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Data-Driven MPC for Quadrotors
Guillem Torrente∗, Elia Kaufmann∗, Philipp Föhn, Davide Scaramuzza

Abstract—Aerodynamic forces render accurate high-speed tra-
jectory tracking with quadrotors extremely challenging. These
complex aerodynamic effects become a significant disturbance
at high speeds, introducing large positional tracking errors, and
are extremely difficult to model. To fly at high speeds, feedback
control must be able to account for these aerodynamic effects in
real-time. This necessitates a modeling procedure that is both
accurate and efficient to evaluate. Therefore, we present an
approach to model aerodynamic effects using Gaussian Processes,
which we incorporate into a Model Predictive Controller to
achieve efficient and precise real-time feedback control, leading to
up to 70% reduction in trajectory tracking error at high speeds.
We verify our method by extensive comparison to a state-of-the-
art linear drag model in synthetic and real-world experiments at
speeds of up to 14m/s and accelerations beyond 4g.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/FHvDghUUQtc
Code: https://github.com/uzh-rpg/data driven mpc

I. INTRODUCTION

Accurate trajectory tracking with quadrotors in high-speed
and high-acceleration regimes is still a challenging research
problem. While autonomous quadrotors have seen a significant
gain in popularity and have been applied in a variety of
industries ranging from agriculture to transport, security, in-
frastructure, entertainment, and search and rescue, they still do
not exploit their full maneuverability. The ability to precisely
control drones during fast and highly agile maneuvers would
allow to not only fly fast in known-free environments, but
also close to obstacles, humans, or through openings, where
already small deviations from the reference have catastrophic
consequences.

Operating a quadrotor at high speeds and controlling it
through agile, high-acceleration maneuvers requires to account
for complex aerodynamic effects acting on the platform.
These effects are difficult to model, since they consist of
a combination of propeller lift and drag dependent on the
induced airstream velocity, fuselage drag, and complex or
even turbulent effects due to the interaction between the
propellers, the downwash of other propellers, and the fuselage.
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Fig. 1: Our quadrotor platform reaches its physical limits at
a pitch angle of 80 degrees while performing a lemniscate
trajectory in our experiments. Throughout the trajectory, the
platform reaches speeds of up to 14m s−1 and accelerations
beyond 4g.

Furthermore, in the context of model-based feedback control,
the model complexity is constrained by the feedback time-
scale and computational capabilities of the executing platform.
Therefore, it is not sufficient to find the most accurate model,
but required to find an applicable trade-off between model
accuracy and complexity.

Very little work exists on agile control of quadrotors at
speeds beyond 5 m s−1 and accelerations above 2g, [1–8].
Even though these works show agile control at various levels,
none of them accounts for aerodynamic effects. This is not a
limiting assumption when the quadrotor is controlled close to
hover conditions, but introduces significant errors when track-
ing fast and agile trajectories. Other approaches use iterative
learning control to perform highly aggressive trajectories [9],
but they are constrained to a single maneuver and do not
generalize.

The main challenge when performing aggressive flight is
to identify a dynamics model of the platform that is capa-
ble of describing the aerodynamic effects while still being
lightweight enough to guarantee real time performance. While
there exist sophisticated computational fluid dynamics simula-
tions that are able to model turbulent aerodynamic effects [10],
they require hours of processing on a compute cluster, and still
need to be abstracted in simplified models to be tractable in a
control loop running at high frequency.

In this work, we propose to learn the aerodynamic effects
acting on the platform from data. Inspired by [11, 12], we
use Gaussian Processes to learn the residual dynamics with
respect to a simplified quadrotor model that does not account
for aerodynamic effects. Learning the residual dynamics sim-
plifies the learning problem and allows describing the model
augmentation using only a small number of inducing points

https://youtu.be/FHvDghUUQtc
https://github.com/uzh-rpg/data_driven_mpc
http://rpg.ifi.uzh.ch
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for Gaussian Processes. Using such a small model allows
leveraging the combined dynamics formulation in a Model
Predictive Control (MPC) pipeline.

Our experiments, performed in simulation and in the real
world, show that the proposed approach can significantly
improve control performance for agile trajectories with speeds
up to 14 m s−1 and accelerations exceeding 4g. We show
that the method generalizes between different trajectories and
outperforms methods relying on simplified correction terms.

Contributions

In this paper, we present a Model Predictive Control pipeline
that is augmented with learned residual dynamics using Gaus-
sian Processes. We extend the approach presented in [11, 12] to
three-dimensional GP predictions for the quadrotor platform.
By combining the learned GP corrections with the nominal
quadrotor dynamics, we can learn an accurate dynamics model
from a small number of inducing data points. Such a small
model can be efficiently optimized within an MPC pipeline
and allows for control frequencies greater than 100 Hz. We
show that the augmented MPC improves trajectory tracking by
up to 70% with respect to its nominal counterpart. We verify
our method by extensive comparison to a state-of-the-art linear
drag model in synthetic and real-world experiments at speeds
of up to 14m s−1 and accelerations beyond 4g.

II. RELATED WORK

Performing fast and agile maneuvers with an autonomous
robot requires knowledge of an accurate dynamics model of
the platform. However, especially at high speeds and acceler-
ations, such a description of the system is difficult to obtain
due to hard-to-model effects caused by friction, aerodynamics
or varying battery voltage. As modeling these effects signif-
icantly increases the problem complexity, controlling a robot
under such conditions requires to find a trade-off between
model expressivity and computational tractability. Most prior
work on control of autonomous robots does not account for
higher-order effects at all and treats them as external distur-
bances [1, 13–16]. While this allows for very efficient and
lightweight controller implementations, tracking performance
progressively decreases for higher speeds. In [17], Nonlinear
Incremental Dynamics Inversion is used to achieve robust
tracking of fast trajectories. However, the reactive nature of
this approach does not allow to account for future disturbances
as the controller does not optimize over a horizon of actions.

A recent line of work [18–21] investigates the applica-
tion of dynamics learned entirely from data for a variety
of applications such as robot arms, cars or fluids. These
learned dynamics representations take the form of deep neural
networks and substitute the nominal dynamics in the MPC.
While the resulting dynamics models are very expressive, their
optimization is often intractable due to local minima. A com-
mon way to overcome this challenge is to use sampling-based
optimizers, which in turn scale poorly to high-dimensional
input spaces.

Instead of learning the full dynamics from data, [11, 12, 22,
23] combine a nominal model with a learned correction term.

This allows to limit the learned dynamics to have different
dimensionality than the nominal system and provides the
possibility to learn only specific effects that are difficult to
capture with the nominal model.

For the particular case of quadrotor flight, the most promi-
nent source of disturbances are aerodynamic effects originating
from drag caused by the rotors and the fuselage, as well
as lift effects that act on the platform at high speeds. By
conducting controlled experiments in both wind tunnels as
well as instrumented tracking volumes, previous work has
shown a significant effect of aerodynamic forces already at
linear speeds of 5 m s−1 [24, 25].

Neglecting other aerodynamic effects, previous work mainly
studies the effect of rotor drag [26, 24, 27]. Rotor drag effects
originate from blade flapping and induced drag of the rotors.
These effects are typically combined as linear effects in a
lumped parameter dynamical model [28]. In [24], the authors
identify a linear model for the rotor drag and use it to compute
feedforward terms of a PID controller. Even though they show
improved trajectory tracking performance, they evaluate their
linear model only up to 5 m s−1. At these speeds, the linear
effect of rotor drag dominates the fuselage drag. We integrate
the model of [24] in an MPC pipeline to act as baseline of
our approach.

Similar to our work, in [11, 12, 29–31], the authors use
Gaussian Processes to improve the control performance of a
robotic platform. In [29], Gaussian Processes are used on a
quadrotor to correct for wind disturbances. Since instead of
platform states only observed disturbances are fed to the GPs,
this approach does not learn a dynamics model and can only
react to disturbances once they have been observed. In [30],
the authors separately learn the translational and rotational
dynamics of a quadrotor platform. As this approach learns the
full model from data, it requires a large number of training
points and is computationally very expensive. As a result, the
prediction horizon of the MPC needs to be reduced to a single
point to achieve near real-time performance. In [31], a robust
experience-driven predictive controller (EPC) is proposed that
uses Gaussian belief propagation to account for uncertain-
ties in the state estimate. The controller demonstrates robust
constraint satisfaction on a quadrotor platform, where it is
integrated into an MPC that controls the translational dynamics
of the vehicle. In [11, 12], the authors use the predictions of
the Gaussian Processes to improve the tracking performance
of an autonomous race car by learning the residual dynamics
of a nominal model. Learning such residual dynamics instead
of the full model allows them to simplify the learning problem
and as a result reduce the number of training points in the GP.

Our work is inspired by these approaches, but extends [11,
12] to three-dimensional GP predictions for the quadrotor
platform. Instead of learning a mapping from observed dis-
turbances to future disturbance as in [29], we focus on fast
flight and correct for aerodynamic effects that arise due to
the fast ego-motion of the platform. We tightly integrate the
predictions of the Gaussian Processes into the MPC formula-
tion. Instead of using virtual inputs such as bodyrates and
collective thrust [1], our MPC models the dynamics down
to the motor inputs and can therefore account for the true
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Fig. 2: Diagram of the quadrotor model with the world and
body frames and propeller numbering convention.

actuation limits of the platform. Our work is the first to
combine Gaussian Processes with a full-state quadrotor MPC
formulation to model aerodynamic drag effects while still
being able to account for the true actuation limits of the
platform.

III. METHODOLOGY

A. Notation

We denote scalars in lowercase s, vectors in lowercase
bold v, and matrices in uppercase bold M . We define the
World W and Body B frames with orthonormal basis i.e.
{xW ,yW , zW }. The frame B is located at the center of mass
of the quadrotor. Note that we assume all four rotors are
situated in the xy-plane of frame B, as depicted in Fig. 2.
A vector from coordinate p1 to p2 expressed in the W frame
is written as: Wv12. If the vector’s origin coincide with the
frame it is described in, we drop the frame index, e.g. the
quadrotor position is denoted as pWB . Furthermore, we use
unit quaternions q = (qw, qx, qy, qz) with ‖q‖ = 1 to represent
orientations, such as the attitude state of the quadrotor body
qWB . Finally, full SE3 transformations, such as changing
the frame of reference from body to world for a point pB1,
can be described by WpB1 =W tWB + qWB � pB1. Note
the quaternion-vector product denoted by � representing a
rotation of the vector by the quaternion as in q � v = qvq̄,
where q̄ is the quaternion’s conjugate.

B. Nominal Quadrotor Dynamics Model

We assume the quadrotor is a 6 degree-of-freedom rigid
body of mass m and diagonal moment of inertia matrix
J = diag(Jx, Jy, Jz). Our model is similar to [1, 3] but we
write the nominal dynamics ẋ up to second order derivatives,
leaving the quadrotors individual rotor thrusts Ti∀i ∈ (0, 3) as
control inputs u. The state space is thus 13-dimensional and
its dynamics can be written as:

ẋ =

ṗWB

q̇WB

v̇WB

ω̇B

 = fdyn(x,u) =


vW

qWB ·
[

0
ωB/2

]
1
m
qWB � TB + gW

J−1 (τB − ωB × JωB)

 ,

(1)

where gW = [0, 0,−9.81 m/s2]ᵀ denotes Earth’s gravity, TB
is the collective thrust and τB is the body torque as in:

TB =

 0
0∑
Ti

 and τB =

dy(−T0 − T1 + T2 + T3)
dx(−T0 + T1 + T2 − T3)
cτ (−T0 + T1 − T2 + T3)

 (2)

where dx, dy are the rotor displacements and cτ is the rotor
drag torque constant. To incorporate these dynamics in discrete
time algorithms, we use an explicit Runge-Kutta method of
4th order fRK4(x,u) to integrate ẋ given an initial state xk,
input uk and integration step δt by:

xk+1 = fRK4(xk,uk, δt). (3)

C. Gaussian Process-Augmented Dynamics

Inspired by [11, 12], we use Gaussian Processes to com-
plement the nominal dynamics of the quadrotor in an MPC
pipeline. In this setting, the GPs predict the error of the
dynamics and correct them at every time instance tk. Similar to
most GP-based learning problems, we assume the existence of
the inaccessible true dynamics f true of the quadrotor, which
we measure as ỹk+1 through a noisy process at discrete time
instances tk:

ỹk+1 = f true(xk,uk) +wk (4)

We further assume that wk ∼ N (0,Σ) is Gaussian noise,
where Σ is the time-invariant and diagonal covariance matrix.
This means we can effectively treat each dimension of yk
independently through a separate 1-dimensional output GP. We
use the Radial Basis Function (RBF) kernel defined by:

κ(zi, zj) = σ2
f exp

(
−1

2
(zi − zj)ᵀL−2(zi − zj)

)
+ σ2

n

(5)

where L is the diagonal length scale matrix and σf , σn
represent the data and prior noise variance, respectively, and
zi, zj represent data features.

We redefine the system dynamics as a (corrected, f corr)
combination of the dynamics (1) plus the mean posterior
of a GP, µ. The GP only corrects a subset of the state,
determined in the selection matrixBd, using the feature vector
zk, determined by selection matrix Bz:

f cor(xk,uk) = fdyn(xk,uk) +Bdµ(zk) (6)

zk = Bz

[
xᵀ
k uᵀ

k

]ᵀ
. (7)

Given the concatenated training feature samples Z and the
query feature samples Zk, the mean and covariance of the GP
prediction can be recovered as follows:

µ(Zk) = Kᵀ
kK

−1Z Σµk = Kkk −Kᵀ
kK

−1Kk

with K = κ(Z,Z) + σ2
nI (8)

Kk = κ(Z,Zk) Kkk = κ(Zk,Zk).

whereKij , the entry ofK with index i, j, isKij = κ(zi, zj).
Given the mean and covariance of the GP, not only is it

possible to learn the corrected dynamics, but in addition we
can also propagate the corrected model forward in time to
use it in an MPC. To propagate the state we simply substitute
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the nominal dynamics fdyn with the corrected model f cor
in the Runge-Kutta integration. For the propagation of the
covariance, we refer to the formulation in [11, 12].

D. MPC Formulation

In its most general form, MPC stabilizes a system subject
to its dynamics ẋ = f(x,u) along a reference x∗(t),u∗(t),
by minimizing a cost L(x,u) as in:

min
u

∫
L(x,u) (9)

subject to ẋ = fdyn(x,u) x(t0) = xinit

r(x,u) = 0 h(x,u) ≤ 0

where x0 denotes the initial condition and h, r can incorporate
(in-)equality constraints, such as input limitations.

For our application, and as most commonly done, we
specify the cost to be of quadratic form L(x,u) = ‖x −
x∗‖2Q + ‖u − u∗‖2R and discretize the system into N steps
over time horizon T of size dt = T/N . We account for input
limitations by constraining 0 ≤ u ≤ umax, and optionally
include the GP predictions within the system dynamics.

min
u
xᵀ
NQxN+

N∑
k=0

xᵀ
kQxk + uᵀ

kRuk (10)

subject to xk+1 = fRK4(xk,uk, δt)

x0 = xinit

umin ≤ uk ≤ umax

where fRK4 can be extended to the corrected dynamics f cor.
To solve this quadratic optimization problem we construct it

using a multiple shooting scheme [32] and solve it through a
sequential quadratic program (SQP) executed in a real-time
iteration scheme (RTI) [32]. All implementations are done
using ACADOS [33] and CasADi [34].

E. Practical Implementation

The implementation of the learned dynamics of our GP-
MPC must be designed to maximize the performance while
minimizing the computational cost added to the optimization.
Note that aerodynamic effects operate on the body reference
frame. Likewise, the training dataset is adjusted such that
the learning problem setup is to identify such a mapping
from body frame velocities Bv to body frame acceleration
disturbances Bae, so that Bae = µ(Bv). Furthermore, to
reduce the need for additional training samples, we reduce
the dimensionality of our input space such that the mappings
are learned axis wise. We can thus write the GP prediction as:

Baek = µ(Bvk) =

µvx(Bvxk)
µvy(Bvyk)
µvz(Bvzk)

 (11)

Σµ(Bvk) = diag

σ2
vx(Bvxk)
σ2
vy(Bvyk)
σ2
vz(Bvzk)

 (12)

F. Data Collection and Model Learning

To fit the GPs, real-world flight data is collected (as detailed
in Sec. IV) using the nominal dynamics model. For each
sample at time tk, the velocity at the next sample point Bvk+1

and the predicted velocity at the next sample point Bv̂k+1

are recorded, together with the timestep δtk. We can then
compute the time-normalized velocity error, corresponding to
the acceleration error:

Baek =
Bvk+1 −B v̂k+1

δtk
(13)

To select the hyperparameters of the kernel function
(l, σn, σf ), we perform maximum likelihood optimization on
the collected dataset. Being a non-parametric method, the
complexity of GP regression depends on the number of
training points. As using the full dataset would make MPC
optimization intractable in real time, we subsample the dataset
and only use a small number of inducing points. To this end,
we leverage the smooth nature of the aerodynamic effects by
sampling these points at regular intervals in the ranges of the
training set.

IV. EXPERIMENTS AND RESULTS

We design our evaluation procedure to address the following
questions: (i) What is the contribution of the learned dynamics
of our GP-MPC in a closed-loop tracking task? (ii) How does
our GP-MPC compare to an MPC with linear aerodynamic
effect compensation, as proposed in [24]? (iii) How does the
learned model generalize to unseen trajectories? Finally, we
validate our design choices with ablation studies. We refer the
reader to the attached video to understand the dynamic nature
of our experiments.

A. Experimental Setup

We conduct experiments both in simulation as well as on
a real quadrotor platform. To assess our proposed approach,
the quadrotor executes three different trajectories (Random,
Circle, Lemniscate), illustrated in Fig. 3. The lemniscate
trajectory lies in the horizontal plane and is defined by[
x(t) = 2 cos

(√
2t
)

; y(t) = 2 sin
(√

2t
)

cos
(√

2t
)]

.
We compare the tracking performance on these trajectories

using our MPC with the Nominal quadrotor model (1), and the
improvement after adding different correction terms identified
from data. We study two possible augmentations: GP-MPC
(ours) and RDRv. The RDRv approach was proposed in [24]
as a feed-forward PID controller term, which identifies a set of
linear drag coefficients along the body axes. We instead incor-
porate this linear compensation into the nominal dynamics of
our MPC pipeline. Note that the three control approaches only
differ in the dynamics model used by the MPC, i.e. they use
the same control frequency and cost matrices. Furthermore,
both the GP-MPC and the RDRv are always trained on the
same dataset.

For the simulation experiments, we perform a Nominal
run on random polynomial trajectories of high aggressiveness
to collect training samples for the GP and the coefficient
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Fig. 3: Trajectories considered in this work. Left: single-loop randomly-generated polynomial trajectory with motion along all
axes. The tracking starts and ends at the upper-right corner. Center and right: circular and lemniscate trajectories respectively.
Both have zero translation along the z axis, tracking starts at 0 velocity, ramps up until reaching a peak, and ramps down back
to hover. The position references remain as shown in the figures in all cases.
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Fig. 4: Closed-loop position tracking error as a function of maximum velocity achieved in our custom simulator. Ideal denotes
the nominal MPC performance in a disturbance-free scenario. Nominal corresponds to the un-augmented MPC, and GP-MPC
15 and GP-MPC 100 are our GP-augmented controllers where the GP’s have been trained with 15 and 100 training samples.

identification for RDRv. With both models fitted, we deploy
all three controllers, Nominal, RDRv and GP-MPC, on the test
trajectories without retraining. For the real-world experiments,
we first perform a run of the Nominal baseline on both circle
and lemniscate trajectories, which is also used for GP training
and RDRv coefficient identification. In the subsequent rollouts,
we test RDRv and GP-MPC on these two trajectories in
different permutations.

In our experimental setup, we only consider obstacle-free
scenarios and aim to minimize the tracking error that arises
mainly due to aerodynamic disturbance effects. For this reason,
the predicted covariance of the GPs is not used in our
experiments.

B. Experiments in Simulation

We first evaluate the performance for individual maneuvers
in simulation. To isolate the effects of varying MPC com-
putation times for different models, we divide the simulation
experiments into two parts: simplified simulation and Gazebo
simulation. This setup allows to compare the predictive per-

formance of arbitrary sized models without the need to correct
for varying computation times.

Simplified Simulation This simulation is constituted of a
simple forward integration of the system dynamics (1) using
an explicit Runge-Kutta method of 4th order with a step size
of 0.5 ms. We assume to have access to perfect odometry
measurements of the quadrotor, ideal tracking of the com-
manded single-rotor thrusts, and that the MPC computation is
instantaneous. The simulator models drag effects caused both
by the rotors as well as the fuselage. Additionally, zero-mean
Gaussian noise forces and torques are simulated that act on
the quadrotor body, as well as asymmetric noise on the motor
voltage signals.

In the simplified simulation, we investigate the influence
of the number of training points of the GP on the predictive
performance. As the choice of this hyperparameter constitutes
a trade-off between model accuracy and computation time,
we seek the model with the minimum number of inducing
points that surpasses a desired performance threshold. This
effect is investigated with two experiments: first, we analyze
the trade-off between GP performance and optimization time.



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

0.06

0.08

0.10

0.12

0.14

Pr
ed

R
M

SE
[m

s−
1
]

0 20 40 60 80 100

2

4

6

8

10

# training samples

O
pt

im
iz

at
io

n
tim

e
[m

s]
Nominal GP-MPC
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are trained and evaluated on data collected in our Simplified
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In the second experiment, we extend the comparison of
different-sized GPs to closed-loop experiments on the three
test trajectories.

Having identified the optimal size of the GP, we perform
an additional set of experiments to compare the tracking
performance on the circle and lemniscate test trajectories
between the Nominal and RDRv baselines and our approach.
Both trajectories are executed up to varying maximum speeds,
where the highest speed pushes the platform to its physical
limits. The training set for both the RDRv and the GP models
in this simulator is collected by executing random polynomial
trajectories of high aggressiveness (such as Fig. 3 left) with
the quadrotor, up to 16m s−1 axis-wise. This technique works
well in simulation since it allows to explore densely all the
ranges of operating points without risk of breaking the aircraft
if tracking fails.

The results of the GP size analysis are summarized in Fig. 5.
As can be seen, the complexity of the optimization problem
approximately follows a linear function with respect to the
number of training points. Since the predictive performance
barely increases when adding more than 20 inducing points,
we identify the optimal range to be between 15 to 25 samples,
corresponding to 4 − 5 ms of optimization time. For com-
parative purposes, we illustrate in Fig. 4 how two of our GP
models perform in closed-loop tracking for 15 and 100 training
samples. It can be verified that a larger number of samples is
strictly beneficial, but comes at the expense of an increase in
optimization time. In fact, such a large model is not usable for
a real time application of our pipeline. Based on this evidence,
we chose to use 20 inducing points for the rest of this work.

The main results of the closed-loop tracking experiments
are summarized in Table I. The table reports position tracking
error in millimeters for both maneuvers at varying maximum
speeds. While the Ideal column indicates the tracking error in
case of no unmodelled disturbances (i.e. the MPC dynamics
model perfectly fit the actual system), the Nominal column

represents the baseline when no model augmentations are
enabled. Note that even though the MPC controller performs
very well in the Ideal scenario, it does not achieve zero
tracking error due to discretization effects. Both the RDRv
baseline as well as the GP-MPC significantly improve the
tracking error compared to the non-augmented Nominal case.
However, while RDRv performs comparably to our approach
up to speeds of 4 m s−1, it starts to fail for higher speeds due
to its inability to model higher-order aerodynamic effects such
as body drag. Our approach also captures these effects very
well and shows consistent improvement for the full range of
tested speeds.

Gazebo Simulation To verify the results obtained in the
simplified simulation in a well-known quadrotor simulator, we
also perform closed-loop tracking experiments in Gazebo [35].
We employ the AscTec Hummingbird quadrotor model using
the RotorS extension [36]. To properly evaluate the perfor-
mance of our pipeline, we also use ground truth odometry
measurements instead of a state estimator. We collect a dataset
containing velocities in the range [−12, 12] m s−1 for training
our models. This dataset is obtained by tracking randomly
generated aggressive trajectories, as with the simplified sim-
ulator. We execute the circle and lemniscate trajectories at
increasing speeds and compare the tracking performance of
the Nominal and RDRv baselines, as well as our approach.
Note that once again we use completely independent training
and test sets in our setup to ensure our models can generalize
to new trajectories.

The main results of the Gazebo experiments are summarized
in Fig. 6. In this case, both RDRv as well as our GP-
MPC achieve very similar performance over the full range
of tested speeds. This is expected, as the RotorS package
implementation only simulates rotor drag as aerodynamic
effect [36], which follows a linear mapping with respect to the
body frame velocity [27]. The true aerodynamic effects acting
on a quadrotor however are a combination of rotor drag, body
drag and turbulent effects caused by the propellers. We are
analyzing these effects in more detail in the following section.

C. Experiments in the Real World

Lastly, we compare the performance of our GP-MPC against
both Nominal as well as RDRv controllers on a real quadrotor.
We use a custom quadrotor that weighs 0.8kg and has a
thrust-to-weight ratio of 5:1. We run the controller on a laptop

TABLE I: Comparison of closed-loop tracking errors on the
circle and lemniscate trajectories in simulation.

Model
Ideal Nominal RDRv GP-MPC

R
ef

. vpeak

[m s−1]
RMSE
[mm]

RMSE
[mm]

RMSE
[mm]

%↓ RMSE
[mm]

%↓

4 0.1 114.1 18.1 84 16.1 85
8 0.4 241.2 56.9 76 25.4 89

C
ir

cl
e

12 1.2 338.3 93.0 72 28.4 93
4 0.3 104.0 15.5 85 16.3 84
8 1.5 157.7 32.3 79 20.3 87

L
em

n.

12 4.2 212.4 60.6 71 24.4 88
Opt. dt
[ms]

1.32 1.76 4.13
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Fig. 6: Closed-loop position tracking error as a function of
maximum velocity achieved in the RotorS Gazebo simulator
in the circle and the lemniscate trajectories.

Fig. 7: The quadrotor used for real-world experiments.

computer and send control commands in the form of collective
thrust and desired bodyrates at 50 Hz to the quadrotor through
a Laird RM024 radio module. A PID controller running on-
board the quadrotor tracks the sent commands. The quadrotor
flies in an indoor arena equipped with an optical tracking
system that provides pose estimates at 100 Hz. Note that
our control method also works with state estimates that are
obtained differently than with a motion capture system. As
in the simulation experiments, we compare the tracking error
along both circle and lemniscate trajectories with speeds up
to 14 m s−1.

To demonstrate that our approach can correct for complex
aerodynamic effects, we perform the real world experiments in
two settings: in setting (i) we perform all maneuvers with the
quadrotor as pictured in Fig. 7, while in setting (ii) we extend
the quadrotor body with a vertical drag board. This drag board
introduces additional asymmetric aerodynamic disturbance as
can be seen in Fig. 8. For the real world experiment, we use
20 inducing points on our GP’s.

Table II summarizes the results of our real world experi-
ments in setting (i). We train two GP models on the circle
and lemniscate trajectories, and use them at test time in
all permutations. As can be seen, our methods as well as
the RDRv baseline improve tracking performance by up to
50%, with our approach slightly outperforming the RDRv

Fig. 8: Aerodynamic effects observed in the real quadrotor
platform along body axes x (left column) and y (right column)
as a function of body frame velocity. The platform was studied
in its default configuration (upper row), and with an additional
flat board attached along the body x axis (lower row), resulting
in a significantly increased body drag effect in the y direction.

baseline. This result can be explained by the fact that the
quadrotor platform used in setting (i) is very compact and
powerful, rendering the main source of disturbance being the
rotor drag. Rotor drag is a linear effect, which can be well
compensated for by the linear RDRv model augmentation.

TABLE II: Comparison of the RDRv and GP-MPC methods
in the real world experiments.

Model RMSE [mm]
GP GPRef. Nomin. (circle) %↓ (lemn.) %↓ RDRv %↓

Circle 319.7 172.9 46 141.0 56 168.3 47
Lemn. 396.2 254.2 36 266.3 33 269.3 33

TABLE III: Velocity-dependent tracking performance of the
augmented MPC methods on the circle trajectory.

Model
Nominal RDRv GP-MPC 20

Config. vrange

[m s−1]
RMSE
[m]

RMSE
[m]

%↓ RMSE
[m]

%↓

0-2 0.087 0.130 -49 0.109 -25
2-4 0.233 0.119 49 0.103 56
4-6 0.329 0.177 46 0.129 61
6-8 0.458 0.210 54 0.154 66D

ef
au

lt

8-10 0.531 0.192 64 0.203 62
0-2 0.197 0.132 33 0.060 69
2-4 0.346 0.287 17 0.078 77
4-6 0.564 0.381 32 0.141 75
6-8 0.837 0.463 45 0.219 74

D
ra

g
bo

ar
d

8-10 0.912 Crash ? 0.379 59
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The slight improvement of GP-MPC over RDRv in this setting
can be explained by the ability of the GPs to also account for
imperfect thrust mappings.

Finally, we compare the circle tracking for settings (i) and
(ii) in Table III. As can be seen, our approach significantly
outperforms RDRv in setting (ii), where the latter fails to
capture the full nonlinearity of aerodynamic effects. This
can be verified also in Fig. 8, where the linear fit leads to
significant bias.

V. CONCLUSION

In this work, we propose the usage of Gaussian Processes to
augment the nominal dynamics of a quadrotor to compensate
for aerodynamic effects. This GP-based model augmentation
is integrated in a Model Predictive Controller and the resulting
system significantly improves positional tracking error, both in
simulation and on a real quadrotor. Using data from previously
recorded flights, the GP’s are trained to predict the acceleration
error of the nominal model given its current velocity in body
frame.

In extensive experiments in simulation and the real world,
we show that our approach outperforms a state-of-the-art
linear drag model. Furthermore, our GP-augmented controller
opens up interesting lines of follow-up research for future
development. On one hand, we plan to make use of the
predicted uncertainty to perform safe agile trajectories close to
obstacles. On the other hand, leveraging the fast fitting time of
our GP models (in the order of seconds), training and control
loop can be executed in parallel on separate threads in real
time during flight. This would enable to adapt the dynamics
model to varying external or internal conditions such as wind
disturbance or battery voltage.
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