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Abstract—Dynamically changing environments, unreliable
state estimation, and operation under severe resource constraints
are fundamental challenges that limit the deployment of small
autonomous drones. We address these challenges in the context of
autonomous, vision-based drone racing in dynamic environments.
A racing drone must traverse a track with possibly moving gates
at high speed. We enable this functionality by combining the
performance of a state-of-the-art planning and control system
with the perceptual awareness of a convolutional neural network
(CNN). The resulting modular system is both platform- and
domain-independent: it is trained in simulation and deployed on
a physical quadrotor without any fine-tuning. The abundance of
simulated data, generated via domain randomization, makes our
system robust to changes of illumination and gate appearance.
To the best of our knowledge, our approach is the first to
demonstrate zero-shot sim-to-real transfer on the task of agile
drone flight. We extensively test the precision and robustness of
our system, both in simulation and on a physical platform, and
show significant improvements over the state of the art.

Index Terms—Drone Racing, Learning Agile Flight, Learning
for Control.

SOURCE CODE, VIDEOS, AND TRAINED MODELS

Supplementary videos, source code, and trained networks

can be found on the project page: http://rpg.ifi.uzh.ch/

research drone racing.html

I. INTRODUCTION

DRONE racing is a popular sport in which professional

pilots fly small quadrotors through complex tracks at

high speeds (Fig. 1). Drone pilots undergo years of training to

master the sensorimotor skills involved in racing. Such skills

would also be valuable to autonomous systems in applications

such as disaster response or structure inspection, where drones

must be able to quickly and safely fly through complex

dynamic environments [1].

Developing a fully autonomous racing drone is difficult

due to challenges that span dynamics modeling, onboard

perception, localization and mapping, trajectory generation,

and optimal control. For this reason, autonomous drone racing

has attracted significant interest from the research community,

giving rise to multiple autonomous drone racing competi-

tions [2], [3].
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Fig. 1: The perception block of our system, represented by

a convolutional neural network (CNN), is trained only with

non-photorealistic simulation data. Due to the abundance of

such data, generated with domain randomization, the trained

CNN can be deployed on a physical quadrotor without any

finetuning.

One approach to autonomous racing is to fly through the

course by tracking a precomputed global trajectory. However,

global trajectory tracking requires to know the race-track

layout in advance, along with highly accurate state estimation,

which current methods are still not able to provide [4]–[6].

Indeed, visual inertial odometry [4], [5] is subject to drift

in estimation over time. SLAM methods can reduce drift

by relocalizing in a previously-generated, globally-consistent

map. However, enforcing global consistency leads to increased

computational demands that strain the limits of on-board

processing. In addition, regardless of drift, both odometry and

SLAM pipelines enable navigation only in a predominantly-

static world, where waypoints and collision-free trajectories

can be statically defined. Generating and tracking a global
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trajectory would therefore fail in applications where the path

to be followed cannot be defined a priori. This is usually the

case for professional drone competitions, since gates can be

moved from one lap to another.

In this paper, we take a step towards autonomous, vision-

based drone racing in dynamic environments. Instead of

relying on globally consistent state estimates, our approach

deploys a convolutional neural network to identify waypoints

in local body-frame coordinates. This eliminates the problem

of drift and simultaneously enables our system to navigate

through dynamic environments. The network-predicted way-

points are then fed to a state-of-the-art planner [7] and

tracker [8], which generate a short trajectory segment and

corresponding motor commands to reach the desired location.

The resulting system combines the perceptual awareness of

CNNs with the precision offered by state-of-the-art planners

and controllers, getting the best of both worlds. The approach

is both powerful and lightweight: all computations run fully

onboard.

An earlier version of this work [9] (Best System Paper

award at the Conference on Robotic Learning, 2018) demon-

strated the potential of our approach both in simulation and on

a physical platform. In both domains, our system could per-

form complex navigation tasks, such as seeking a moving gate

or racing through a dynamic track, with higher performance

than state-of-the-art, highly engineered systems. In the present

paper, we extend the approach to generalize to environments

and conditions not seen at training time. In addition, we

evaluate the effect of design parameters on closed-loop control

performance, and analyze the computation-accuracy trade-offs

in the system design.

In the earlier version [9], the perception system was track

specific: it required a substantial amount of training data from

the target race track. Therefore, significant changes in the

track layout, background appearance, or lighting would hurt

performance. In order to increase the generalization abilities

and robustness of our perception system, we propose to use

domain randomization [10]. The idea is to randomize during

data collection all the factors to which the system must be

invariant, i.e., illumination, viewpoint, gate appearance, and

background. We show that domain randomization leads to

an increase in closed-loop performance relative to our earlier

work [9] when evaluated in environments or conditions not

seen at training time. Specifically, we demonstrate perfor-

mance increases of up to 300% in simulation (Fig. 6) and

up to 36% in real-world experiments (Fig. 14).

Interestingly, the perception system becomes invariant not

only to specific environments and conditions but also to

the training domain. We show that after training purely in

non-photorealistic simulation, the perception system can be

deployed on a physical quadrotor that successfully races in

the real world. On real tracks, the policy learned in simulation

has comparable performance to one trained with real data, thus

alleviating the need for tedious data collection in the physical

world.

II. RELATED WORK

Pushing a robotic platform to the limits of handling gives

rise to fundamental challenges for both perception and control.

On the perception side, motion blur, challenging lighting

conditions, and aliasing can cause severe drift in vision-based

state estimation [4], [11], [12]. Other sensory modalities, e.g.

LIDAR or event-based cameras, could partially alleviate these

problems [13], [14]. Those sensors are however either too

bulky or too expensive to be used on small racing quadro-

tors. Moreover, state-of-the-art state estimation methods are

designed for a predominantly-static world, where no dynamic

changes to the environment occur.

From the control perspective, plenty of work has been

done to enable high-speed navigation, both in the context of

autonomous drones [7], [15], [16] and autonomous cars [17]–

[20]. However, the inherent difficulties of state estimation

make these methods difficult to adapt for small, agile quadro-

tors that must rely solely on onboard sensing and computing.

We will now discuss approaches that have been proposed to

overcome the aforementioned problems.

A. Data-driven Algorithms for Autonomous Navigation

A recent line of work, focused mainly on autonomous

driving, has explored data-driven approaches that tightly cou-

ple perception and control [21]–[24]. These methods provide

several interesting advantages, e.g. robustness against drifts in

state estimation [21], [22] and the possibility to learn from

failures [24]. The idea of learning a navigation policy end-

to-end from data has also been applied in the context of

autonomous, vision-based drone flight [25]–[27]. To overcome

the problem of acquiring a large amount of annotated data to

train a policy, Loquercio et al. [26] proposed to use data from

ground vehicles, while Gandhi et al. [27] devised a method

for automated data collection from the platform itself. Despite

their advantages, end-to-end navigation policies suffer from

high sample complexity and low generalization to conditions

not seen at training time. This hinders their application to

contexts where the platform is required to fly at high speed in

dynamic environments. To alleviate some of these problems

while retaining the advantages of data-driven methods, a

number of works propose to structure the navigation system

into two modules: perception and control [28]–[32]. This kind

of modularity has proven to be particularly important for

transferring sensorimotor systems across different tasks [29],

[31] and application domains [30], [32].

We employ a variant of this perception-control modular-

ization in our work. However, in contrast to prior work, we

enable high-speed, agile flight by making the output of our

neural perception module compatible with fast and accurate

model-based trajectory planners and trackers.

B. Drone Racing

The popularity of drone racing has recently kindled signif-

icant interest in the robotics research community. The classic

solution to this problem is image-based visual servoing, where

a robot is given a set of target locations in the form of reference
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images or patterns. Target locations are then identified and

tracked with hand-crafted detectors [33]–[35]. However, the

handcrafted detectors used by these approaches quickly be-

come unreliable in the presence of occlusions, partial visibility,

and motion blur. To overcome the shortcomings of classic

image-based visual servoing, recent work proposed to use a

learning-based approach for localizing the next target [36].

The main problem of this kind of approach is, however,

limited agility. Image-based visual servoing is reliable when

the difference between the current and reference images is

small, which is not always the case under fast motion.

Another approach to autonomous drone racing is to learn

end-to-end navigation policies via imitation learning [37].

Methods of this type usually predict low-level control com-

mands, in the form of body-rates and thrust, directly from

images. Therefore, they are agnostic to drift in state estima-

tion and can potentially operate in dynamic environments, if

enough training data is available. However, despite showing

promising results in simulated environments, these approaches

still suffer from the typical problems of end-to-end navigation:

(i) limited generalization to new environments and platforms

and (ii) difficulties in deployment to real platforms due to high

computational requirements (desired inference rate for agile

quadrotor control is much higher than what current on-board

hardware allows).

To facilitate robustness in the face of unreliable state estima-

tion and dynamic environments, while also addressing the gen-

eralization and feasibility challenges, we use modularization.

On one hand, we take advantage of the perceptual awareness of

CNNs to produce navigation commands from images. On the

other hand, we benefit from the high speed and reliability of

classic control pipelines for generation of low-level controls.

C. Transfer from Simulation to Reality

Learning navigation policies from real data has a shortcom-

ing: high cost of generating training data in the physical world.

Data needs to be carefully collected and annotated, which

can involve significant time and resources. To address this

problem, a recent line of work has investigated the possibility

of training a policy in simulation and then deploying it on a

real system. Work on transfer of sensorimotor control policies

has mainly dealt with manual grasping and manipulation [38]–

[43]. In driving scenarios, synthetic data was mainly used to

train perception systems for high-level tasks, such as semantic

segmentation and object detection [44], [45]. One exception

is the work of Müller et al. [32], which uses modularization

to deploy a control policy learned in simulation on a physical

ground vehicle. Domain transfer has also been used for drone

control: Sadeghi and Levine [25] learned a collision avoid-

ance policy by using 3D simulation with extensive domain

randomization.

Akin to many of the aforementioned methods, we use

domain randomization [10] and modularization [32] to in-

crease generalization and achieve sim-to-real transfer. Our

work applies these techniques to drone racing. Specifically,

we identify the most important factors for generalization and

transfer with extensive analyses and ablation studies.

III. METHOD

We address the problem of robust, agile flight of a quadrotor

in a dynamic environment. Our approach makes use of two

subsystems: perception and control. The perception system

uses a Convolutional Neural Network (CNN) to predict a goal

direction in local image coordinates, together with a desired

navigation speed, from a single image collected by a forward-

facing camera. The control system uses the navigation goal

produced by the perception system to generate a minimum-

jerk trajectory [7] that is tracked by a low-level controller [8].

In the following, we describe the subsystems in more detail.

Perception system. The goal of the perception system is to

analyze the image and provide a desired flight direction and

navigation speed for the robot. We implement the perception

system by a convolutional network. The network takes as input

a 300 × 200 pixel RGB image, captured from the onboard

camera, and outputs a tuple {~x,v}, where~x ∈ [−1,1]2 is a two-

dimensional vector that encodes the direction to the new goal

in normalized image coordinates, and v∈ [0,1] is a normalized

desired speed to approach it. To allow for onboard computing,

we employ a modification of the DroNet architecture of Lo-

quercio et al. [26]. In section IV-C, we will present the details

of our architecture, which was designed to optimize the trade-

off between accuracy and inference time. With our hardware

setup, the network achieves an inference rate of 15 frames per

second while running concurrently with the full control stack.

The system is trained by imitating an automatically computed

expert policy, as explained in Section III-A.

Control system. Given the tuple {~x,v}, the control system

generates low-level commands. To convert the goal position

~x from two-dimensional normalized image coordinates to

three-dimensional local frame coordinates, we back-project the

image coordinates~x along the camera projection ray and derive

the goal point at a depth equal to the prediction horizon d (see

Figure 2). We found setting d proportional to the normalized

platform speed v predicted by the network to work well. The

desired quadrotor speed vdes is computed by rescaling the

predicted normalized speed v by a user-specified maximum

speed vmax: vdes = vmax · v. This way, with a single trained

network, the user can control the aggressiveness of flight by

varying the maximum speed. Once pg in the quadrotor’s body

frame and vdes are available, a state interception trajectory ts is

computed to reach the goal position (see Figure 2). Since we

run all computations onboard, we use computationally efficient

minimum-jerk trajectories [7] to generate ts. To track ts, i.e.

to compute the low-level control commands, we employ the

control scheme proposed by Faessler et al. [8].

A. Training Procedure

We train the perception system with imitation learning,

using automatically generated globally optimal trajectories as a

source of supervision. To generate these trajectories, we make

the assumption that at training time the location of each gate

of the race track, expressed in a common reference frame,

is known. Additionally, we assume that at training time the

quadrotor has access to accurate state estimates with respect

to the latter reference frame. Note however that at test time



4

~pc

~v

~pc′

d

~pg

ts
tg

Fig. 2: The pose ~pc of the quadrotor is projected on the

global trajectory tg to find the point ~pc′ . The point at distance

d from the current quadrotor position ~pc, which belongs to

tg in the forward direction with respect to ~pc′ , defines the

desired goal position ~pg. To push the quadrotor towards the

reference trajectory tg, a short trajectory segment ts is planned

and tracked in a receding horizon fashion.

no privileged information is needed and the quadrotor relies

on image data only. The overall training setup is illustrated in

Figure 2.

Expert policy. We first compute a global trajectory tg that

passes through all gates of the track, using the minimum-snap

trajectory implementation from Mellinger and Kumar [15].

To generate training data for the perception network, we

implement an expert policy that follows the reference tra-

jectory. Given a quadrotor position ~pc ∈ R
3, we compute

the closest point ~pc′ ∈ R
3 on the global reference trajectory.

The desired position ~pg ∈ R
3 is defined as the point on the

global reference trajectory the distance of which from ~pc is

equal to the prediction horizon d ∈ R. We project the desired

position ~pg onto the image plane of the forward facing camera

to generate the ground truth normalized image coordinates

~xg corresponding to the goal direction. The desired speed

vg is defined as the speed of the reference trajectory at ~pc′

normalized by the maximum speed achieved along tg.

Data collection. To train the network, we collect a dataset

of state estimates and corresponding camera images. Using the

global reference trajectory, we evaluate the expert policy on

each of these samples and use the result as the ground truth

for training. An important property of this training procedure

is that it is agnostic to how exactly the training dataset is

collected. We use this flexibility to select the most suitable

data collection method when training in simulation and in the

real world. The key consideration here is how to deal with the

domain shift between training and test time. In our scenario,

this domain shift mainly manifests itself when the quadrotor

flies far from the reference trajectory tg. In simulation, we

employed a variant of DAgger [46], which uses the expert

policy to recover whenever the learned policy deviates far from

the reference trajectory. Repeating the same procedure in the

real world would be infeasible: allowing a partially trained

network to control a UAV would pose a high risk of crashing

and breaking the platform. Instead, we manually carried the

quadrotor through the track and ensured a sufficient coverage

of off-trajectory positions.

Generating data in simulation. In our simulation experi-

ment, we perform a modified version of DAgger [46] to train

our flying policy. On the data collected through the expert

policy (Section III-A) (in our case we let the expert policy

fly for 40s), the network is trained for 10 epochs on the

accumulated data. In the following run, the trained network

is predicting actions, which are only executed if they keep the

quadrotor within a margin ε from the global trajectory. In case

the network’s action violates this constraint, the expert policy

is executed, generating a new training sample. This procedure

is an automated form of DAgger [46] and allows the network

to recover when deviating from the global trajectory. After

another 40s of data generation, the network is retrained on all

the accumulated data for 10 epochs. As soon as the network

performs well on a given margin ε , the margin is increased.

This process repeats until the network can eventually complete

the whole track without help of the expert policy. In our

simulation experiments, the margin ε was set to 0.5m after the

first training iteration. The margin was incremented by 0.5m as

soon as the network could complete the track with limited help

from the expert policy (less than 50 expert actions needed).

For experiments on the static track, 20k images were collected,

while for dynamic experiments 100k images of random gate

positions were generated.

Generating data in the real world. For safety reasons, it

is not possible to apply DAgger for data collection in the real

world. Therefore, we ensure sufficient coverage of the possible

actions by manually carrying the quadrotor through the track.

During this procedure, which we call handheld mode, the

expert policy is constantly generating training samples. Due

to the drift of onboard state estimation, data is generated for

a small part of the track before the quadrotor is reinitialized

at a known position. For the experiment on the static track,

25k images were collected, while for the dynamic experiment

an additional 15k images were collected for different gate

positions. For the narrow gap and occlusion experiments, 23k

images were collected.

Loss function. We train the network with a weighted MSE

loss on point and velocity predictions:

L = ‖~x−~xg‖
2 + γ(v− vg)

2, (1)

where ~xg denotes the groundtruth normalized image coordi-

nates and vg denotes the groundtruth normalized speed. By

cross-validation, we found the optimal weight to be γ = 0.1,

even though the performance was mostly insensitive to this

parameter (see Appendix for details).

Dynamic environments. The described training data gen-

eration procedure is limited to static environments, since the

trajectory generation method is unable to take the changing

geometry into account. How can we use it to train a perception

system that would be able to cope with dynamic environments?

Our key observation is that training on multiple static environ-

ments (for instance with varying gate positions) is sufficient

to operate in dynamic environments at test time. We collect

data from multiple layouts generated by moving the gates from

their initial position. We compute a global reference trajectory

for each layout and train a network jointly on all of these. This

simple approach supports generalization to dynamic tracks,

with the additional benefit of improving the robustness of the

system.

Sim-to-real transfer. One of the big advantages of

perception-control modularization is that it allows training the
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perception block exclusively in simulation and then directly

applying on the real system by leaving the control part

unchanged. As we will show in the experimental section,

thanks to the abundance of simulated data, it is possible to train

policies that are extremely robust to changes in environmental

conditions, such as illumination, viewpoint, gate appearance,

and background. In order to collect diverse simulated data, we

perform visual scene randomization in the simulated environ-

ment, while keeping the approximate track layout fixed. Apart

from randomizing visual scene properties, the data collection

procedure remains unchanged.

We randomize the following visual scene properties: (i) the

textures of the background, floor, and gates, (ii) the shape

of the gates, and (iii) the lighting in the scene. For (i), we

apply distinct random textures to background and floor from

a pool of 30 diverse synthetic textures (Figure 3a). The gate

textures are drawn from a pool of 10 mainly red/orange

textures (Figure 3c). For gate shape randomization (ii), we

create 6 gate shapes of roughly the same size as the original

gate. Figure 3d illustrates four of the different gate shapes used

for data collection. To randomize illumination conditions (iii),

we perturb the ambient and emissive light properties of all

textures (background, floor, gates). Both properties are drawn

separately for background, floor, and gates from uniform

distributions with support [0,1] for the ambient property and

[0,0.3] for the emissive property.

While the textures applied during data collection are syn-

thetic, the textures applied to background and floor at test

time represent common indoor and outdoor environments

(Figure 3b). For testing we use held-out configurations of gate

shape and texture not seen during training.

B. Trajectory Generation

Generation of global trajectory. Both in simulation and in

real-world experiments, a global trajectory is used to generate

ground truth labels. To generate the trajectory, we use the

implementation of Mellinger and Kumar [15]. The trajectory

is generated by providing a set of waypoints to pass through,

a maximum velocity to achieve, as well as constraints on

maximum thrust and body rates. Note that the speed on the

global trajectory is not constant. As waypoints, the centers of

the gates are used. Furthermore, the trajectory can be shaped

by additional waypoints, for example if it would pass close to a

wall otherwise. In both simulation and real-world experiments,

the maximum normalized thrust along the trajectory was set

to 18ms−2 and the maximum roll and pitch rate to 1.5rads−1.

The maximum speed was chosen based on the dimensions of

the track. For the large simulated track, a maximum speed of

10ms−1 was chosen, while on the smaller real-world track

6ms−1.

Generation of trajectory segments. The proposed naviga-

tion approach relies on constant recomputation of trajectory

segments ts based on the output of a CNN. Implemented as

state-interception trajectories, ts can be computed by speci-

fying a start state, goal state and a desired execution time.

The velocity predicted by the network is used to compute

the desired execution time of the trajectory segment ts. While

the start state of the trajectory segment is fully defined by

the quadrotor’s current position, velocity, and acceleration,

the end state is only constrained by the goal position pg,

leaving velocity and acceleration in that state unconstrained.

This is, however, not an issue, since only the first part of each

trajectory segment is executed in a receding horizon fashion.

Indeed, any time a new network prediction is available, a new

state interception trajectory ts is calculated.

The goal position pg is dependent on the prediction horizon

d (see Section III-A), which directly influences the aggres-

siveness of a maneuver. Since the shape of the trajectory is

only constrained by the start state and end state, reducing

the prediction horizon decreases the lateral deviation from

the straight-line connection of start state and end state but

also leads to more aggressive maneuvers. Therefore, a long

prediction horizon is usually required on straight and fast parts

of the track, while a short prediction horizon performs better

in tight turns and in proximity of gates. A long prediction

horizon leads to a smoother flight pattern, usually required on

straight and fast parts of the track. Conversely, a short horizon

performs more agile maneuvers, usually required in tight turns

and in the proximity of gates.

The generation of the goal position pg differs from training

to test time. At training time, the quadrotor’s current position

is projected onto the global trajectory and propagated by

a prediction horizon dtrain. At test time, the output of the

network is back-projected along the camera projection ray by

a planning length dtest .

At training time, we define the prediction horizon dtrain as

a function of distance from the last gate and the next gate to

be traversed:

dtrain = max(dmin,min(‖slast‖,‖snext‖)) , (2)

where slast ∈ R
3 and snext ∈ R

3 are the distances to the cor-

responding gates and dmin represents the minimum prediction

horizon. The minimum distance between the last and the next

gate is used instead of only the distance to the next gate to

avoid jumps in the prediction horizon after a gate pass. In

our simulated track experiment, a minimum prediction horizon

of dmin = 1.5m was used, while for the real track we used

dmin = 1.0m.

At test time, since the output of the network is a direction

and a velocity, the length of a trajectory segment needs to be

computed. To distinguish the length of trajectory segments at

test time from the same concept at training time, we call it

planning length at test time. The planning length of trajectory

segments is computed based on the velocity output of the

network (computation based on the location of the quadrotor

with respect to the gates is not possible at test time since we

do not have knowledge about gate positions). The objective

is again to adapt the planning length such that both smooth

flight at high speed and aggressive maneuvers in tight turns are

possible. We achieve this versatility by computing the planning

length according to this linear function:

dtest = min [dmax,max(dmin,mdvout)] , (3)
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(a) (b)

(c) (d)

Fig. 3: To test the generalization abilities of our approach, we randomize the visual properties of the environment (background,

illumination, gate shape, and gate texture). This figure illustrates the random textures and shapes applied both at training (a)

and test time(b). For space reasons, not all examples are shown. In total, we used 30 random backgrounds during training

and 10 backgrounds during testing. We generated 6 different shapes of gates and used 5 of them for data generation and one

for evaluation. Similarly, we used 10 random gate textures during training and a different one during evaluation. a) Random

backgrounds used during training data generation. b) Random backgrounds used at test time. c) Gate textures. d) Selection of

training examples illustrating the gate shapes and variation in illumination properties.

where md = 0.6s, dmin = 1.0m and dmax = 2.0m in our real-

world experiments, and md = 0.5s, dmin = 2.0m and dmax =
5.0m in the simulated track.

IV. EXPERIMENTS

We extensively evaluate the presented approach in a wide

range of simulated and real scenarios. We first use a controlled,

simulated environment to test the main building blocks of our

system, i.e. the convolutional architecture and the perception-

control modularization. Then, to show the ability of our

approach to control real quadrotors, we perform a second

set of experiments on a physical platform. We compare our

approach to state-of-the-art methods, as well as to human

drone pilots of different skill levels. We also demonstrate that

our system achieves zero-shot simulation-to-reality transfer. A

policy trained on large amounts of cheap simulated data shows

increased robustness against external factors, e.g. illumination

and visual distractors, compared to a policy trained only

with data collected in the real world. Finally, we perform

an ablation study to identify the most important factors that

enable successful policy transfer from simulation to the real

world.

A. Experimental Setup

For all our simulation experiments we use Gazebo as

the simulation engine. Although non-photorealistic, we have

selected this engine since it models with high fidelity the

physics of a quadrotor via the RotorS extension [47].

Specifically, we simulate the AscTec Hummingbird multi-

rotor, which is equipped with a forward-looking 300× 200

pixels RGB camera.

The platform is spawned in a flying space of cubical

shape with side length of 70 meters, which contains the

experiment-specific race track. The flying space is bounded by

background and floor planes whose textures are randomized

in the simulation experiments of Section IV-E.

The large simulated race track (Figure 4b) is inspired by

a real track used in international competitions. We use this

track layout for all of our experiments, except the comparison

against end-to-end navigation policies. The track is travelled in

the same direction (clockwise or counterclockwise) at training

and testing time. We will release all code required to run our

simulation experiments upon acceptance of this manuscript.

For real-world experiments, except for the ones evaluating
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(a) (b)

Fig. 4: Illustration of the simulated tracks. The small track (a) consists of 4 gates and spans a total length of 43 meters. The

large track (b) consists of 8 gates placed at different heights and spans a total length of 116 meters.
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Fig. 5: a) Results of simulation experiments on the large track with static gates for different maximum speeds. Task completion

rate measures the fraction of gates that were successfully completed without crashing. A task completion rate of 100% is

achieved if the drone can complete five consecutive laps without crashing. For each speed 10 runs were performed. b) Analysis

of the influence of the choice of success threshold. The experimental setting is the same as in Figure 5a, but the performance is

reported for a fixed maximum speed of 10ms−1 and different success thresholds. The y-axis is shared with Figure 5a. c) Result

of our approach when flying through a simulated track with moving gates. Every gate independently moves in a sinusoidal

pattern with an amplitude proportional to its base size (1.3 m), with the indicated multiplier. For each amplitude 10 runs

were performed. As for the static gate experiment, a task completion rate of 100% is achieved if the drone can complete five

consecutive laps without crashing. Maximum speed is fixed to 8 ms−1. The y-axis is shared with Figure 5a. Lines denote mean

performance, while the shaded areas indicate one standard deviation. The reader is encouraged to watch the supplementary

video to better understand the experimental setup and the task difficulty.

sim-to-real transfer, we collected data in the real world. We

used an in-house quadrotor equipped with an Intel UpBoard

and a Qualcomm Snapdragon Flight Kit. While the latter is

used for visual-inertial odometry, the former represents the

main computational unit of the platform. The Intel UpBoard

was used to run all the calculations required for flying,

from neural network prediction to trajectory generation and

tracking.

B. Experiments in Simulation

Using a controlled simulated environment, we perform an

extensive evaluation to (i) understand the advantages of our

approach with respect to end-to-end or classical navigation

policies, (ii) test the system’s robustness to structural changes

in the environment, and (iii) analyze the effect of the system’s

hyper-parameters on the final performance.

Comparison to end-to-end learning approach. In our first

scenario, we use a small track that consists of four gates

in a planar configuration with a total length of 43 meters

(Figure 4a).

We use this track to compare the performance to a naive

deep learning baseline that directly regresses body rates from

raw images. Ground truth body rates for the baseline were

provided by generating a minimum snap reference trajectory

through all gates and then tracking it with a low-level con-

troller [8]. For comparability, this baseline and our method

share the same network architecture. Our approach was al-

ways able to successfully complete the track. In contrast,

the naive baseline could never pass through more than one

gate. Training on more data (35K samples, as compared to

5K samples used by our method) did not noticeably improve

the performance of the baseline. We believe that end-to-

end learning of low-level controls [37] is suboptimal for the
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task of drone navigation when operating in the real world.

Since a quadrotor is an unstable platform [48], learning the

function that converts images to low-level commands has a

very high sample complexity. Additionally, the network is

constrained by computation time. In order to guarantee stable

control, the baseline network would have to produce control

commands at a higher frequency (typically 50 Hz) than the

camera images arrive (30 Hz) and process them at a rate that

is computationally infeasible with existing onboard hardware.

In our experiments, since the low-level controller runs at

50 Hz, a network prediction is repeatedly applied until the next

prediction arrives.

In order to allow on-board sensing and computing, we pro-

pose a modularization scheme which organizes perception and

control into two blocks. With modularization, our approach

can benefit from the most advanced learning based perceptual

architectures and from years of study in the field of control

theory [49]. Because body rates are generated by a classic

controller, the network can focus on the navigation task, which

leads to high sample efficiency. Additionally, because the

network does not need to ensure the stability of the platform,

it can process images at a lower rate than required for the low-

level controller, which unlocks onboard computation. Given its

inability to complete even this simple track, we do not conduct

any further experiments with the direct end-to-end regression

baseline.

Performance on a complex track. In order to explore

the capabilities of our approach of performing high-speed

racing, we conduct a second set of experiments on a larger

and more complex track with 8 gates and a length of 116

meters (Figure 4b). The quantitative evaluation is conducted in

terms of average task completion rate over five runs initialized

with different random seeds. For one run, the task completion

rate linearly increases with each passed gate while 100% task

completion is achieved if the quadrotor is able to successfully

complete five consecutive laps without crashing. As a baseline,

we use a pure feedforward setting by following the global

trajectory tg using state estimates provided by visual inertial

odometry [4].

The results of this experiment are shown in Figure 5a.

We can observe that the VIO baseline, due to accumulated

drift, performs worse than our approach. Figure 5b illustrates

the influence of drift on the baseline’s performance. While

performance is comparable when one single lap is considered

a success, it degrades rapidly if the threshold for success is

raised to more laps. On a static track (Figure 5a), a SLAM-

based state estimator [5], [11] would have less drift than a

VIO baseline, but we empirically found the latency of existing

open-source SLAM pipelines to be too high for closed-loop

control. A benchmark comparison of latencies of monocular

visual-inertial SLAM algorithms for flying robots can be found

in [50].

Our approach works reliably up to a maximum speed

of 9 ms−1 and performance degrades gracefully at higher

velocities. The decrease in performance at higher speeds is

mainly due to the higher body rates of the quadrotor that

larger velocities inevitably entail. Since the predictions of

the network are in the body frame, the limited prediction
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Fig. 6: Generalization tests on different backgrounds after

domain randomization. More comprehensive randomization

increases the robustness of the learned policy to unseen scenar-

ios at different speeds. Lines denote mean performance, while

the shaded areas indicate one standard deviation. Background

randomization has not been included in the analysis: without

it the policy fails to complete even a single gate pass.

frequency (30 Hz in the simulation experiments) is no longer

sufficient to cope with the large roll and pitch rates of the

platform at high velocities.

Generalization to dynamic environments. The learned

policy has a characteristic that the expert policy lacks of:

the ability to cope with dynamic environments. To quanti-

tatively test this ability, we reuse the track layout from the

previous experiment (Figure 4b), but dynamically move each

gate according to a sinusoidal pattern in each dimension

independently. Figure 5c compares our system to the VIO

baseline for varying amplitudes of gates’ movement relative to

their base size. We evaluate the performance using the same

metric as explained in Section IV-B. For this experiment, we

kept the maximum platform velocity vmax constant at 8 ms−1.

Despite the high speed, our approach can handle dynamic

gate movements up to 1.5 times the gate diameter without

crashing. In contrast, the VIO baseline cannot adapt to changes

in the environment, and fails even for small gate motions up

to 50% of the gate diameter. The performance of our approach

gracefully degrades for gate movements larger than 1.5 times

the gate diameter, mainly due to the fact that consecutive gates

get too close in flight direction while being shifted in other

directions. Such configurations require extremely sharp turns

that go beyond the navigation capabilities of the system. From

this experiment, we can conclude that the proposed approach

reactively adapts to dynamic changes in the environment and

generalizes well to cases where the track layout remains

roughly similar to the one used to collect training data.

Generalization to changes in the simulation environ-

ment. In the previous experiments, we have assumed a

constant environment (background, illumination, gate shape)

during data collection and testing. In this section, we evaluate

the generalization abilities of our approach to environment

configurations not seen during training. Specifically, we dras-
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tically change the environment background (Figure 3b) and

use gate appearance and illumination conditions held out at

training time.

Figure 6 shows the result of this evaluation. As expected,

if data collection is performed in a single environment,

the resulting policy has limited generalization (red line). To

make the policy environment-agnostic, we performed domain

randomization while keeping the approximate track layout

constant (details in Section III-A). Clearly, both randomization

of gate shape and illumination lead to a policy that is more

robust to new scenarios. Furthermore, while randomization of

a single property leads to a modest improvement, performing

all types of randomization simultaneously is crucial for good

transfer. Indeed, the simulated policy needs to be invariant to

all of the randomized features in order to generalize well.

Surprisingly, as we show below, the learned policy can not

only function reliably in simulation, but is also able to control

a quadrotor in the real world. In Section IV-E we present an

evaluation of the real world control abilities of this policy

trained in simulation, as well as an ablation study to identify

which of the randomization factors presented above are the

most important for generalization and knowledge transfer.

Sensitivity to planning length. We perform an ablation

study of the planning length parameters dmin, dmax on a

simulated track. Both the track layout and the maximum speed

(10.0ms−1) are kept constant in this experiment. We varied

dmin between 1.0m and 5.0m and dmax between (dmin+1.0)m
and (dmin +5.0)m. Figure 7 shows the results of this evalua-

tion. For each configuration the average task completion rate

(Section IV-B) over 5 runs is reported. Our systems performs

well over a large range of dmin, dmax, with performance

dropping sharply only for configurations with very short or

very long planning lengths. This behaviour is expected, since

excessively short planning lengths result in very aggressive

maneuvers, while excessively long planning lengths restrict

the agility of the platform.

C. Analysis of Accuracy and Efficiency

The neural network at the core of our perception system

constitutes the biggest computational bottleneck of our ap-

proach. Given the constraints imposed by our processing unit,

we can guarantee real-time performance only with relatively

small CNNs. Therefore, we investigated the relationship be-

tween the capacity (hence the representational power) of a

neural network and its performance on the navigation task. We

measure performance in terms of both prediction accuracy on a

validation set, and closed-loop control on a simulated platform,

using, as above, completion rate as metric. The capacity of

the network is controlled through a multiplicative factor on

the number of filters (in convolutional layers) and number of

nodes (in fully connected layers). The network with capacity

1.0 corresponds to the DroNet architecture [26].

Figure 8 shows the relationship between the network capac-

ity, its test loss (RMSE) on a validation set, and its inference

time on an Intel UpBoard (our onboard processing unit). Given

their larger parametrization, wider architectures have a lower

generalization error but largely increase the computational
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Fig. 7: Sensitivity analysis of planning length parameters dmin,

dmax on a simulated track. Maximum speed and (static) track

layout are kept constant during the experiment.

and memory budget required for their execution. Interestingly,

a lower generalization loss does not always correspond to

a better closed-loop performance. This can be observed in

Figure 9, where the network with capacity 1.5 outperforms

the one with capacity 2.0 at high speeds. Indeed, as shown in

Figure 8, larger networks entail smaller inference rates, which

result in a decrease in agility.

In our previous conference paper [9], we used a capacity

factor of 1.0, which appears to have a good time-accuracy

trade-off. However, in the light of this study, we select a ca-

pacity factor of 0.5 for all our new sim-to-real experiments to

ease the computational burden. Indeed, the latter experiments

are performed at a speed of 2 ms−1, where both 0.5 and 1.0

have equivalent closed-loop control performance (Figure 9).

D. Experiments in the Real World

To show the ability of our approach to function in the real

world, we performed experiments on a physical quadrotor. We

compared our model to state-of-the-art classic approaches to

robot navigation, as well as to human drone pilots of different

skill levels.

Narrow gate passing. In the initial set of experiments the

quadrotor was required to pass through a narrow gate, only

slightly larger than the platform itself. These experiments are

designed to test the robustness and precision of the proposed

approach. An illustration of the setup is shown in Figure 10.

We compare our approach to the handcrafted window detector

of Falanga et al. [34] by replacing our perception system

with the handcrafted detector and leaving the control system

unchanged.

Table I shows a comparison between our approach and the

baseline. We tested the robustness of both approaches to the
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backgrounds after domain randomization.

Fig. 10: Setup of the narrow gap and occlusion experiments.

Relative Angle Range [◦] Handcrafted Detector Network

[0,30] 70% 100%
[30,70] 0% 80%
[70,90]* 0% 20%

TABLE I: Success rate for flying through a narrow gap from

different initial angles. Each row reports the average of ten

runs uniformly spanning the range. The gate was completely

invisible at initialization in the experiments marked with *.
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Fig. 11: Success rate for different amounts of occlusion of

the gate. Our method is much more robust than the baseline

method that makes use of a hand-crafted window detector.

Note that at more than 60% occlusion, the platform has barely

any space to pass through the gap.

initial position of the quadrotor by placing the platform at

different starting angles with respect to the gate (measured

as the angle between the line joining the center of gravity of

the quadrotor and the gate, respectively, and the optical axis of

the forward facing camera on the platform). We then measured

the average success rate at passing the gate without crashing.

The experiments indicate that our approach is not sensitive to

the initial position of the quadrotor. The drone is able to pass

the gate consistently, even if the gate is only partially visible.

In contrast, the baseline sometimes fails even if the gate is

fully visible because the window detector loses tracking due

to platform vibrations. When the gate is not entirely in the

field of view, the handcrafted detector fails in all cases.

In order to further highlight the robustness and generaliza-

tion abilities of the approach, we perform experiments with an

increasing amount of clutter that occludes the gate. Note that

the learning approach has not been trained on such occluded

configurations. Figure 11 shows that our approach is robust

to occlusions of up to 50% of the total area of the gate

(Figure 10), whereas the handcrafted baseline breaks down

even for moderate levels of occlusion. For occlusions larger

than 50% we observe a rapid drop in performance. This can

be explained by the fact that the remaining gap was barely

larger than the drone itself, requiring very high precision to

successfully pass it. Furthermore, visual ambiguities of the

gate itself become problematic. If just one of the edges of the

window is visible, it is impossible to differentiate between the

top and bottom part. This results in over-correction when the

drone is very close to the gate.

Experiments on a race track. To evaluate the performance

of our approach in a multi-gate scenario, we challenge the

system to race through a track with either static or dynamic

gates. The track is shown in Figure 13. It is composed of four

gates and has a total length of 21 meters.

To fully understand the potential and limitations of our

approach, we compared to a number of baselines, such as

a classic approach based on planning and tracking [51] and

human pilots of different skill levels. Note that due to the

smaller size of the real track compared to the simulated one,

the maximum speed achieved in the real world experiments is
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as explained in Section IV-B.

Fig. 13: Track configuration used for the real world experi-

ments.

lower than in simulation. For our baseline, we use a state-of-

the-art visual-inertial odometry (VIO) approach [51] for state

estimation in order to track the global reference trajectory.

Figure 12 summarizes the quantitative results of our eval-

uation, where we measure success rate (completing five con-

secutive laps without crashing corresponds to 100%), as well

as the best lap time. Our learning-based approach outperforms

the VIO baseline, whose drift at high speeds inevitably leads

to poor performance. In contrast, our approach is insensitive to

state estimation drift, since it generates navigation commands

in the body frame. As a result, it completes the track with

higher robustness and speed than the VIO baseline.

In order to see how state-of-the-art autonomous approaches

compare to human pilots, we asked a professional and an inter-

mediate pilot to race through the track in first-person view. We

allowed the pilots to practice the track for 10 laps before lap

times and failures were measured (Table II). It is evident from

Figure 12 that both the professional and the intermediate pilots

were able to complete the track faster than the autonomous

systems. However, the high speed and aggressive flight by

human pilots comes at the cost of increased failure rates. The

intermediate pilot in particular had issues with the sharp turns

present in the track, leading to frequent crashes. Compared

with the autonomous systems, human pilots perform more

agile maneuvers, especially in sharp turns. Such maneuvers

require a level of reasoning about the environment that our

autonomous system still lacks.

Dynamically moving gates. We performed an additional

experiment to understand the abilities of our approach to adapt

to dynamically changing environments. In order to do so,

we manually moved the gates of the race track (Figure 13)

while the quadrotor was navigating through it. Flying the

track under these conditions requires the navigation system to

reactively respond to dynamic changes. Note that moving gates

break the main assumption of traditional high-speed navigation

approaches [52], [53], specifically that the trajectory can be

pre-planned in a static world. They could thus not be deployed

in this scenario. Due to the dynamic nature of this experiment,

we encourage the reader to watch the supplementary video1.

Table II provides a comparison in term of task completion

and lap time with respect to a professional pilot. Due to the

gates’ movement, lap times are larger than the ones recorded

in static conditions. However, while our approach achieves the

same performance with respect to crashes, the human pilot

performs slightly worse, given the difficulties entailed by the

unpredictability of the track layout. It is worth noting that

training data for our policy was collected by changing the

position of only a single gate, but the network was able to

cope with movement of any gate at test time.

E. Simulation to Real World Transfer

We now attempt direct simulation-to-real transfer of the

navigation system. To train the policy in simulation, we use

the same process to collect simulated data as in Section IV-B,

i.e. randomization of illumination conditions, gate appearance,

and background. The resulting policy, evaluated in simulation

in Figure 6, is then used without any finetuning to fly a

real quadrotor. Despite the large appearance differences be-

tween the simulated environment (Figure 3d) and the real

one (Figure 13), the policy trained in simulation via domain

randomization has the ability to control the quadrotor in the

real world. Thanks to the abundance of simulated data, this

policy can not only be transferred from simulation to the real

world, but is also more robust to changes in the environment

than the policy trained with data collected on the real track.

As can be seen in the supplementaty video, the policy learned

in simulation can not only reliably control the platform, but is

1Available from: http://youtu.be/8RILnqPxo1s

Task Completion (Average) Best lap time [s]
Method static dynamic static dynamic

Ours 95% 95% 12.1 15.0
Professional Pilot 90% 80% 5.0 6.5

TABLE II: Comparison of our approach with a professional

human pilot on a static and a dynamic track. We evaluate

the performance using the same metric as explained in Sec-

tion IV-B.

http://youtu.be/8RILnqPxo1s
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Fig. 14: Performance comparison (measured with task com-

pletion rate) of the model trained in simulation and the one

trained with real data. With easy and medium illumination (on

which the real model was trained on), the approaches achieve

comparable performance. However, with difficult illumination

the simulated model outperforms the real one, since the latter

was never exposed to this degree of illumination changes at

training time. The supplementary video illustrates the different

illumination conditions.

also robust to drastic differences in illumination and distractors

on the track.

To quantitatively benchmark the policy learned in simula-

tion, we compare it against a policy that was trained on real

data. We use the same metric as explained in Section IV-B

for this evaluation. All experiments are repeated 10 times

and the results averaged. The results of this evaluation are

shown in Figure 14. The data that was used to train the “real”

policy was recorded on the same track for two different illumi-

nation conditions, easy and medium. Illumination conditions

are varied by changing the number of enabled light sources:

4 for the easy, 2 for the medium, and 1 for the difficult.

The supplementary video illustrates the different illumination

conditions.

The policy trained in simulation performs on par with the

one trained with real data in experiments that have the same

illumination conditions as the training data of the real policy.

However, when the environment conditions are drastically

different (i.e. with very challenging illumination) the policy

trained with real data is outperformed by the one trained

in simulation. Indeed, as shown by previous work [41], the

abundance of simulated training data makes the resulting

learning policy robust to environmental changes. We invite

the reader to watch the supplementary video to understand

the difficulty of this last set of experiments.

What is important for transfer? We conducted a set of

ablation studies to understand what are the most important

factors for transfer from simulation to the real world. In order

to do so, we collected a dataset of real world images from

both indoor and outdoor environments in different illumination

conditions, which we then annotated using the same procedure

as explained in Section III. More specifically, the dataset is
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Fig. 15: Average RMSE on testing data collected in the real

world (lower is better). Headers indicate what is randomized

during data collection.

composed of approximately 10K images and is collected from

3 indoor environments under different illumination conditions.

Sample images of this dataset are shown in the appendix.

During data collection in simulation, we perform random-

ization of background, illumination conditions, and gate ap-

pearance (shape and texture). In this experiments, we study

the effect of each of the randomized factors, except for

the background which is well known to be fundamental for

transfer [10], [25], [41]. We use as metric the Root Mean

Square Error (RMSE) in prediction on our collected dataset.

As shown in Figure 15, illumination is the most important of

the randomization factors, while gate shape randomization has

the smallest effect. Indeed, while gate appearance is similar in

the real world and in simulation, the environment appearance

and illumination are drastically different. However, including

more randomization is always beneficial for the robustness of

the resulting policy (Figure 6).

V. DISCUSSION AND CONCLUSION

We have presented a new approach to autonomous, vision-

based drone racing. Our method uses a compact convolutional

neural network to continuously predict a desired waypoint and

speed directly from raw images. These high-level navigation

directions are then executed by a classic planning and control

pipeline. As a result, the system combines the robust percep-

tual awareness of modern machine learning pipelines with the

precision and speed of well-known control algorithms.

We investigated the capabilities of this integrated approach

over three axes: precision, speed, and generalization. Our

extensive experiments, performed both in simulation and on

a physical platform, show that our system is able to navigate

complex race tracks, avoids the problem of drift that is inherent

in systems relying on global state estimates, and can cope with

highly dynamic and cluttered environments.

Our previous conference work [9] required collecting a

substantial amount of training data from the track of interest.

Here instead we propose to collect diverse simulated data

via domain randomization to train our perception policy. The

resulting system can not only adapt to drastic appearance

changes in simulation, but can also be deployed to a physical

platform in the real world even if only trained in simulation.
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Thanks to the abundance of simulated data, a perception

system trained in simulation can achieve higher robustness

to changes in environment characteristics (e.g. illumination

conditions) than a system trained with real data.

It is interesting to compare the two training strategies—

on real data and sim-to-real—in how they handle ambiguous

situations in navigation, for instance when no gate is visible or

multiple gates are in the field of view. Our previous work [9],

which was trained on the test track, could disambiguate

those cases by using cues in the environment, for instance

discriminative landmarks in the background. This can be seen

as implicitly memorizing a map of the track in the network

weights. In contrast, when trained only in simulation on

multiple tracks (or randomized versions of the same track),

our approach can no longer use such background cues to

disambiguate the flying direction and has instead to rely on a

high-level map prior. This prior, automatically inferred from

the training data, describes some common characteristics of

the training tracks, such as, for instance, to always turn right

when no gate is visible. Clearly, when ambiguous cases cannot

be resolved with a prior of this type (e.g. an 8-shaped track),

our sim-to-real approach would likely fail. Possible solutions

to this problem are fine-tuning with data coming from the real

track, or the use of a metric prior on the track shape to make

decisions in ambiguous conditions [54].

Due to modularity, our system can combine model-based

control with learning-based perception. However, one of the

main disadvantages of modularity is that errors coming from

each sub-module degrade the full system performance in a

cumulative way. To overcome this problem, we plan to im-

prove each component with experience using a reinforcement

learning approach. This could increase the robustness of the

system and improve its performance in challenging scenarios

(e.g. with moving obstacles).

While our current set of experiments was conducted in

the context of drone racing, we believe that the presented

approach could have broader implications for building robust

robot navigation systems that need to be able to act in a

highly dynamic world. Methods based on geometric mapping,

localization, and planning have inherent limitations in this

setting. Hybrid systems that incorporate machine learning,

like the one presented in this paper, can offer a compelling

solution to this task, given the possibility to benefit from near-

optimal solutions to different subproblems. However, scaling

our proposed approach to more general applications, such

as disaster response or industrial inspection, poses several

challenges. First, due to the unknown characteristics of the

path to be flown (layout, presence and type of landmarks,

obstacles), the generation of a valid teacher policy would be

impossible. This could be addressed with techniques such

as few-shot learning. Second, the target applications might

require extremely high agility, for instance in the presence

of sharp turns, which our autonomous system still lacks of.

This issue could be alleviated by integrating learning deeper

into the control system [22].
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Fig. 16: Visualization of network attention using the Grad-CAM technique [55]. Yellow to red areas correspond to areas of

medium to high attention, while blue corresponds to areas of low attention. It is evident that the network learns to mostly focus

on gates instead of relying on the background, which explains its capability to robustly handle dynamically moving gates.

(Best viewed in color.)

Fig. 17: Samples from dataset used in the ablation studies to quantify the importance of the randomization factors. (Best viewed

in color.)
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Fig. 18: Success rate for different values of γ . For each γ , the

network is trained up to 100 epochs. Performance is evalu-

ated after each training epoch according to the performance

criterion defined in IV-B. For readability reasons, performance

measurements are averaged over 20 epochs.

APPENDIX

A. Gamma Evaluation

In this section, we examine the effect of the weighting factor

γ in the loss function used to train our system (Eq. (1)). Specif-

ically, we selected 7 values of γ in the range [0.0001,100]
equispaced in logarithmic scale. Our network is then trained

for 100 epochs on data generated from the static simulated

track (Figure 4b). After each epoch, performance is tested at a

speed of 8ms−1 according to the performance measure defined

in IV-B. Figure 18 shows the results of this evaluation. The

model is able to complete the track for all configurations after

80 epochs. Despite some values of γ lead to faster learning,

we see that the system performance is not too sensitive to this

weighting factor. Since γ = 0.1 proves to give the best results,

we use it in all our experiments.

B. Network Architecture and Grad-CAM

We implement the perception system using a convolutional

network. The input to the network is a 300 × 200 pixel

RGB image, captured from the onboard camera at a frame

rate of 30Hz. After normalization in the [0,1] range, the

input is passed through 7 convolutional layers, divided in 3

residual blocks, and a final fully connected layer that outputs

a tuple {~x,v}. ~x ∈ [−1,1]2 is a two-dimensional vector that

encodes the direction to the new goal in normalized image

coordinates and v ∈ [0,1] is a normalized desired speed to

approach it.

To understand why the network is robust to previously

unseen changes in the environment, we visualize the network’s

attention using the Grad-CAM technique [55] in Figure 16.

Grad-CAM visualizes which parts of an input image were

important for the decisions made by the network. It becomes

evident that the network bases its decision mostly on the visual

input that is most relevant to the task at hand – the gates –

while mostly ignoring the background.

C. Additional Evaluation Dataset

To quantify the performance of the policy trained in sim-

ulation to zero-shot generalization in real world scenarios,

we collected a dataset of approximately 10k images from

the real world. This dataset was collected from three indoor

environments of different dimension and appearance. During

data collection, illumination conditions differ either for intra-

day variations in natural light or for the deployment of artificial

light sources. To generate ground truth, we use the same

annotation process as described in Section III. Some samples

from this dataset are shown in Fig. 17.
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