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Abstract— Modern autonomous mobile robots require a
strong understanding of their surroundings in order to safely
operate in cluttered and dynamic environments. Monocular
depth estimation offers a geometry-independent paradigm to
detect free, navigable space with minimum space and power
consumption. These represent highly desirable features, espe-
cially for micro aerial vehicles. In order to guarantee robust
operation in real world scenarios, the estimator is required to
generalize well in diverse environments. Most of the existent
depth estimators do not consider generalization, and only
benchmark their performance on publicly available datasets
after specific fine-tuning. Generalization can be achieved by
training on several heterogeneous datasets, but their collection
and labeling is costly. In this work, we propose a Deep
Neural Network for scene depth estimation that is trained
on synthetic datasets, which allow inexpensive generation of
ground truth data. We show how this approach is able to
generalize well across different scenarios. In addition, we show
how the addition of Long Short Term Memory (LSTM) layers
in the network helps to alleviate, in sequential image streams,
some of the intrinsic limitations of monocular vision, such as
global scale estimation, with low computational overhead. We
demonstrate that the network is able to generalize well with
respect to different real world environments without any fine-
tuning, achieving comparable performance to state-of-the-art
methods on the KITTI dataset.

SUPPLEMENTARY MATERIAL

A video showing the results of our monocular depth
estimation approach is available at https://youtu.be/
UfoAkYLb-5I.

The datasets we collected and the trained models
to reproduce our results are available at http:
//www.sira.diei.unipg.it/supplementary/
ral2016/extra.html.

I. INTRODUCTION

As autonomous vehicles become more common in many
applications outside the research laboratory, the requirements
for safe and optimal operation of such systems become more
challenging. In particular, the ability to detect and avoid still
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Fig. 1: Overview of the proposed domain independent approach
for monocular depth estimation based on CNN. We first train our
model on labeled synthetic data. We then deploy it for evaluation
on real world scenarios. Our experiments show how the model is
able to generalize well across different scenarios without requiring
any domain specific fine-tuning procedures.

or mobile obstacles is crucial for field operations of the vast
majority of ground and low altitude flight vehicles. Depth
information can be used to estimate proximity to obstacles
and, in general, to obtain an understanding of the surrounding
3D space. This perception of the 3D environment can then
be used in reactive [1] or planned [2] control strategies
to navigate safely. LIDAR and sonar sensors can provide
sparse 3D information, but their installation may be costly,
in terms of weight, space and power, all of which are
constraints for mobile robots, and especially Micro Aerial
Vehicles (MAVs). Vision-based systems, both mono and
stereo, can provide dense depth maps and are more suitable
for deploying on small vehicles. A primary shortcoming,
though, is that the detection range and accuracy of stereo
cameras are limited by the camera set-up and baseline [3],
[4]. Exploiting geometric constraints on camera motion and
planarity, obstacle detection and navigable ground space
estimation can be extended far beyond the normal range
([5], [6]). However, these constraints hold mostly for ground,
automotive applications, but do not generalize to MAVs.

https://youtu.be/UfoAkYLb-5I
https://youtu.be/UfoAkYLb-5I
http://www.sira.diei.unipg.it/supplementary/ral2016/extra.html
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Differently from stereo systems, monocular systems do
not make specific assumptions on camera motion or set-
up. Several monocular depth estimation methods have been
proposed in recent years, mostly exploiting machine learning
paradigms ([7], [8], [9], [10], [11]). The advantages of such
systems are that they are able to learn scale without the use
of external metric information, such as Inertial Measurement
Unit (IMU) measurements, and are not subject to any ge-
ometrical constraint. On the downside, these systems rely
on the quality and variety of the training set and ground
truth provided, and often are not able to adapt to unseen
environments.

The challenge of domain independence is one of the main
obstacles to extensive use of learned monocular systems in
place of stereo geometrical ones. The question of how does
these systems perform in uncontrolled, previously unseen
scenarios can be addressed by learning features that are more
invariant to environment changes and also by using different
network architectures that are able to learn more general
models from the training samples they have. Unfortunately,
there are only a few labeled depth datasets with the required
ground truth density, and the cost and time required to create
new ones is high.

In our previous work [12] we showed that training a
Convolutional Neural Network (CNN) with a inexpensive
generated, densely-labeled, synthetic urban dataset, achieved
promising results on the KITTI dataset benchmark using
RGB and optical flow inputs.

In this work, by using a deeper architecture and an
extended synthetic dataset able to generalize from synthetic
data to real unseen sequences, we take an important step
towards domain independence for vision-based depth esti-
mation applications. With robotic-based operations in mind,
we reduce the computational complexity of the network by
removing the network dependence on optical flow, even if it
often acts as a environment-invariant feature. To balance this
loss of information, we exploit the input stream sequentiality
by using Long Short Term Memory (LSTM) layers, a specific
form of Recurrent Neural Networks (RNNs).

Our experiments show that this solution significantly out-
performs previous results. We validate our model on the
KITTI dataset, where we obtain comparable performance to
state-of-the-art, specially tuned methods.

We also perform validation on two challenging and differ-
ent new datasets consisting of sequences captured in a dense
forest and in a country road, in order to evaluate possible
MAV operation environments. We show how the model is
capable of reliable estimation even on video streams with
vibration and motion blur, making our model suitable for
tasks as obstacle avoidance and motion planning for mobile
robots.

II. RELATED WORK

Traditional vision-based depth estimation is based on
stereo vision [13]. Its main limitations lie on the lack of
robustness on long range measurements and pixel matching
errors. This aspect is even more critical in MAV applications

where maneuvers are on 6DOF and the lack of platform
space makes it difficult to mount a stereo rig with a proper
baseline. Finally, weight and power consumption minimiza-
tion is highly desirable. For these reasons, monocular vision
is becoming more and more important when it comes to
MAV applications.

Monocular depth estimation based on geometric methods
is grounded on the triangulation of consecutive frames.
Despite the impressive results achieved by state-of-the-art
approaches [14], [15], [16], the performance of their recon-
struction routines drops during high-speed motion, as dense
alignment becomes extremely challenging. In addition, it is
not possible to recover the absolute scale of the object dis-
tances. Driven by the previous considerations, in this work,
we address both the aforementioned aspects by exploiting the
learning paradigm to learn models that compute the scene
depth and the associated absolute scale from a single image
(i.e., without processing multiple frames).

Learning-based methods for depth estimation have demon-
strated good performance in specific scenarios, but these
results are limited to these environments, and have not
been shown to generalize well. Saxena et al. [17] first
proposed a Markov Random Field to predict depth from
a monocular, horizontally-aligned image, which then later
evolved into the Make3D project [10]. This method tends to
suffer in uncontrolled settings, especially when the horizontal
alignment condition does not hold. Eigen et al. ([7], [18],
exploit for the first time in their work the emergence of
Deep Learning solutions for this kind of problems, training a
multi scale convolutional neural network (CNN) to estimate
depth. Following this, several other CNN-based approaches
have been proposed. Liu et al. [8] combine a CNN with a
Conditional Random Field to improve smoothness. Roy et al.
[9] recently proposed a novel depth estimation method based
on Neural Regression Forest. However, the aforementioned
methods [17], [7], [18], [8], [9] are specific for the scenario
where they have been trained and, thus, they are not domain
independent.

For our intended embedded application, computational
efficiency is very important, and, in this respect, most of
the existing methods for monocular depth estimation are not
appropriate. In [8] and [9], although they reported slightly
improved performances on several benchmarks with respect
to Eigen et al.’s work, they cannot guarantee real-time
performance on embedded hardware. They report a single
image inference time of ∼ 1s both on a GTX780 and a Tesla
k80, far more powerful hardware than the ones generally
embedded on MAVs. Conversely, Eigen et al. method is
able to estimate a coarser resolution (1/4 of the input
image) of the scene depth map with a inference time of
about 10ms. Our system’s inference time is less than 30ms
on a comparable hardware (Tesla k40) and less than 0.4s
on an embedded hardware (Jetson TK1), making real-time
application feasible. Based on these various factors, we chose
the Eigen et al. [7] method to serve as a reference to the state
of the art during our experiments.

Although we are interested in performing well against the



state of the art in accuracy, our primary goal is to develop
a robust estimator that is capable of generalizing well to
previously unseen environments, in order to be useful in
robotic applications. For this reason, we did not perform
any finetuning on evaluation benchmarks, focusing on how
architectural choices and synthetic datasets generation influ-
ence generalization. Our previous work propose a baseline
solution to the problem, suggesting a Fully Convolutional
Network (FCN) fed with both the current frame and the op-
tical flow between current and previous frame [12]. Despite
optical flow acts as a good environment-invariant feature,
it is not sufficient to achieve generalization across different
scenarios. Furthermore, the computation of the optical flow
considerably increase the overall inference time. In this
work, only the current frame is fed into the network: by
using a deeper architecture and the LSTM paradigm together
with a wise mix of different synthetic datasets we report a
significant performance gain in a simpler and more efficient
fashion.

A relatively unexplored area of research is the training
of networks given data scarcity. Recently, Garg et al. [11]
proposed an unsupervised approach for monocular depth
estimation with CNNs. In their work they propose a data
augmentation technique to deal with the cost of acquiring
real images with depth ground truth. However, the augmented
dataset has to be generated from already acquired images,
and thus this technique is unable to generate unseen envi-
ronments. For this reason the authors train and test only
on the KITTI dataset. Our work is similar to theirs in the
aspect of finding ways to effectively augment training data,
but is aimed to generalize performances across different
environments. We achieve this exploiting synthetic data, for
which exact labels are easily generated. Synthetic training
sets are able to represent any kind of scenario, illumination
conditions, motion trajectory and camera optics, without any
limitation imposed by real world data collection equipments.
This allows us to reach good performance on different
domains, using different training and test images, and not
requiring fine-tuning. However, at the time of the writing of
this work, the authors of [11] did not yet make their trained
model publicly available for an effective comparison.

III. NETWORK OVERVIEW

A. Fully Convolutional Network

We propose as a baseline method a fully convolutional
architecture, structured in a encoder-decoder fashion, as
depicted in Figure 2. This a very popular architectural
choice for several pixel-wise prediction tasks, as optical
flow estimation [19] or semantic segmentation [20]. In our
proposed network, the encoder section corresponds to the
popular VGG network [21], pruned of its fully connected
layers.

We initialize the encoder weights with the VGG pre-
trained model for image classification. Models trained on
huge image classification datasets, as [22], proved to act
as a great generic-purpose feature extractor [23]: low-level
features are extracted by convolutional layers closer to the

input layer of the net, while layers closer to the output of
the net extract high-level, more task-dependent descriptors.
During training, out of the 16 convolutional layers of the
VGG net, the weights of the first 8 layers are kept fixed;
remaining layers are fine-tuned. The decoder section of the
network is composed by 2 deconvolutional layers and a
final convolutional layer which outputs the predicted depth
at original input resolution. These layers are trained from
scratch, using random weight initialization.

B. Adding LSTM layers into the picture

Any monocular, single image depth estimation method
suffers from the infeasibility of correctly estimating the
global scale of the scene. Learning-based methods try to infer
global scale from the learned proportions between depicted
objects in the training dataset. This paradigm inevitably fails
when previously unseen environments are evaluated or when
the camera focal length is modified.

We can try to correct these failures by exploiting the
sequential nature of the image stream captured by a vision
module mounted on a deployed robot. Recurrent neural
networks (RNN) are typically used in tasks where long-
term temporal dependencies between inputs matter when it
comes to performing estimation: text/speech analysis, action
recognition in a video stream, person re-identification [24],
[25], [26]. Their output is a function of both the current input
fed into the network and the past output, so that memory is
carried forward through time as the sequence progresses:

yt = f(Wxt +Uyt−1) (1)

where W represents the weight matrix (as in common
feedforward networks) and U is called transition matrix.

Long Short Term Memory networks (LSTM) are a special
kind of recurrent neural network introduced by Hochreiter
& Schmidhuber in 1997 to overcome some of the RNN
main issues, as vanishing gradients during training, which
made them very challenging to use in practical applications
[27]. Memory in LSTMs is maintained as a gated cell where
information can be read, written or deleted. During training,
the cell learns autonomously how to treat incoming and
stored information. We insert two LSTM layers between the
encoder and decoder section of the previously introduced
FCN network, in a similar fashion of [24]. Our motivation is
to refine features extracted by the encoder according to the
information stored in the LSTM cells, so that the decoder
section can return a more coherent depth estimation. The
proposed LSTM network is depicted in Image 3. Dropout
is applied before, after and in the middle of the two LSTM
layers to improve regularization during training.

C. Training the networks

We developed two synthetic datasets for learning depth
estimation: the Urban Virtual Dataset (UVD) and the Forest
Virtual Dataset (FVD), producing a total of more than 80k
images (Figure 4). We create the scenarios with Unreal
Engine, and extract noise-free ground truth depth maps using
its tools. To reduce network’s output space dimensionality



Fig. 2: FCN high-level architecture. Each block represent a set of layers with the depicted specifications. For the encoder section, pooling
is applied between each block. Blue boxes: Unchanged VGG encoder layers. Red boxes: Finetuned VGG encoder layers. Green Boxes:
Deconvolutional decoder layers.

Fig. 3: In our LSTM network, we plug in two LSTM layers with 180 neurons between the encoder and the decoder section of the
network.

Fig. 4: Some images from UVD and FVD dataset used for training the models.

and ease training, we clip the depth maximum range to
40m, although it is theoretically possible to measure depth
up to an unlimited range. Different illumination conditions,
motion blur, fog, image noise and camera focal lengths can
be easily simulated or modified, offering us a great sandbox
to inexpensively generate highly informative datasets and
high precision ground truths. The camera moves at speeds up
to about 15m/s with six degrees of freedom inside the built
scenarios, collecting frames and corresponding depth maps
at a resolution of 256x160 pixels and a frame rate of 10Hz.
Using these datasets, we trained the following networks:

• UVD FCN: Fully convolutional network trained on the
Urban Virtual Dataset.

• FVD FCN: Fully convolutional network trained on the
Forest Virtual Dataset.

• FVD LSTM: LSTM network trained on the Forest
Virtual Dataset.

• MIX FCN: Fully convolutional network trained on both
Urban and Forest Virtual Datasets.

• MIX LSTM: LSTM network trained on both Urban
and Forest Virtual Datasets.

Networks have been implemented using the Caffe frame-
work and trained on Log RMSE (Eq. 2) using an Adam
solver with a learning rate of l = 10−4 until convergence.
FCN networks required about 24 hrs for training, while
LSTM networks took about 48 hrs on a Tesla K40 GPU.√

1

T

∑
Y ∈T
|| log yi − log y∗i ||2 (2)

IV. EXPERIMENTS

UVD FCN FVD FCN MIX FCN MIX LSTM

thr. δ < 1.25 0.705 0.211 0.462 0.599
thr. δ < 1.252 0.899 0.365 0.778 0.872
thr. δ < 1.253 0.968 0.493 0.938 0.950

RMSE 4.527 15.697 6.581 5.966
Log RMSE 0.264 1.076 0.356 0.327

Scale Inv. MSE 0.065 0.907 0.072 0.087
Abs.Rel.Diff. 0.211 0.825 0.269 0.188

TABLE I: Results on UVD dataset. For threshold errors, higher
values are better. For RMSE, Log RMSE, Scale Inv. MSE and
Abs.Rel.Diff., lower values are better



We test generalization capability of our proposed networks
on the KITTI dataset [28], and on two datasets we gathered
in a dense forest in the surroundings of Zurich, Switzerland
and in the countryside near Perugia, Italy, respectively.1

UVD FCN FVD FCN MIX FCN MIX LSTM

thr. δ < 1.25 0.326 0.574 0.469 0.511
thr. δ < 1.252 0.571 0.853 0.777 0.766
thr. δ < 1.253 0.733 0.939 0.911 0.897

RMSE 8.802 4.132 5.134 5.460
Log RMSE 0.656 0.340 0.402 0.413

Scale Inv. MSE 0.357 0.091 0.106 0.132
Abs.Rel.Diff. 0.564 0.248 0.300 0.316

TABLE II: Results on FVD dataset.

We measure our performances with the following metrics:
• Threshold error: % of yi s.t. max( yi

y∗
i

y∗
i

yi
) = δ < thr

• Absolute relative difference: 1
T

∑
Y ∈T

|y−y∗|
y∗

• Log RMSE:
√

1
T

∑
Y ∈T || log yi − log y∗i ||2

• Linear RMSE:
√

1
T

∑
Y ∈T ||yi − y∗i ||2

• Scale-invariant Log MSE (as introduced by [7]):
1
n

∑
i d

2
i − 1

n2 (
∑

i di)
2, with di = log yi − log y∗i

We test on the same benchmark also our previous method
proposed in [12], later referred as OPT FLOW FCN.

Furthermore, to properly compare our approach with re-
spect to [7], we also implement their coarse+fine network
following the details provided by the authors. We train it
on both UVD and FVD datasets (i.e., the same training set
we use for our networks) with a Scale Inv. Log MSE loss.
We first train their coarse model alone for 50 epochs, with
a learning rate of 10−4. Afterwards, we keep the weight of
the coarse model fixed and train the fine network for about
40 epochs. Their method returns a 4× downsampled depth
image, thus, during the evaluation, we upsample the obtained
prediction with a nearest neighbor filter to match the original
input resolution. In the following, we refer to this baseline
as MIX EIGEN.

Before discussing the results on the real datasets, we run
a set of experiments to measure the performance loss when
the test domain differs from the training one. In particular,
in Table I, we compare the performance of the UVD models
evaluated with respect to the urban domain (the same used
for training) and the forest one. Similarly, in Table II, we
show the results of the FVD networks. Clearly, performance
drop when the network is tested on a domain different
from the training one (see column 2 of Table I and column
1 of Table II). However, we can observe that extending
the training set with images from multiple domains and
with the LSTM structure helps the network to considerably

1Link to code, datasets and models: [29]

increase the generalization capabilities of the CNNs and, as
a consequence, the performance.

A. KITTI dataset

We evaluate our networks on a test set of 697 images used
for evaluation in existing depth estimation methods [7] [8].
We do not perform any kind of fine-tuning or retraining on
the target dataset. As reference, we compare with the method
proposed by Eigen et. al [7]. The publicly available depth
predictions they provide were specifically trained on the
KITTI dataset, so comparison is not fully fair; our objective
is to evaluate how close our performance can get relying
solely on synthetic data.

We resize the input images from their original resolution
of 1224x386 pixel to a resolution of 256x78 pixels for
computational efficiency and feed them into our networks.
From the provided sparse ground truth, captured by Velodyne
lidar with a maximum range of about 80 meters, we generate
a dense depth map utilizing the colorization routine proposed
in [30]. As the lidar cannot provide depth information for
the upper section of the image space, we perform evalua-
tion only on the bottom section of the image space . We
finally compute the performance metrics with respect of the
windowed dense ground truth. We discard all the predictions
whose corresponding ground truth measurement is beyond
40 meters, to be compliant with our network’s maximum
detection range.

As for Eigen’s method, we compare both their publicly
available depth predictions from their coarse+fine model
trained on the KITTI dataset (referred as KITTI EIGEN)
and the MIX EIGEN model we trained with respect to the
synthetic images on the KITTI test set with the same dense
ground truth we generated, employing the same benchmark
used for our networks, to ensure evaluation fairness.

On Table III we report results for our FCN and LSTM
networks, the baseline method [12] and Eigen et al.’s work.

The KITTI benchmark naturally favors networks trained
on urban scenario datasets, as UVD FCN. On the other
hand, a forest scenario dataset as FVD does not suit well
for this benchmark, as FVD FCN performance clearly de-
picts. Anyway, mixing together FVD and UVD to form
a heterogeneous training set allows MIX FCN to improve
significantly its prediction quality over UVD FCN. With
respect to KITTI EIGEN, our best network obtains quite
comparable performance on all metrics, recording slightly
worse performance on threshold errors, Log RMSE and Scale
Inv. MSE metrics but even some improvement on Linear
RMSE and Absolute Relative Difference metrics. This is a
very important result, especially considering how Eigen’s
work has been specifically trained on the target dataset.
Heterogeneous synthetic training sets help the networks to
learn a nicely generalizable model, without needing to resort
on fine-tuning or collection of costly labeled real world
datasets. Furthermore, our MIX FCN network achieves bet-
ter performance with respect to all the metrics than the
MIX EIGEN one. This suggests that our model has better
generalization capabilities than the one presented in [7].



OPTFLOW FCN UVD FCN FVD FCN MIX FCN MIX LSTM MIX EIGEN KITTI EIGEN [7]

thr. δ < 1.25 0.421 0.414 0.160 0.512 0.338 0.183 0.498 Higher
thr. δ < 1.252 0.679 0.695 0.351 0.786 0.644 0.456 0.850 is
thr. δ < 1.253 0.813 0.849 0.531 0.911 0.848 0.665 0.957 better

RMSE 6.863 8.108 9.519 5.654 6.662 7.929 5.699 Lower
Log RMSE 0.504 0.470 0.877 0.366 0.472 0.589 0.316 is

Scale Inv. MSE 0.205 0.181 0.315 0.107 0.185 0.131 0.051 better
Abs.Rel.Diff. – 0.393 0.494 0.312 0.430 0.390 0.322

TABLE III: Results on KITTI dataset. In this benchmark, our best model (MIX FCN) outperforms the Eigen’s one when the latter is
trained on our same synthetic dataset (MIX EIGEN). Furthermore, it gets results close to the ones achieved with the model specifically
trained on the KITTI dataset (KITTI EIGEN)

Fig. 5: Qualitative results on the KITTI dataset. On the first column RGB input images are depicted. The second and the third columns show
the dense ground truths and MIX FCN predictions, respectively. The fourth column shows MIX EIGEN network prediction. Maximum
depth range has been trimmed to 40 meters.

OPTFLOW FCN [12] FVD FCN MIX FCN FVD LSTM MIX LSTM MIX EIGEN

thr. δ < 1.25 0.096 0.106 0.149 0.126 0.336 0.111 Higher
thr. δ < 1.252 0.202 0.231 0.316 0.269 0.561 0.246 is
thr. δ < 1.253 0.295 0.380 0.520 0.439 0.707 0.436 better

RMSE 10.642 9.986 9.292 9.126 9.746 10.673 Lower
Log RMSE 1.133 1.007 0.856 0.908 0.768 0.960 is

Scale Inv. MSE 0.646 0.527 0.402 0.523 0.439 0.357 better
Abs.Rel.Diff. 2.127 1.797 1.378 1.427 1.272 1.777

TABLE IV: Results on Zurich Forest dataset. Both MIX FCN and MIX LSTM outperform MIX EIGEN in most of the metrics.

It is not surprising that the MIX LSTM network does not
achieve the best performance with respect to this dataset: the
image frames of the test set are not always sequential and,
thus, the LSTM model could not fully exploit its recurrent
structure.

B. Zurich Forest Dataset

We gathered a new dataset in order to test the general-
ization of our networks on a real-world forest environment.
The three sequences in the dataset consist of camera images
captured while moving through a forested area at a walking
pace of around 1 m/s. Each sequence lasted approximately
60 seconds and covered approximately 50 m of distance.
These sequences include a variety of forest densities, tree
sizes, and realistic lighting conditions. The original images

in this dataset were captured with a pair of time-synchronized
MatrixVision mvBlueFOX-MLC200w monochrome cameras
with 752 × 480 resolution in stereo configuration with a
baseline of 20 cm. Both cameras were recorded at 50 Hz,
resulting in sequences with approximately 3000 stereo pairs
each. Stereo matching was performed on these image pairs
using OpenCV’s Semi-global Block Matching algorithm to
generate ground truth depth for validation of the monocular
depth produced by our networks [31].

We tested our architectures on the three sequences, for a
total of 9846 images. We resize the images on a resolution
of 256x160 pixels before feeding them into our networks.
We report results for our baseline method OPTFLOW FCN
and all the networks trained on FVD and MIX dataset. We
report results on Table IV.



Fig. 6: Qualitative results on the Zurich Forest dataset. On the
first column RGB input images are depicted. The second and the
third columns show the dense ground truths and MIX LSTM net
predictions, respectively. The fourth column shows MIX EIGEN
network prediction. Maximum depth range has been trimmed to 40
meters. Black pixels in the ground truth represent missing depth
measurements.

In this experiment, the LSTM architecture outperforms
in almost all metrics the FCN architecture on both training
datasets. In particular, we observe significant improvements
on global scale-dependent metrics like threshold errors, Lo-
gRMSE and the Absolute Relative Difference. This confirms
our intuition: LSTM layers helps to improve global scale
estimation by using past information to refine current esti-
mations. This comes at a very low computational additional
cost, as depicted on Table V. As for the experiments on
the KITTI dataset, both the FCN and LSTM architectures
perform better than the MIX EIGEN model.

FPS (K40) FPS (TK1)
FCN nets 58.8 2.7

LSTM nets 35.3 2.4

TABLE V: FPS (frame per second) for FCN and LSTM networks
on 256x160 pixel inputs. Tested hardware: Tesla K40 and Jetson
TK1 (for MAV onboard deploying)

C. Perugia Countryside Dataset

Fig. 7: Car setup used for collecting the Perugia Countryside
Dataset. On the right, some sample images of the recorded se-
quences are shown.

To further evaluate the generalization capabilities of our
approach, we collected a second dataset in the countryside

Fig. 8: Qualitative results on the Perugia Countryside dataset. On
the first column RGB input images are depicted. The second and the
third columns show the dense ground truths and the MIX LSTM
predictions, respectively. The fourth column shows MIX EIGEN
network prediction. Maximum depth range has been trimmed to 40
meters. Black pixels in the ground truth represent missing depth
measurements.

area that surrounds the city of Perugia in Italy. Since the
MIX FCN and MIX LSTM models are trained in forest
and urban contexts, this new dataset has been specifically
gathered to test whether our networks are able to generalize
with respect to domains different from the training set ones
or not. Images were collected using a stereo camera rig
mounted on a car driven at around 14 m/s (see Figure 7). The
sequences cover many kilometers of distance and contain
different scenarios, elements (e.g., small town buildings,
sparse tree landscapes, moving cars and others) and light
conditions.

The dataset was gathered with a pair of time-synchronized
MatrixVision mvBlueFOX3 RGB cameras with 1280× 960
resolution. In order to be able to compute the ground truth
at higher ranges, we set up a stereo rig with a baseline of 60
cm. Both cameras recorded at 10 Hz, resulting in sequences
with approximately 1600 stereo pairs each. Stereo matching
was performed using the same strategy described in Section
IV-B.

We compare our MIX FCN and MIX LSTM architectures
(which showed good generalization capabilities in the pre-
vious experiments) and the baselines with respect to three
sequences (5072 images). As the LSTM network and the
Eigen’s approach require input images with 256 × 160, we
crop and resize them accordingly.

The results (see Table VI) confirm that the recurrent
structure provides better performance with respect to both
the standard FCN network and the Eigen’s approach. Depth
estimates (shown in Figure 8) are coherent with the actual
scene depths. Thus, this suggests that our models (trained
with images from different contexts, e.g., dense forest and
urban) are able to generalize with respect to different do-
mains, considerably extending the applications contexts of
depth estimation techniques.

We can also observe that the errors are higher with respect
to the KITTI and Zurich forest dataset. However, this could



be explained by the difference of camera intrinsics between
the test and the train setup. Our networks are still able
to provide reliable estimate when processing images with
different focal lengths up to a scale factor. Despite the
absolute metric errors are higher, the relative estimation are
consistent (see Figure 8).

MIX FCN MIX LSTM MIX EIGEN
thr. δ < 1.25 0.204 0.209 0.197
thr. δ < 1.252 0.396 0.405 0.389
thr. δ < 1.253 0.567 0.576 0.564

RMSE 13.003 12.766 12.925
Log RMSE 0.802 0.811 0.820

Scale Inv. MSE 0.583 0.542 0.640
Abs.Rel.Diff. 0.678 0.631 0.720

TABLE VI: Results on Perugia Countryside dataset.

V. CONCLUSION AND FUTURE WORK

We propose a novel, Deep Learning based monocular
depth estimation method, aimed at micro aerial vehicles
tasks, such as autonomous obstacle avoidance and mo-
tion planning. We demonstrate how, using solely synthetic
datasets, we can train a generalizable model that is capable
of robust performance in real world scenarios. We obtained
results that are comparable with the state of the art on the
KITTI dataset without any fine-tuning. We also tested our
algorithm in two other challenging scenario we gathered in
a dense forest and a countryside, additionally showing how
LSTM layers effectively help to improve estimation quality
on typical MAV operating scenarios with a low added com-
putational overhead. Future works will explore the possibility
of integrating information coming from different sensors
and/or modules (eg. IMU, semantic segmentation) to gain
a better understanding of the surroundings and implement
an effective reactive control for obstacle avoidance over it.
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