.2). We also 
devised a procedure to detect the center of distortion of the image, which, 
unlike all previous methods, does not requires the visibility of the mirror’s 
external boundary. This calibration method, led to an opensource toolbox 
for Matlab, called OCamCalib ((Section 3.4)), made available on the author’s 
web page. 

In Chapter 4, we described a method to extract and robustly match ver­
tical lines among omnidirectional images. Matching robustness was achieved 
by devising a descriptor that is very distinctive for each feature and is invari­
ant to rotation and slight changes of illumination. The performance of the 
descriptor, which is based on gradient orientation histograms, was shown by 
tracking features over large camera displacements in several real experiments 
(Sections 4.7, 5.5.2, 5.6.1, and 5.6.2). Furthermore, this method proved to 
be very useful and robust for other robotic applications, like camera self-
calibration and indoor robot motion estimation (Chapter 5). 
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In Chapter 5, we faced the problem of extrinsically calibrating an omnidi­
rectional camera with the robot’s encoder reference system. Unlike previous 
methods, we proposed a self-calibration procedure which is based on an Ex­
tended Kalman Filter (EKF). The inputs to the EKF are the encoder readings 
and the bearing angles of line features tracked over the time. By means of 
the EKF, the parameters characterizing the pose between the two reference 
systems are estimated while the robot is moving. The proposed strategy was 
deeply validated through a theoretical analysis, starting from the simpler 
case of a single feature and extended then to multiple features. In particular, 
an observability analysis, which takes into account the system nonlinearities, 
was carried out and clearly showed that the system contains whole the neces­
sary information to estimate the calibration parameters. Furthermore, many 
accurate simulations and experiments fully validated this strategy (Sections 
5.5, 5.6.1). In particular, they showed that by choosing suitable trajectories 
(alternating straight paths with pure rotations) it is possible to estimate the 
parameters with high accuracy by moving the robot along very short paths 
(few meters) (Section 5.5.1). 

In Chapter 6, we faced the problem of extrinsically calibrating an omnidi­
rectional camera with a 3D laser range finder. Unlike other previous methods, 
that use several laser-camera acquisitions, calibration patterns and/or visible 
laser trace, we devised a method that can be done on the fly. Our method 
needs a single laser-camera acquisition of a natural scene (either indoor or 
outdoor) and no calibration pattern. The input points are correspondences 
that are hand-selected by the user. As we pointed already out, the diffi­
culty resides in visually identifying point correspondences with the laser scan 
because of the lack of contrast in laser’s range images. Our technique con­
sisted in converting the visually ambiguous 3D range information into a 2D 
map (called Bearing Angle (BA) image) where natural features of a scene are 
highlighted (Section 6.3). In this way, finding laser-camera correspondences 
becomes as easy as image pairing. Once correspondence pairs were given, 
calibration was done using standard methods (Section 6.4.2). Real experi­
ments have been conducted using an omnidirectional camera and a rotating 
scanner (Section 6.5), but the same approach can be also applied to any other 
type of camera (both omnidirectional and perspective) or 3D scanner. The 
results showed that by uniformly selecting the input points from the whole 
scene, calibration can be done robustly using only a few correspondences. 

Finally, in Chapter 7 we faced the problem of visual odometry for outdoor 
ground vehicles. We devised a method which uses ground point features and 
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an appearance based method (used as a visual compass) to estimate the ego-
motion of an omnidirectional camera mounted on a car under the assumption 
of planar motion. Experiments were done with a real car. We gave an 
example of camera trajectory estimated purely from omnidirectional images 
over a distance of 400 meters. For performance evaluation, the estimated path 
was superimposed onto a satellite image of the same test environment and 
a textured 2D reconstruction of the path was also given. The combination 
of both feature and appearance based methods proved to outperform the 
standard feature based algorithm by Triggs (Section 7.5, Fig. 7.8). The 
appearance based method, with reduced field of view, has proved to give 
very good estimates of the heading direction of the vehicle even in presence 
of close objects (e.g. trees, buildings, etc). Furthermore, straight segments of 
roads as well as 90-degree turns were very well estimated. The accumulated 
error after 400 meters (error at the loop closure) was about 6.5 meters for 
the distance and 5 degrees for the orientation. 

8.2 Outlook 

Even if the experiments provided promising results, there are still some as­
pects that can be improved to provide better performance. 

•	 Our unified Taylor model assumes that camera-mirror (or lens) mis­
alignments are small and thus the relation between the sensor plane 
and the camera plane can be modeled by an Affine transformation 
(Section 2.2.3). This assumption is commonly accepted [20, 24] and 
has proved to be a good approximation of the most complete perspec­
tive projection model [26]. However, when misalignments are larger, 
an homography should be better considered in place of the affinity to 
take into account the real pose of the two reference systems. 

•	 Our calibration approach uses as a calibration pattern a planar grid 
that is automatically detected using a chessboard detection algorithm 
realized on purpose in our lab [39]. However, auto-calibration could 
be considered by visually tracking several natural keypoints from the 
environment. The intrinsic parameters could then be estimated using 
epipolar geometry and RANSAC for outlier removal as in [129]. 

•	 Our vertical line tracking algorithm proved to perform very well over 
large camera displacements (up to two meters, Section 4.7) thanks to 
the robustness of the descriptor. As we mentioned, our descriptor is 
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invariant to rotation (line orientation) and slight changes of illumina-
tion. Further developments could be considered in the direction of scale 
invariance. This could be done by selecting the circular areas along the 
line at different scales. A descriptor could then be assigned for each 
scale. 

•	 In the contest of camera-odometry extrinsic self-calibration, the follow­
ing areas deserve further investigations: apply optimal control methods 
in order to find the best robot trajectory which minimizes the error of 
the estimated parameters; consider the effect of a systematic compo­
nent on the odometry; for the omnidirectional camera, introduce other 
two parameters (e.g. two angles) to take into account the orientation 
of the mirror axis (that we assumed to be perpendicular to the plane 
of motion). 

•	 In the area of camera-laser extrinsic calibration, further research should 
be done to take into account the different resolutions of the laser and 
of the omnidirectional camera. 
Furthermore, the pose between the two sensors was estimated using 
standard camera-pose-estimation algorithms which take advantage of 
point correspondences; further improvements in this area could be 
obtained using instead line features (although the application of the 
method would then be limited to structured environments). 
In our method, we considered the camera already calibrated; the method 
could be extended by refining also the camera intrinsic parameters while 
estimating the extrinsic ones. 

•	 Our visual odometry algorithm is based on planar motion assump-
tion. To overcome this assumption, one should adopt the full projection 
model and add the information of 3D scene points instead of the only 
ground points. Then, using the epipolar geometry constraint (defined 
by the essential matrix) would be possible to recover the structure and 
motion using the well known 5 or 8-point algorithm. However, this 
method does not work when only the ground plane is present because 
coplanar points are a degenerate configuration for the above algorithms; 
conversely, a combination of these methods with our approach would 
certainly overcome this situation. 
Another improvement that could be done is camera self-calibration 
during the motion of the vehicle; the calibration parameters could be 
intrinsic (i.e. camera model) and/or extrinsic (e.g. the two angles 
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defining the orientation of the camera to the ground plane). For this 
purpose, the solution could be similar to that we used in Chapter 5 
where we calibrated the camera with the odometry using an EKF; in 
this case, the state of the system would consist of the vehicle configu­
ration (i.e. xR, yR, θR) plus the intrinsic and extrinsic parameters. As 
a motion model, a constant velocity model could be used. 
We have also shown that appearance based methods are less sensitive to 
calibration errors than pure feature based approaches but the sensitiv­
ity increases when reducing the field of view (see [128] for a performance 
analysis). Further improvements could be obtained by making the size 
of the field of view adaptive with the observed scene. 



Appendix A


Appendix


A.1 Observability analysis (Chapter 5) 

We want to show that the gradients dL0β, dL1 β, dL1 β, dL2 β and f1 f2 f1f2 

dL2 β are independent. f1, f2 and β are defined by the equations (5.24) f2f2 

and (5.11). 

We start our proof by computing the five Lie derivatives L0β, L1 β, L1 β,f1 f2 

L2 β and L2 β.f1 f2 f2f2 

L0β = β (A.1) 

L1 β = 
−ρsinφ + Dsinθ a 

(A.2) f1 γ 
≡ 
γ 

Dρcosθ + D2 b 
L1 β = (A.3) f2 γ 

≡ 
γ 

L2 β = (A.4) f1f2 

Dcosθ(D2 + ρ2)− 2ρ2Dsinθsinφ + 2ρD2cosφ c 
γ2 

≡ 
γ 

L2 β = 
Dρsinθ(D2 − ρ2) d 

(A.5) f2f2 γ2 
≡
γ 

where γ = D2 + ρ2 + 2ρDcosθ. 
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To prove that the gradients of the previous functions are independent we 
show that the determinant of the matrix whose rows are these gradients is 
different from zero. 

First of all, we remark that only L0β depends on ψ (see equation (5.11)). 
Therefore this matrix has the following structure: 

  

−1∗ ∗ ∗ ∗ 
  

  

∗ ∗ ∗ ∗ 0 
  

  

∗ ∗ ∗ ∗ 0 
 ∗ ∗ ∗ ∗ 0  

∗ ∗ ∗ ∗ 0 

Hence, we have to prove that the bottom left submatrix 4 × 4 has the 
determinant different from zero. In other words, we can consider only the 
gradients of the last four functions with respect to D, θ, φ, and ρ. Now let 
us define the following two vectors: 

w = [a, b, c, d]T v = [a, b, 2c, 2d]T→ −− →

Since γ = 0, the determinant of the previous submatrix is different from 
zero if and only if is different from zero the following determinant: 

det = (A.6) 

−→ w 
∂D − 

−→ v −→ w −→ v −→ w −→ v −→ w −→ v∂γ ∂γ ∂γ ∂γ ∂ ∂ ∂ ∂− − −∂D γ ∂θ ∂θ γ ∂φ ∂φ γ ∂ρ ∂ρ γ 

On the other hand, through a direct computation it is possible to prove that 

∂−→ w ∂−→ w ∂−→ w ∂−→ w 
� ∂D , ∂θ , ∂φ , ∂ρ � = 0 

−→ w −→ w
−→ w
−→ w

and therefore it is possible to express the vector − as a combination of the v→
four vectors: ∂∂D , 

∂ ∂ and ∂∂ρ ∂θ , .∂φ 

By using this combination for − in (A.6) it is possible to show that also v→
the determinant in (A.6) is different from zero. 
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