
Department of Informatics

Agile, Vision-Based Quadrotor Flight: from
Active, Low-Latency Perception to
Adaptive Morphology

Dissertation
submitted to the
Faculty of Business, Economics and Informatics
of the University of Zurich

to obtain the degree of
Doktor der Wissenschaften, Dr. sc.
(corresponds to Doctor of Science, PhD)

presented by

Davide Falanga
from Torre del Greco, NA, Italy

approved in February 2020 at the request of
Prof. Dr. Davide Scaramuzza, advisor
Prof. Dr. Roland Siegwart, examiner
Prof. Dr. Sami Haddadin, examiner
Prof. Dr. Nathan Michael, examiner

The Faculty of Business, Economics and Informatics of the University of Zurich hereby
authorizes the printing of this dissertation, without indicating an opinion of the views
expressed in the work.

Zurich, February 12, 2020

Chairman of the Doctoral Board: Prof. Dr. Thomas Fritz.

To my family.

Acknowledgements

I would like to thank my advisor Prof. Davide Scaramuzza for selecting me as a PhD
student and giving me the opportunity and freedom to pursue many interesting ideas
and projects. Also, I would like to thank Tammy Tolcachier for her crucial, unvaluable
and continuous help with both work-related and private issues I had in these years,
during which she has been a fundamental reference point for my life in Switzerland.
This thesis is the result of many collaborations and fruitful discussions. I therefore
want to express my gratitude to Elias Mueggler, Matthias Faessler, Alessio Zanchettin,
Kevin Kleber, Philipp Foehn, Alessandro Simovic, Suseong Kim, Jeff Delmerico, Titus
Cieslewski, Julien Kohler, Naveen Kuppuswamy, Mac Schwager, Riccardo Spica, Eric
Cristofalo, Eduardo Montijano, Antonio Franchi, Dario Floreano, Stefano Mintchev,
Bianca Sangiovanni and Peng Lu for the active collaborations we had.
RPG has been a second family to me, and I had the lack of enjoying several funny
moments thanks to the contribution of the fantastic people I met: Giovanni Cioffi,
Roberto Tazzari, Guillermo Gallego, Henri Rebecq, Zichao Zhang, Antonio Loquercio,
Elia Kaufmann, Mathias Gehrig, Thomas Laengle, Kunal Shrivastava, Manuel Sutter,
Yunlong Song, Manasi Muglikar, Javier Hidalgo Carrio, Dimche Kostadinov, Christian
Pfeiffer, Dario Brescianini, Junjie Zhang, Matia Pizzoli, Manuel Werlberger, Francisco
Javier Perez Grau, Toni Rosinol Vidal, Raphael Meyer, Michael Gassner, Flavio Fontana,
Christian Forster and Reza Sabsevari.
I also had the pleasure to work with great students, namely Amedeo Fabris, Barza
Nisar, Harshit Khurana, Anna Leidi, Nils Funk, Robin Scherrer, Maria Chiara Giorgetti,
Valentin Wuest and Kevin Egger.
I would like to thank Prof. Roland Siegwart, Prof. Nathan Michael and Prof. Sammi
Haddadin for reviewing my thesis and their valuable feedback.
Last, but not least, I thank my family for their help during these intense five years. In
particular, I want to thank my wife, Roberta, for being always supportive and tolerant
with me, for motivating me to pursue my goals, and for standing by me in the hardest
moment of this journey. Without you, I would not be the man I am today, and I
will always be thankful for this. A huge thanks goes to my parents, to whom I owe
everything I have today, and who have been always very close to me, despite the large
distance keeping us apart. Finally, if I reached this target it is certainly also thanks to
my brother, and best friend, Gianluca, who always knows how to cheer me up.

Zurich, December 2019 D. F.

i

Abstract

Aerial vehicles are leading the robotics revolution, generating new industries with
a potential market value of several billion dollars. In the future, flying robots will
deliver goods directly to our homes, inspect large structures that are unsafe for or
inaccessible by human operators, surveil our cities to guarantee safety, transport people
over short distances, and perform search-and-rescue missions to react to natural disas-
ters promptly. Therefore, aerial robotics is destined to be responsible for a significant
paradigm shift in our everyday life, with quadrotors playing a crucial role thanks to
their agility, simple electromechanical design, and vertical take-off capabilities. How-
ever, for this to happen, several important steps forward in the direction of increased
autonomy, maneuverability, and robustness must be taken.

For quadrotors to be completely autonomous, it is necessary for them to only rely
on onboard sensors and computers, and to be able to access complex areas. This
poses severe challenges when it comes to deploying these systems in real-world scenar-
ios, which are typically not designed to favor robot perception and navigation. Lack
of visual texture, fast-moving obstacles, and buildings not accessible by fixed-sized
quadrotors are only some examples of the unsolved challenges in terms of sensing,
planning, and control that need to be tackled to increase the level of autonomy of flying
robots. Allowing a quadrotor to move in a way that favors perception, equipping it
with sensors and algorithms for low-latency obstacle detection and avoidance, and
enabling shape-shifting capabilities bring the benefit of unlocking the full potential of
these vehicles.

This thesis focuses on motion planning and control methods that enable vision-based
quadrotors to: (i) plan and execute trajectories that improve visual perception; (ii) sense
and avoid fast obstacles by leveraging event cameras; (iii) change their shape and size
while flying. This thesis also presents contributions in the application of quadrotors,
such as a system for autonomous, vision-based landing on a moving platform. The
following is a list of contributions:

• The first quadrotor that can actively change its shape while flying, guaranteeing
stable flight at all times, independently of the morphology. This vehicle was the
recipient of the first prize for the category Aerospace and Defense at the 2019
NASA Tech Briefs contest and won the Most Innovative Drone award at the 2019
Drone Hero contest.

• The first method that allows a quadrotor to fly through narrow inclined gaps in

iii

Abstract

an agile maneuver based only on onboard sensing and computation.

• The first mathematical analysis of the impact of perception latency on the maxi-
mum speed a robot can achieve in a sense-and-avoid task.

• A method to detect fast-moving obstacles with low latency using an event camera,
and to avoid them using a reactive approach.

• A perception-aware Model Predictive Control scheme for quadrotors, capable of
trading-off perception and action objectives in order to execute a given task while
keeping visible some points of interest.

• A framework to let a quadrotor autonomously land on a moving platform using
only onboard sensors and computation.

iv

List of Contributions

Google Scholar Profile: http://bit.ly/davide-falanga-scholar

Journal Publications

• Davide Falanga, Kevin Kleber, and Davide Scaramuzza. “Low Latency Avoidance of
Dynamic Obstacles for Quadrotors with Event Cameras”. Under review in: AAAS Science
Robotics.Links: Video

• Davide Falanga, Suseong Kim, and Davide Scaramuzza. “How Fast is Too Fast? The
Role of Perception Latency in High-Speed Sense and Avoid”. In: IEEE Robotics and
Automation Letters (RA-L) 4.2 (2019), pp. 1884–1891. DOI: 10.1109/LRA.2019.2898117
Links: PDF, Video

• Davide Falanga, Kevin Kleber, Stefano Mintchev, Dario Floreano, and Davide Scara-
muzza, “The Foldable Drone: A Morphing Quadrotor that can Squeeze and Fly”. In: IEEE
Robotics and Automation Letters (RA-L) 4.2 (2019), pp. 209–216. DOI: 10.1109/LRA.2018.2885575
Links: PDF, Video

• Hyungpil Moon, Jose Martinez-Carranza, Titus Cieslewski, Matthias Faessler, Davide
Falanga, Alessandro Simovic, Davide Scaramuzza, Shuo Li, Michael Ozo, Christophe
De Wagter, Guido de Croon, Sunyou Hwang, Sunggoo Jung, Hyunchul Shim, Haeryang
Kim, Minhyuk Park, Tsz-Chiu Au, and Si Jung Kim. “Challenges and implemented
technologies used in autonomous drone racing”. In: Springer: Intelligent Service Robotics
Series 12.2 (2019), pp. 137–148. DOI: 10.1007/s11370-018-00271-6
Links: PDF

• Barza Nisar, Philipp Foehn, Davide Falanga, and Davide Scaramuzza. “VIMO: Simulta-
neous Visual Inertial Model-based Odometry and Force Estimation”. In: IEEE Robotics
and Automation Letters (RA-L) 4.3 (2019), pp. 2785–2792. DOI: 10.1109/LRA.2019.2918689
Links: PDF

• Suseong Kim, Davide Falanga, Davide Scaramuzza. “Computing The Forward Reachable
Set for a Multirotor Under First-Order Aerodynamic Effects”. In: IEEE Robotics and
Automation Letters (RA-L) 3.4 (2018), 2934–2941. DOI: 10.1109/LRA.2018.2848302
Links: PDF

• Matthias Faessler, Davide Falanga, and Davide Scaramuzza. “Thrust Mixing, Saturation,
and Body-Rate Control for Accurate Aggressive Quadrotor Flight”. In: IEEE Robotics and
Automation Letters (RA-L) 2.2 (2017), pp. 476–482. DOI: 10.1109/LRA.2016.2640362
Links: PDF, Video

v

http://bit.ly/davide-falanga-scholar
http://rpg.ifi.uzh.ch/event_based_avoidance
http://doi.org/10.1109/LRA.2019.2898117
http://rpg.ifi.uzh.ch/docs/RAL19_Falanga.pdf
https://youtu.be/sbJAi6SXOQw
http://doi.org/10.1109/LRA.2018.2885575
http://rpg.ifi.uzh.ch/docs/RAL18_Falanga.pdf
https://youtu.be/jmKXCdEbF_E
http://doi.org/10.1007/s11370-018-00271-6
http://rpg.ifi.uzh.ch/docs/ISR19_Moon.pdf
http://doi.org/10.1109/LRA.2019.2918689
http://rpg.ifi.uzh.ch/docs/RSS19_Nisar.pdf
http://doi.org/10.1109/LRA.2018.2848302
http://rpg.ifi.uzh.ch/docs/RAL18_Kim.pdf
http://doi.org/10.1109/LRA.2016.2640362
http://rpg.ifi.uzh.ch/docs/RAL17_Faessler.pdf
https://youtu.be/6YEMxFgToyg

List of Contributions

Peer-Reviewed Conference Papers

• R. Spica, Davide Falanga, Eric Cristofalo, Eduardo Montijano, Davide Scaramuzza, and
Mac Schwager. “A Game Theoretic Approach to Autonomous Two-Player Drone Racing”.
In: Robotics: Science and Systems (RSS) 2018. DOI: 10.15607/RSS.2018.XIV.040
Links: PDF, Video

• Davide Falanga, Philipp Foehn, Peng Lu, and Davide Scaramuzza. “PAMPC: Perception-
Aware Model Predictive Control for Quadrotors”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) 2018. DOI: 10.1109/IROS.2018.8593739
Links: PDF, Video, Software

• Davide Falanga, Elias Mueggler, Matthias Faessler, and Davide Scaramuzza. “Aggressive
Quadrotor Flight through Narrow Gaps with Onboard Sensing and Computing”. In:
IEEE International Conference on Robotics and Automation (ICRA) 2017. DOI: 10.1109/I-
CRA.2017.7989679
Links: PDF, Video

• Philipp Foehn, Davide Falanga, Naveen Kuppuswamy, Russ Tedrake, and Davide Scara-
muzza. “Fast Trajectory Optimization for Agile Quadrotor Maneuvers with a Cable-
Suspended Payload”. In: Robotics: Science and Systems (RSS) 2017. DOI: 10.15607/RSS.2017.XIII.030
Links: PDF, Video

• Davide Falanga, Alessio Zanchettin, Alessandro Simovic, Jeffrey Delmerico, and Davide
Scaramuzza. “Vision-based Autonomous Quadrotor Landing on a Moving Platform”. In:
IEEE/RSJ International Symposium. on Safety, Security and Rescue Robotics (SSRR) 2017. DOI:
10.1109/SSRR.2017.8088164
Links: PDF, Video

Awards

• Winner of the 2019 NASA Tech Briefs Create the Future contest for the category “Aerospace
& Defense” (Official Page)

• Winner of the Drone Hero Award, “Most Innovative Drone” category, 2019 (Official Page)

• RSS Best Paper Student Paper Award Finalist, 2017

• Winner of the IROS 2018 Autonomous Drone Racing Competition (Official Page)

Open-Source Software

• Perception-Aware Model Predictive Control for Quadrotors (PAMPC).

– http://github.com/uzh-rpg/rpg_mpc

vi

http://doi.org/10.15607/RSS.2018.XIV.040
http://rpg.ifi.uzh.ch/docs/RSS18_Spica.pdf
http://msl.stanford.edu/game-theoretic-planning-autonomous-drone-racing
http://doi.org/10.1109/IROS.2018.8593739
http://rpg.ifi.uzh.ch/docs/IROS18_Falanga.pdf
http://youtu.be/9vaj829vE18
http://github.com/uzh-rpg/rpg_mpc/
http://doi.org/10.1109/ICRA.2017.7989679
http://doi.org/10.1109/ICRA.2017.7989679
http://rpg.ifi.uzh.ch/docs/ICRA17_Falanga.pdf
https://youtu.be/meSItatXQ7M
http://doi.org/10.15607/RSS.2017.XIII.030
http://rpg.ifi.uzh.ch/docs/RSS17_Foehn.pdf
http://youtu.be/s9zb5MRXiHA
http://doi.org/10.1109/SSRR.2017.8088164
http://rpg.ifi.uzh.ch/docs/SSRR17_Falanga.pdf
https://youtu.be/Tz5ubwoAfNE
http://contest.techbriefs.com/2019/winners
http://www.dronecommunity.biz/drone-hero-europe/winners-2019/
http://www.iros2018.org/competitions
http://github.com/uzh-rpg/rpg_mpc

Contents

Acknowledgements i

Abstract iii

List of Contributions v

1 Introduction 1
1.1 The Robotic Revolution: Current Status and Challenges 2
1.2 Past, Present, and Future: History and Applications of Flying Robots . 3

1.2.1 History of Multirotors: from the First Concepts to Small-Scale,
Unmanned Vehicles . 4

1.2.2 Applications of Quadrotors . 5
1.3 Research Objectives . 8
1.4 State of the Art . 10
1.5 Summary . 13

2 Contributions 15
2.1 Tightly Coupled Perception and Action 15

2.1.1 Paper A: Aggressive Flight through Narrow Gaps 15
2.1.2 Paper B: Perception-Aware Model Predictive Control 16

2.2 Low-Latency Perception to Action . 17
2.2.1 Paper C: The Role of Perception Latency in Obstacle Avoidance 18
2.2.2 Paper D: Event-based avoidance 18

2.3 Morphing Quadrotors . 19
2.3.1 Paper E: The Foldable Drone . 19

2.4 Applications of Vision-Based Quadrotors 20
2.4.1 Paper F: Autonomous Landing on a Moving Platform 21

2.5 Unrelated Contributions . 21

3 Future Directions 23
3.1 Limitations of the Proposed Approaches 23
3.2 Future Work . 24

A Aggressive Flight through Narrow Gaps 27
A.1 Introduction . 29

A.1.1 Related Work . 30

vii

Contents

A.1.2 Contributions . 32
A.2 Trajectory Planning . 32

A.2.1 Traverse Trajectory . 33
A.2.2 Optimization of the Traverse Trajectory 35
A.2.3 Approach Trajectory . 36
A.2.4 Yaw-Angle Planning . 37
A.2.5 Selection of the Approach Trajectory to Execute 38
A.2.6 Recovery after the Gap . 38

A.3 State Estimation . 39
A.3.1 State Estimation from Gap Detection 39

A.4 Experiments . 39
A.4.1 Experimental Setup . 39
A.4.2 Results . 41

A.5 Discussion . 43
A.5.1 Replanning . 43
A.5.2 Trajectory Computation Times . 44
A.5.3 Gap configuration . 44
A.5.4 Dealing with Missing Gap Detections 44

A.6 Conclusion . 45

B Perception-Aware Model Predictive Control 47
B.1 Introduction . 49

B.1.1 Contributions . 49
B.1.2 Related Work . 51
B.1.3 Structure of the Paper . 52

B.2 Problem Formulation . 52
B.3 Methodology . 53

B.3.1 Nomenclature . 54
B.3.2 Quadrotor Dynamics . 55
B.3.3 Perception Objectives . 55
B.3.4 Action Objectives . 57
B.3.5 Challenges . 57

B.4 Model Predictive Control . 57
B.5 Experiments . 59

B.5.1 Experimental Setup . 60
B.5.2 Experiment Description and Results 60

B.6 Discussion . 62
B.6.1 Choice of the optimizer . 62
B.6.2 Convexity of the problem . 63
B.6.3 Choice of point of interest . 64
B.6.4 PAMPC Parameters . 64
B.6.5 Computation Time . 65

viii

Contents

B.6.6 Drawbacks of a Two-Step Approach 65
B.7 Conclusions . 65

C The Role of Perception Latency in Obstacle Avoidance 67
C.1 Introduction . 69

C.1.1 Related Work . 70
C.1.2 Contributions . 71
C.1.3 Assumptions . 71
C.1.4 Structure of the Paper . 72

C.2 Problem Formulation . 72
C.2.1 Modelling . 73
C.2.2 Obstacle Avoidance . 75

C.3 Vision-Based Perception . 78
C.3.1 Frame-Based Cameras and Event Cameras 78
C.3.2 Sensing Range of a Vision-Based Perception System 79
C.3.3 Latency of a Vision-Based Perception System 79

C.4 Case Study: Vision-Based Quadrotor Flight 80
C.4.1 Sensing Range . 80
C.4.2 Latency . 81
C.4.3 Quadrotor Model . 82
C.4.4 Results . 82

C.5 Experiments . 84
C.5.1 Obstacle Detection with an Event Camera 84
C.5.2 Expected and Measured Latency 85
C.5.3 Results . 86

C.6 Conclusions . 86
C.7 Sensitivity Analysis . 87
C.8 Generalization to Multiple Obstacles . 88
C.9 Monocular Frame-Based Camera . 88

C.9.1 Sensing Range . 88
C.9.2 Latency . 89

C.10 Stereo Frame-Based Camera . 91
C.10.1 Sensing Range . 91
C.10.2 Latency . 91

C.11 Monocular Event Camera . 93
C.11.1 Sensing Range . 93
C.11.2 Latency . 93

C.12 Discussion . 96
C.12.1 Stereo Frame or Monocular Event? 96
C.12.2 Dynamic Obstacles . 96

C.13 Experiments . 97
C.13.1 Experimental Platform . 97

ix

Contents

C.13.2 Obstacle Detection with an Event Camera: Theoretical and Practi-
cal Latency . 99

C.13.3 Obstacle Detection with an Event Camera: Discrepancy Between
Theory and Practice . 99

D Event-Based Avoidance 103
D.1 Introduction . 105

D.1.1 The Challenge . 105
D.1.2 Event Cameras . 106
D.1.3 Related Work . 107
D.1.4 Overview of the Approach and Contributions 108
D.1.5 Time Statistics of Events to Detect Moving Obstacles 111

D.2 Results . 114
D.2.1 Evaluation of the Event-Based Obstacle Detector 114
D.2.2 Experiments . 119

D.3 Materials and Methods . 123
D.3.1 Obstacle Detection . 123
D.3.2 Obstacle Avoidance . 130
D.3.3 Experimental Platform . 137
D.3.4 Major Failure Causes, Lessons Learnt and Disadvantages of Event

Cameras . 139
D.4 Conclusions . 140

E The Foldable Drone 141
E.1 Introduction . 143

E.1.1 Contributions . 145
E.1.2 Structure of the Paper . 146

E.2 Mechanical Design . 146
E.3 Control . 148

E.3.1 Center of Gravity and Inertia . 148
E.3.2 Morphology-dependent Control 149
E.3.3 Control Allocation . 151

E.4 Experiments . 152
E.4.1 Experimental Platform . 152
E.4.2 Morphing Trade-Offs . 154
E.4.3 Flight Performance . 157
E.4.4 Applications . 158

E.5 Conclusion . 160

F Autonomous Landing on a Moving Platform 161
F.1 Introduction . 162

F.1.1 Related Work . 164
F.1.2 Contribution . 164

x

Contents

F.2 System Overview . 165
F.2.1 Quadrotor State Estimation . 165
F.2.2 Vision-based Platform Detection 166
F.2.3 Platform State Estimation . 167
F.2.4 Trajectory Planning . 168
F.2.5 Quadrotor Control . 170
F.2.6 State Machine . 170

F.3 Experiments . 171
F.3.1 Simulation Environment . 171
F.3.2 Simulation Results . 172
F.3.3 Experimental Platform . 173
F.3.4 Landing Platform . 174
F.3.5 Real Experiments Results . 174

F.4 Discussions . 174
F.4.1 Generality of the Framework . 174
F.4.2 Motivation of the Vision Hardware Setup 175
F.4.3 Computational Load . 176
F.4.4 Trajectory Planning . 176
F.4.5 Dealing with Missing Platform Detection 177

F.5 Conclusions . 177

Bibliography 179

Curriculum Vitae 195

xi

1 Introduction

This thesis presents algorithms for motion planning and control of autonomous, vision-
based quadrotors. It focuses on two main topics: (i) bridging the gap between percep-
tion and action by addressing some challenges deriving from vision-based sensing,
such as the need for visual texture, degradation of performance at high speed due to
motion blur, and latency; (ii) extending the maneuverability of quadrotors, proposing
a novel morphing quadrotor design that goes beyond the rigid mechanical structure
proposed in the literature to allow shape and size adaptation in flight.

This work is split into three parts. First, it addresses the problem of coupling perception
and action using active vision to manipulate the viewpoint of a camera mounted
onboard a quadrotor, to execute a given task (e.g., following a reference trajectory)
while simultaneously obtaining as much visual information from the surrounding
environment as possible. Second, it focuses on perception latency, analyzing the impact
it has on the agility of an autonomous quadrotor, and presenting a framework to detect
and reactively avoid fast, dynamic obstacles using event cameras. Finally, it presents
the foldable drone, a quadrotor equipped with four additional servo-motors that allow
each arm to rotate around the main body of the vehicle. By doing so, the system is
capable of adapting its morphology to the task at hand, allowing, for example, to pass
through spaces that are narrower than the robot size.

This thesis is structured in the form of a collection of papers. Self-contained publications
follow an introductory section that highlights the concepts and ideas behind the thesis
in the appendix. The next sections discuss the working principle, history, current, and
future applications, advantages, and challenges of quadrotors. Section 1.2 provides a
brief overview of the history of hovering rotorcrafts, bridging the gap between the first
prototypes and the currently available systems, and highlights their current and future
applications. Section 1.4 summarizes the state of the art in autonomous, vision-based
quadrotor flight, with a focus on the three topics covered by this thesis. Section 1.3
motivates and states the research objectives of this dissertation. The papers in the
appendix are summarized in Chapter 2. Finally, Chapter 3 provides future research
directions.

1

Chapter 1. Introduction

1.1 The Robotic Revolution: Current Status and Challenges

We live on the edge of a technological revolution with a potentially disruptive impact
on our everyday life. Our society is currently witnessing tremendous, fast-pacing
progress in the development of intelligent machines that can animate and interact
with the physical world. Artificial Intelligence (AI) and Robotics represent the core of
what has been defined as the fourth industrial revolution1 which, differently from the
first three, will allow for the first time machines to think and move in the real world,
all by themselves. In a not so distant future, intelligent cyber-physical systems will
significantly change our society, our cities, our life. Robots will become ubiquitous,
following the path outlined by personal computers at the end of the 20th century and
giving birth to the new term, and consequently to the new market of personal robots.
Owning a private robot will become as common as owning a laptop, a smartphone or
a smartwatch, compared to which robots have a substantial advantage that will make
the robotic revolution significantly more impactful than the previous ones: they can
execute physical actions.

The so-called Industry 4.0 gives clear evidence of the potential impact of robotics
technologies. Since AI entered the scene in the last decade, industrial manufacturing
went through a sequence of massive changes that improved the production of any sort
of goods in terms of effectiveness, reliability, cost, and safety, with clear benefits for
both companies and consumers. At the same time, however, industrial applications of
robotics shade light on the inappropriateness of current state-of-the-art technologies
outside the industrial context. Current robots are smarter, faster, and safer than their
counterparts from 30 or 40 years ago. Nevertheless, the vast majority of them still
operate within clearly defined boundaries, often behind safety fancies, and repeatedly
execute a single well-structured task in an extremely controlled environment. This
is true not only for industrial robots since these limitations often affect other robotic
systems. If one looks at the use of robots outside manufacturing plants, there are
very few examples of robotic systems in our everyday life. Autonomous mobile robots
recently became pretty standard in large storage areas to automatize transportation of
goods inside warehouses. Autonomous vacuum cleaners represent the main domestic
application of robots. These robots can operate only in specific environments with a
clear structure, and often exploit very simple navigation algorithms. Additionally, they
need some coordination across multiple agents or assume some geometric properties of
the environment they navigate through. Finally, they sometimes require some human
intervention to operate. Therefore, they are not suited for deployment in more complex
scenarios.

The main bottleneck to the diffusion on a large scale of robotic technologies is the lack
of algorithms that allow them to deal with real-world environments. These are typically

1http://www.foreignaffairs.com/articles/2015-12-12/fourth-industrial-revolution/

2

http://www.foreignaffairs.com/articles/2015-12-12/fourth-industrial-revolution/

1.2. Past, Present, and Future: History and Applications of Flying Robots

not designed to favor robotic systems, and often pose severe challenges for perception,
control, motion planning, and decision making. For example, visual features necessary
for onboard perception are usually not spread across real-world environments in a
way the favors current algorithms used for localization and mapping, or they might
not suffice in number to provide enough information for robust sensing. Additionally,
dynamic scenarios are currently hard to handle for current robots, since they require
fast perception and planning at high rates if one wants to guarantee safety for all the
agents, both human and robots, sharing the same space. Finally, structures built for
humans might not be suitable for robotic navigation due to the shape and size of the
platform.

The previous examples show that to be capable of executing tasks in a large variety
of real scenarios, robots must be able, among several other things, to: (i) gather as
much information from their onboard sensors by coupling perception and action to
move in a way that favors robust localization and sensing; (ii) be equipped with fast
perception-to-action loops, to promptly react to sudden changes in the environment, as
moving obstacle; (iii) adapt their mechanical properties, such as their shape and size,
to navigate through complex areas, where adaptive morphologies can provide added
value to reach otherwise unreachable areas and increase the robot’s maneuverability.
The goal of this thesis is to address these open challenges to develop novel algorithms
that can extend the variety of scenarios and tasks that autonomous quadrotors can
handle.

1.2 Past, Present, and Future: History and Applications of Fly-
ing Robots

In recent years, more and more robotic systems are leaving the boundaries of research
laboratories and manufacturing sites to be deployed in new scenarios, interacting
with humans and navigating through complex environments. If robots are becoming
increasingly popular, much of the merit goes to aerial robots, and especially to small-
scale multirotors. In this regard, quadrotors are beyond any doubt the most common
form of flying robots, as confirmed by the fact that they can be easily found in almost
any consumer electronics store. The level of autonomy of these vehicles is still pretty
limited compared to their potential. Mass-scale deployment of autonomous quadrotors
is still far in time since, apart from few isolated cases, they are often manually piloted
or somehow remotely assisted by a human operator. Nevertheless, quadrotors have
significantly contributed to bridging the gap between the research community and the
masses, for whom robots mostly belonged to Sci-Fi movies before the advent of flying
robots in their everyday life.

In the next subsections, I will provide an overview of the past, the present, and the
future of these vehicles. I will start with the first concepts of manned multirotors,

3

Chapter 1. Introduction

which inspired the development in the past decades of small-scale rotorcrafts. I will
then move on to the recent progress in the field of unmanned Micro-Aerial Vehicles
(MAVs), which unlocked the doors of entirely new markets and are revolutionizing the
robotics and aerial industry. Finally, I will highlight some of the main challenges to be
solved to enable these robots to autonomously navigate in real-world scenarios, stating
how this thesis contributes to them.

1.2.1 History of Multirotors: from the First Concepts to Small-Scale, Un-
manned Vehicles

Quadrotors have become a popular research platform during the past two decades;
however, the first ideas of flying machines equipped with multiple rotors date to the
beginning of the 20th century 2. Before describing the current state of the art in this
field and looking ahead to highlight the future steps necessary for it to progress, it
is worth to spend a few words about how everything started and to provide some
historical details about when the idea of flying vehicles capable of hovering thanks to
the use of rotors equipped with propellers was conceived.

The first traces of these kinds of flying machines date back to the 15th century: the Vite
Aerea of Leonardo Da Vinci is probably the oldest documented draft of a rotorcraft,
though it never became more than a simple conceptual idea accompanied by some
schematic drawings. In the next few centuries, several attempts of realizing somewhat
similar concepts to what Da Vinci proposed where realized, for example, Mikhail
Lomonosov’s Aerodynamic, the Helicopter Toy by Launoy and Bienvenu, and the
so-called governable parachute by Sir George Cayley. However, there exists no proof or
documentation guaranteeing that any of those machines successfully took off and flew
as expected by their respective creators.

To see the first successfully hovering vehicles, it is necessary to wait until the beginning
of the last century. Two fundamental milestones in the field of hovering vehicles
were both placed in 1907, when Bréguet-Richet, author of the Gyroplane, and Paul
Cornu, creator of the first system capable of hovering, presented to the world their
revolutionary, yet premature for that time, ideas. In 1920, Étienne Oehmichen realized
a rotorcraft design equipped with four rotors, each with eight blades, with only one
engine responsible for actuation. Two years later, in 1922, Jerome-de Bothezat presented
the Flying Octopus, a six-bladed multirotor with an X-shaped structure currently
considered the first successful ancestor of today’s multicopters, and laid the foundation
for current designs. These pioneeristic attempts of realizing aerial vehicle capable of
hovering were conceived one century before the robotics community tried to achieve
autonomous unmanned flight, at the turn of the 90s and 2000s. In this sense, the

2http://www.wired.com/2007/12/gallery-helicopter/

4

http://www.wired.com/2007/12/gallery-helicopter/

1.2. Past, Present, and Future: History and Applications of Flying Robots

1991 International Aerial Robotics Competition 3 is among the oldest attempts from
researchers and practitioners to develop autonomous flying robots. Fast forward to our
days, the DARPA Fast Lightweight Program (2015-2018) promoted the development of
fast, autonomous quadrotors capable of navigating all by themselves at high speed. In
between, almost 20 years of research and efforts from the community brought these
vehicles from the status of theoretical concepts to be the most common aerial platform
in the robotics field.

The idea of building a small-scale multirotor with four propellers connected through a
rigid-body housing all the necessary equipment for unmanned flight was conceived
towards the end of the 19th century. Commonly known as X4 Flyers, quadrotors were
already available on the market in the second half of the 90s, with products like the
and Roswell flyer (from Area Fifty-One Technologies, 1996), the DraganFlyer (from
RCToys), and the Keyence’s Engager and Gyrosaucer. However, it is necessary to wait
until the beginning of this century for quadrotors to attract the interest of the robotics
research community [73, 74, 147]. These vehicles were significantly larger (several tens
of centimeters from tip to tip) and heavier (typically a few kilograms) than current
micro- and nano-scale quadrotors. It is with the development of electronic Inertial
Measurement Units (IMU), thanks to the progress in the field of consumer electronics
(i.e., gaming devices and smartphones), that it was possible to equip quadrotors
with small, lightweight, cheap devices capable of providing inertial data for attitude
stabilization, allowing multirotor aircrafts to become significantly smaller and more
practical. The availability of affordable motion-capture systems first, and then the
algorithmic progress in the area of Visual-Inertial Odometry (VIO), recently made
it possible to obtain a full state estimate in GPS-denied environments. Combining
this state estimate with novel control algorithms for position stabilization capable of
running on small-scale onboard computers, allowed the execution of the first fully
autonomous flights in the past decade.

1.2.2 Applications of Quadrotors

Among the different types of Micro Aerial Vehicles, quadrotors play a significant
role thanks to their simple mechanical structure and their safety. Indeed, they are
composed of a frame equipped with four rotors, each of them mounting a propeller for
actuation. The motion of the vehicle is obtained by suitably tuning the rotational speed
of each propeller to generate the forces and torques necessary to let the vehicle move
in space. The main body can host sensors, computation units, and other payloads to
be carried. The main advantage of quadrotors against other aerials vehicles, such as
fixed-wing aircrafts, is their versatility: these robots are capable of locking to a hover
position, to provide an aerial view of the environment, as well as flying at high-speed
for quick exploration. Furthermore, they can take-off and land vertically, rendering

3http://www.aerialroboticscompetition.org/mission1.php

5

http://www.aerialroboticscompetition.org/mission1.php

Chapter 1. Introduction

field deployment significantly more straightforward.

Thanks to these peculiarities, quadrotors are nowadays the most popular form of flying
robots, both in the research community and in the consumer market. In this sense,
in the last few years, quadrotors had a disruptive impact on the industry, with the
creation of entirely new markets worth several billion of US Dollars, and the birth of
novel applications with tremendous potential. Some of these applications are already
a reality, while others will become soon. In the following, I will list the major areas
where quadrotors did or will, in the future, become extremely popular and provide
added value.

Aerial imaging. Aerial photography and videography currently represent the largest
market in terms of monetary value. Aerial imaging for both private (i.e., shooting
videos and pictures from an aerial perspective for personal use) and public or enterprise
applications (i.e., mapping and monitoring for real estate, agriculture, civil engineering
and inspection, defense, law enforcement, counter-terrorism) was valued around 1.4
billion USD in 2017, with a projected growth to more than 4 billion USD in 2025 4. The
use of quadrotors as flying cameras represents, and probably will represent in the next
years, the main application of these vehicles outside research.

Aerial delivery. Autonomous last-mile delivery represents the main threat to the role
of aerial imaging as the dominator in the field of aerial robotics. MAVs, including
quadrotors and hybrid vehicles as tail sitters, represent a possible solution to the
problem of promptly delivering goods within short ranges. Boosted by the efforts
from numerous companies interested in developing novel technologies for aerial
transportation, either to deliver commercial products (as for example aimed by, among
the others, Amazon Prime Air, Google Wing, Uber AIR and Walmart) or life-critical
goods (such as blood samples and medicines, as intended by Matternet and Zipline),
the market of aerial transportation using drones has a projected value of more than 90
billion USD 5 by 2030. Several challenges still need to be addressed in this area, both in
terms of regulation and technological problems to be solved, but the day when drone
delivery becomes truth does not seem to be too far in time.

Aerial mobility. The field of personal transportation is going to soon go through a
disruptive revolution that will change the way we conceive mobility. If, on the one
hand, driverless technologies will soon allow cars to drive autonomously on our roads,
recently there have been several companies (Uber, Airbus, Volocopter, to mention a few)
that started realizing prototypes of flying machines for personal transportation. Their

4http://bit.do/aerial-imaging-market
5http://bit.do/aerial-delivery-market

6

http://bit.do/aerial-imaging-market
http://bit.do/aerial-delivery-market

1.2. Past, Present, and Future: History and Applications of Flying Robots

size is significantly larger than MAVs, but several of the technological and engineering
challenges to allow autonomous quadrotor flight also belong to this new category of
transportation vehicles. The forecast for this market is also impressive, with a projected
value of 3.1 billion USD by 2023, which is expected to grow up to almost 8 billion USD
in 2030 6

Search and rescue. Search and rescue is another domain that could greatly benefit
from aerial robots capable of autonomously exploring unstructured and potentially
dangerous environments [34]. One day, autonomous flying robots will play a significant
role in search-and-rescue missions, where a fast response is crucial. They can provide a
birds-eye view of a scene and, if necessary, a real-time 3D reconstruction of the area of
interest, helping rescuers to make critical decisions when it comes to deciding how to
act to help victims promptly [43]. Applications of robotic technologies to this field are
inspection in post-disaster scenarios, localization of survivors, and rescue of missing
people. Additionally, MAVs can navigate through complex environments, some of
which might not be accessible by the rescuers. For example, quadrotors can enter and
exit (semi-)collapsed buildings through narrow gaps in the case the usual means of
access to them are not available [46]. This capability can significantly speed-up the
execution of time-critical rescue missions, rendering them safer for the rescuers and
more effective.

E-Sports. Thanks to their impressive agility and acrobatic capabilities, quadrotors
recently gave birth to a completely new sport, known as drone racing. Several enthusiasts
from all over the world challenge each other regularly during local and international
competitions, and an official Drone Racing League 7 was recently created to gather
them under a common umbrella. The market value of drone racing is currently around
3 billion USD 8, with forecast growth of around 20% in the next few years. These races
typically require a skilled human pilot to complete a track in as little time as possible,
but both the research community and industry have recently started investigating
technologies to allow quadrotors to race in a completely autonomous fashion. An
Autonomous Drone Race already takes place regularly every year during the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) since 2016, and
recently the Drone Racing League, together with Lockheed Martin, announced the first
autonomous drone racing on a large scale 9, with a 1 million USD cash prize. This is
just the beginning of a new, revolutionary e-sport, which has the potential to gather as
much attention from the public and the media as car and motor racing.

6http://bit.do/air-mobility-market
7http://thedroneracingleague.com
8http://bit.do/drone-racing-market
9http://bit.do/alphapilot

7

http://bit.do/air-mobility-market
http://thedroneracingleague.com
http://bit.do/drone-racing-market
http://bit.do/alphapilot

Chapter 1. Introduction

1.3 Research Objectives

Looking ten years back, it is easy to notice the impressive progress made in the field
of autonomous quadrotors. This was possible thanks to both the availability of novel,
cheaper and more effective off-the-shelf components (such as lighter sensors, more
powerful onboard computers, more efficient mechanical parts), and the algorithmic
innovations in the areas of vision-based perception (e.g., Visual-Inertial Odometry,
mapping), motion planning, control and decision making. Nevertheless, if today we do
not see autonomous quadrotors executing all the tasks previously mentioned tasks, the
reason is a large number of open challenges that need to be addressed.

The amount and variety of these challenges are so deep that it is certainly not possible
to tackle all of them within a single Ph.D. thesis since the joint effort of the entire
robotics community is necessary. However, during my doctoral work, I identified
some key challenges in this field, listed below, in order to provide solutions to them.
The objectives of this thesis are twofold: (i) allowing quadrotors to fly autonomously
using onboard, vision-based perception; (ii) extending the variety of areas that they
can navigate through by adapting the robot’s morphology to the task at hand and the
properties of the environment.

Tight Coupling of Perception and Action. The goal of the first objective is to con-
sider the main limitations of vision-based perception within motion planning and
control loops. Perception algorithms based on cameras allow a robot to perceive its sur-
roundings, but require enough visual information (e.g., texture), their performance can
degrade due to motion blur, and introduce latency. In this work, I tackle these issues
by developing algorithms that tightly couple perception and action, and leveraging
low-latency event cameras to propose a framework for the avoidance of fast-moving
obstacles.

State-of-the-art in quadrotors flight often relies on external infrastructures, such as
motion-capture systems, to localize the robot. These systems are typically expensive,
require a non-negligible time for installation and calibration, and strongly limit the
potential of aerial vehicles by reducing the flyable space to the region where they
provide coverage. Therefore, they are not suitable for real-world scenarios. As of today,
onboard vision represents the only viable solution for self-localization. Providing a
robot with cameras for localization represents a major step forward in autonomous
flight. However, off-board state estimation, for example, through motion-capture
systems, has the following advantages when compared to vision-based state estimation:
(i) the state estimate is available at all times, with no interruption; (ii) the state estimate is
very accurate (i.e., sub-millimeter) and with constant noise covariance within the tracking
volume, (iii) the state is estimated with very low latency (less than 10 ms) and high
frame rate (more than 100 Hz). By contrast, onboard vision is more challenging: (i) the

8

1.3. Research Objectives

state estimate can be intermittent (i.e., tracking may be lost); (ii) the uncertainty of the
state estimate increases with the distance from the scene and is also strongly affected
by the type of structure and texture of the scene, as well as by the motion of the camera
with respect to the environment; (iii) it has higher latency due to the time to capture,
transfer and process frames (50–100 ms, depending on the complexity of the perception
task), and the frame rate is typically less than 100 Hz. For these reasons, to get the best
out of a vision-based perception algorithm, one cannot treat perception and control
separately, but rather it is necessary to tightly couple them.

One of the goals of this work is to develop motion planning and control algorithms that
simultaneously consider action and perception objectives. This problem is particularly
challenging for underactuated systems such as quadrotors, where the kind of motion the
vehicle can perform must satisfy the system dynamics. To do so, this thesis investigates
optimization-based motion planning techniques in order to jointly consider action
objectives (i.e., the need to execute a given task by following a reference trajectory
driving the vehicle towards its goal) and perception objectives (i.e., the necessity
to perform such task while providing perception algorithms with sufficient visual
information), satisfying at the same time the system dynamics and the actuation
limitations of the platform. Both closed-form and numerical optimization techniques
are exploited, and the effectiveness of the proposed methods are validated with real-
world experiments in complex tasks such as traversing narrow gaps, flying at high-
speed while keeping some points of interest always visible, and flying in an area with
very poor visual information.

Low-Latency Sensing and Decision-Making. Latency represents another limitation
of vision-based perception. Perception latency can pose severe bounds to the agility
of a robotic platform: the smaller the latency, the faster a robot can move. Generally,
perception latency is due to two factors: the time required to obtain a measurement,
and the time necessary to process it in order to extract valuable information. The
majority of the works based on onboard perception relies on frame-based cameras,
which introduce latency due to the exposure time and the transfer time. Additionally,
processing an image can be computationally expensive, especially with high-resolution
cameras.

I dedicated a part of my work to studying the use of novel, low-latency event-cameras,
which do not produce frames but rather events, defined as the response to changes
of intensity at each pixel location. The advantages of this new sensor are multiple,
including a lower amount of information that is transferred and processed, and sig-
nificantly lower latency. In this dissertation, I investigate the benefits of adopting
event-cameras against standard cameras for a sense-and-avoid task. To do so, I derived
a mathematical relation between the maximum velocity a robot can safely navigate
through an unknown environment, the parameters of its perception system (latency

9

Chapter 1. Introduction

and sensing range) and its mechanical properties (the maximum acceleration it can
produce). As a case study, I analyzed and compared frame-based and event-based
sensing. Furthermore, I propose a low-latency, event-based reactive scheme to avoid
fast-moving objects complementing slower, but more accurate, navigation systems, in
order to provide quadrotors with an effective device to guarantee safety when flying in
dynamic environments.

Adaptive Morphology for Enhanced Maneuverability. Apart from investigating
techniques to deal with the main limitations of onboard perception, this work also
aims at proposing a morphing quadrotor platform that goes beyond the standard
rigid mechanical structure that characterized these vehicles in the last decade. The
proposed foldable drone can adapt its morphology by rearranging the position of the
four arms around the main body, allowing it to change its shape and size. By doing so,
it can enter spaces that would not be accessible due to the silhouette of the robot. This
capability turns out to be particularly effective in search-and-rescue missions, where
it might be necessary to enter a semi-collapsed building through tiny apertures. This
thesis proposes the first quadrotor that can guarantee stable flight independently of
the configuration, thanks to an adaptive, morphology-aware control algorithm that
continuously optimizes its parameters.

1.4 State of the Art

Tight-coupling of Perception and Action

Coupling perception and action through motion planning and control is not a new
problem in robotics. Manipulating the viewpoint of a camera mounted on a robot in
order to obtain better perception quality is known in the literature with different names,
such as active vision [2] or perception-aware planning. The literature in this field spans
across different typologies of robots, including quadrotors, where coupling perception
and action is particularly important due to the limited payload these robots can carry
and their underactuated dynamics that needs to be satisfied. From a broad perspective,
one can split perception-aware trajectory generation methods into two categories. On
the one hand, there are approaches aiming at optimizing the visibility of some points
of interest. On the other hand, approaches exist that directly consider the properties
of a vision-based algorithm (i.e., Visual-Inertial Odometry, 3D reconstruction, pose
estimation) during the planning stage.

Motion Planning for Visibility. The goal of the approaches belonging to this category
is to allow a quadrotor to execute a given task, such as following a reference trajectory,
while keeping track of some points of interest by ensuring that they lie within the field

10

1.4. State of the Art

of view of a camera mounted onboard the vehicle. In [141], for example, the authors
proposed a technique to compute minimum time trajectories for quadrotors that satisfy
a limited field of view constraint: the resulting trajectory, therefore, guarantees that the
points of interest the robot needs to track are always visible in the image. Perception-
aware planning to guarantee visibility is also analyzed in [190], where the authors
proposed a differential geometric approach to optimize the trajectory of a quadrotor
using a Riemannian manifold. Similarly, the approach proposed in [131] optimizes for
the yaw angle of a quadrotor along a reference trajectory consisting of desired positions
and derivatives, in order to compute the optimal heading that maximizes the number of
features visible for visual localization. [145] and [169] proposed two different solutions
to the problem of visual servoing that consider the limitations of the sensor mounted
on the robot in order to guarantee that a landmark to be tracked is always visible.
In [133] and [134], the authors tackle the problem of generating smooth trajectories for
aerial cinematography: the goal is to guarantee that a quadrotor keeps a subject visible
at all times while maximizing the quality of the resulting video recordings. Similarly,
[182] deals with recording a subject with multiple quadrotors, optimizing the trajectory
of each of them in order to produce smooth, nice-looking imagery. Finally, there
exist methods that also consider obstacle avoidance when planning perception-aware
trajectories, such as the solutions proposed in [146] and [142].

Motion Planning for Improved Algorithm Performance. The second category of
perception-aware motion planning approaches directly tries to consider the algorithms
that use images as sensing modality, for example vision-based localization, pose
estimation, and mapping, in the trajectory generation phase. The main advantage
of these approaches is a tighter coupling between perception and action since the
trajectory is optimized to maximize the quality of the output of the vision-based
algorithm. However, it often comes at the cost of a more complex, often non-convex
optimization problem to be solved.

In this regard, there are several examples in the literature of techniques that allow a
quadrotor to move in a way that optimizes the performance of vision-based algorithms.
In [174] and [57], for example, the authors consider as a task the reconstruction of an
environment using structure from motion. In those works, the quality of the map is
considered as objective to optimize for, meant as either the accuracy or the uncertainty
of the depth estimate. Another common task where perception-aware planning plays
a crucial role is state estimation. In [28], the authors proposed a method to plan
trajectories that maximize the photometric information in order to guarantee that
the vehicle follows the path providing a visual localization algorithm with images
containing the highest amount of texture as possible. [194] presented a technique
that selects, among many candidates, the best trajectory in terms of a cost function
consisting of a combination of probability of collision, progress towards a goal and
expected pose estimate error. Similarly, the method shown in [160] minimized the

11

Chapter 1. Introduction

uncertainty of vision-based state estimation by considering the smallest eigenvalue
of the Constructibility Gramian, so that the vehicle can follow the path providing the
lowest uncertainty. In [163], the authors proposed an active-vision-based approach to
simultaneously estimate the pose of a gap and traverse it.

Low-Latency Sensing and Decision-Making

Sensing latency is due to several factors, including the time necessary to gather each
measurement and the frequency of the sensor. Intuitively, the higher the perception
latency, the lower the speed a robot can safely navigate through unknown environments.
From a thoretical standpoint, the impact of latency on the overall performance of a
robotic system has not been intensively investigated. In [69], the authors analyzed the
role of the framerate of a camera on the performance of a real-time tracking algorithm.
Framerate and latency were also considered in [187], where the authors studied how
the parameters of a camera influence the performance of visual servoing. Vision-based
navigation in unstructured environments was tackled in [166], which presented an
experimental evaluation showing that trading-off framerate, resolution, and latency
has an impact on the performance of the system.

Vision-based perception using standard cameras introduces latency due to the exposure
time necessary to capture a frame, as well as due to the limited frequency at which
it is possible to obtain frames. In order to solve these technological issues, recently
researchers investigated the use of neuromorphic sensors, such as event cameras [95,
68], for robotic perception. For example, there exist localization [22, 155, 198] and
obstacle detection [161, 119, 113] algorithm based on event cameras which reduce the
delay between perception and action. However, the use of low-latency event cameras
for closed-loop control is still limited to few simple tasks. For example, the authors
of [21] and [127] proposed a technique to control the heading of a robotic platform
to track a reference target. A similar task has also been executed with a humanoid
robot [65, 66], controlling its gaze to keep track of an object of interest. Other examples
are represented by pole balancing [27], goalkeeping [33, 32], and 2D navigation in static
environments [25, 63, 13]. More complex systems, such as quadrotors, have been used
for the tasks of avoiding dynamic obstacles in [126] and [162], using event cameras to
detect incoming objects.

Adaptive Morphology for Enhanced Maneuverability

Adaptive morphology [177] recently started drawing the attention of the robotics
community. The ability to change the mechanical properties of a robotic platform, such
as its shape, can lead to essential advantages in terms of locomotion, maneuverability,
and versatility. For example, by suitably adapting its shape, a robot can be able to
both fly and walk [14, 30], unlocking the potential of both locomotion modalities

12

1.5. Summary

within the same system. A non-rigid mechanical structure is particularly effective
in increasing the resilience of flying robots, also allowing new transportation and
deployment methods [170, 118, 116]. Additionally, a number of solutions based on the
use of tiltable rotors [82, 158, 157] have been proposed to overcome the limitations of
the underactuated dynamics of a quadrotor, improving the maneuverability of these
platforms.

One of the main benefits of morphing robots is the possibility to adapt their size and
shape to a particular scenario or task. For instance, it is possible to let a flying robot
negotiate tight spaces, narrower than its size, by adjusting its mechanical structure [196,
35, 153, 197, 19], transport objects by wrapping around them [195], or modify the robot’s
dynamics in order to improve trajectory tracking [6, 159], deal with rotor failure [5],
optimize energy consumption [193] or obtain novel maneuvering modalities [185]. The
main challenge in developing shape-shifting quadrotors is the design of a control strat-
egy that allows the robot to quickly change its morphology in flight while guaranteeing
stability at all times. Most of the approaches proposed in the literature have only been
shown in simulation [189, 5], require long morphing times [196], or cannot provide
stable flight in morphologies different from the standard X [153, 35, 19]. For this reason,
in [50] I presented the foldable drone, the first quadrotor that can actively change its
shape to perform different tasks. For example, it can traverse gaps that are smaller than
its size, transport objects and inspect surfaces from very close. The system does not
require any symmetry in the morphology to ensure stable flight.

1.5 Summary

In this chapter, I discussed how quadrotors work, why they play a crucial role in the
robotics revolution, and what are the main challenges in autonomous, agile flight. In
a literature research, I summarized the state of the art of tightly coupled perception
and action, low-latency sense-and-avoid, and adaptive morphology for quadrotors.
Furthermore, I summarized the objectives of this work and how they relate and build
upon state of the art.

13

2 Contributions

This chapter summarizes the key contributions of the papers that are reprinted in the
appendix. It further highlights the connections between the individual results and refers
to related video and open-source code contributions. In total, this research has been
published in five peer-reviewed conference publications and six journal publications.
One further journal paper is currently under review at AAAS Science Robotics. Some
of these works, such as B and E, were also successfully demonstrated live in multiple
countries around the world. Additionally, the work E was awarded the 2019 Drone Hero
Award for the category “Most Innovative Drone” and the Tech Briefs 2019 Create the
Future first prize for the category “Aerospace & Defense”.

2.1 Tightly Coupled Perception and Action

In this section, the contributions for tightly coupled perception and action are listed.
These works showed that by considering perception when planning trajectories for
quadrotors, aggressive maneuvers can be executed without relying on external posi-
tioning systems, but rather only relying on cameras.

2.1.1 Paper A: Aggressive Flight through Narrow Gaps

(P1) D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza. “Aggressive Quadrotor Flight
through Narrow Gaps with Onboard Sensing and Computing”. In: IEEE Int. Conf. Robot.
Autom. (ICRA). 2017. doi: 10.1109/icra.2017.7989679

We address one of the biggest challenges towards autonomous quadrotor flight in
complex environments, which is flight though narrow gaps. For this, we equipped a
quadrotor with a front-looking camera, an inertial measurement unit, and an onboard
computer to autonomously detect a gap and traverse it by only using onboard sensing
and computing. We estimate the quadrotor’s state by computing its relative pose to
the gap from the captured images and fuse it with measurements from the inertial
measurement unit. We then compute a trajectory that enables the quadrotor to safely
pass narrow, inclined gaps with an agile maneuver. Our method generates a trajectory

15

https://doi.org/10.1109/icra.2017.7989679

Chapter 2. Contributions

that considers geometric, dynamic, and perception constraints: during the approach
maneuver, the quadrotor always faces the gap to allow state estimation, while respecting
the vehicle dynamics; during the traverse through the gap, the distance of the quadrotor
to the edges of the gap is maximized. We re-plan the trajectory during its execution
to cope with the varying uncertainty of the state estimate. In real experiments, we
demonstrate a success rate of 80 % for gap inclinations of up to 45° with out approach.

Related Videos

(V1) https://youtu.be/meSItatXQ7M

(a) The quadrotor passing through the gap (b) View from the onboard camera

Figure 2.1: (a) Sequence of our quadrotor passing through a narrow, 45°-inclined gap. Our
state estimation fuses gap detection from a single onboard forward-facing camera (b) with an
IMU. All planning, sensing, control run fully onboard a smartphone computer.

2.1.2 Paper B: Perception-Aware Model Predictive Control

(P2) D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza. “PAMPC: Perception-Aware Model
Predictive Control for Quadrotors”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). Oct.
2018. doi: 10.1109/IROS.2018.8593739

We present the first perception-aware model predictive control framework for quadro-
tors that unifies control and planning with respect to action and perception objectives.
Our framework leverages numerical optimization to compute trajectories that satisfy
the system dynamics and require control inputs within the limits of the platform.
Simultaneously, it optimizes perception objectives for robust and reliable sensing by
maximizing the visibility of a point of interest and minimizing its velocity in the
image plane. Considering both perception and action objectives for motion planning
and control is challenging due to the possible conflicts arising from their respective
requirements. For example, for a quadrotor to track a reference trajectory, it needs to
rotate to align its thrust with the direction of the desired acceleration. However, the
perception objective might require to minimize such rotation to maximize the visibility
of a point of interest. A model-based optimization framework, able to consider both

16

https://youtu.be/meSItatXQ7M
https://doi.org/10.1109/IROS.2018.8593739

2.2. Low-Latency Perception to Action

perception and action objectives and couple them through the system dynamics, is
therefore necessary. Our perception-aware model predictive control framework works
in a receding-horizon fashion by iteratively solving a non-linear optimization prob-
lem. It is capable of running in real-time, fully onboard our lightweight, small-scale
quadrotor using a low-power ARM computer, together with a visual-inertial odome-
try pipeline. We validate our approach in experiments demonstrating (i) the conflict
between perception and action objectives, and (ii) improved behavior in extremely
challenging lighting conditions.

Related Videos

(V2) https://youtu.be/9vaj829vE18

Related Software

(S1) https://github.com/uzh-rpg/rpg_mpc

(a) The quadrotor flying along a circle tra-
jectory, while tracking the boxes in the center
thanks to perception term in the cost function.

(b) The quadrotor flying in a dark environ-
ment, looking at the only illuminated spot to
localize itself.

Figure 2.2: (a) Sequence of our quadrotor flying at 3 m s−1 along a circular trajectory and
simultaneously keeping visible in the image the visual features provided by the boxes in the
center of the room. Our algorithm allows to follow reference trajectories while improving visual
perception, as for example in a dark room (b) where only a small region provides sufficient
visual information in order to perform reliable localization.

2.2 Low-Latency Perception to Action

In this section, the contributions for low-latency perception and decision making are
listed. These contributions are both theoretical and practical: on the one hand, the
problem of studying the impact of perception latency on high-speed sense and avoid is
studied; on the other, a reactive, low-latency framework to avoid fast dynamic obstacles
is presented.

17

https://youtu.be/9vaj829vE18
https://github.com/uzh-rpg/rpg_mpc

Chapter 2. Contributions

2.2.1 Paper C: The Role of Perception Latency in Obstacle Avoidance

(P3) D. Falanga, S. Kim, and D. Scaramuzza. “How Fast is Too Fast? The Role of Perception
Latency in High-Speed Sense and Avoid”. In: IEEE Robot. Autom. Lett. 4.2 (Apr. 2019),
pp. 1884–1891. issn: 2377-3766. doi: 10.1109/LRA.2019.2898117

In this work, we study the effects that perception latency has on the maximum speed
a robot can reach to safely navigate through an unknown cluttered environment. We
provide a general analysis that can serve as a baseline for future quantitative reasoning
for design trade-offs in autonomous robot navigation. We consider the case where the
robot is modeled as a linear second-order system with bounded input and navigates
through static obstacles. We show how the maximum latency that the robot can tolerate
to guarantee safety is related to the desired speed, the range of its sensing pipeline,
and the actuation limitations of the platform (i.e., its agility, measured as the maximum
acceleration it can produce). As a particular case study, we compare monocular and
stereo frame-based cameras against novel, low-latency sensors, such as event cameras,
in the case of quadrotor flight. To the best of our knowledge, this is the first theoretical
work in which perception and actuation limitations are jointly considered to study the
performance of a robotic platform in high-speed navigation.

Related Videos

(V3) https://youtu.be/sbJAi6SXOQw

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

4

6

8

10

12

14

16

18

(a) Maximum safe travel speed v̄1 for a robot,
in the case of obstacle size r = 0.5 m.

2 4 6 8 10 12 14 16 18 20

0

0.05

0.1

0.15

0.2

0.25

(b) The theoretical latency τE for an event cam-
era with QVGA resolution.

Figure 2.3: (a) The maximum speed that a robot can achieve in order to safely navigate through
static obstacles. This maximum speed is function of its perception latency, which in (b) is
reported for an event camera.

2.2.2 Paper D: Event-based avoidance

(P4) D. Falanga, K. Kleber, and D. Scaramuzza. “Low Latency Avoidance of Dynamic
Obstacles for Quadrotors with Event Cameras”. In: AAAS Science Robotics, Under Review
(2019)

In this paper, we address one of the fundamental challenges for micro aerial vehicles:

18

https://doi.org/10.1109/LRA.2019.2898117
https://youtu.be/sbJAi6SXOQw

2.3. Morphing Quadrotors

dodging fast moving objects using only onboard sensing and computation. Effective
avoidance of moving obstacles requires fast reaction times, which entails low-latency
sensors and algorithms for perception and decision making. All existing works rely
on standard cameras, which have latencies of tens of milliseconds and suffer from
motion blur. We depart from state of the art by relying on a novel bioinspired sensor,
called event camera, with reaction times of microseconds, which perfectly fits our
task requirements. However, because the output of this sensor is not images but a
stream of asynchronous events that encode per-pixel intensity changes, standard vision
algorithms cannot be applied. Thus, a paradigm shift is necessary to unlock the full
potential of event cameras. Our proposed framework exploits the temporal information
contained in the event stream to distinguish between static and dynamic objects, and
makes use of a fast strategy to generate the motor commands necessary to avoid
the detected obstacles. Our resulting algorithm has an overall latency of only 3.5 ms,
which is sufficient for reliable detection and avoidance of fast-moving obstacles. We
demonstrate the effectiveness of our approach on an autonomous quadrotor avoiding
multiple obstacles of different sizes and shapes, at relative speeds up to 10 m s−1, both
indoors and outdoors.

Related Videos

(V4) http://rpg.ifi.uzh.ch/event_based_avoidance

Figure 2.4: Sequence of an avoidance maneuver.

2.3 Morphing Quadrotors

This section presents the foldable drone, the first quadrotor that is capable of changing
shape and size while flying without compromising the stability of the vehicle.

2.3.1 Paper E: The Foldable Drone

(P5) D. Falanga, K. Kleber, S. Mintchev, D. Floreano, and D. Scaramuzza. “The Foldable
Drone: A Morphing Quadrotor that can Squeeze and Fly”. In: IEEE Robot. Autom. Lett.
4.2 (Apr. 2019), pp. 209–216. issn: 2377-3766. doi: 10.1109/LRA.2018.2885575

The recent advances in state estimation, perception, and navigation algorithms have
significantly contributed to the ubiquitous use of quadrotors for inspection, mapping,

19

http://rpg.ifi.uzh.ch/event_based_avoidance
https://doi.org/10.1109/LRA.2018.2885575

Chapter 2. Contributions

and aerial imaging. To further increase the versatility of quadrotors, recent works
investigated the use of an adaptive morphology, which consists of modifying the shape
of the vehicle during flight to suit a specific task or environment. However, these
works either increase the complexity of the platform or decrease its controllability. In
this paper, we propose a novel, simpler, yet effective morphing design for quadrotors
consisting of a frame with four independently rotating arms that fold around the main
frame. To guarantee stable flight at all times, we exploit an optimal control strategy
that adapts on the fly to the drone morphology. We demonstrate the versatility of
the proposed adaptive morphology in different tasks, such as negotiation of narrow
gaps, close inspection of vertical surfaces, and object grasping and transportation. The
experiments are performed on an actual, fully autonomous quadrotor relying solely on
onboard visual-inertial sensors and compute. No external motion tracking systems and
computers are used. This is the first work showing stable flight without requiring any
symmetry of the morphology.

Related Videos

(V5) https://youtu.be/jmKXCdEbF_E

(a) Different morphologies: H, to traverse ver-
tical gaps; O, to pass through horizontal gaps;
T, to inspect surfaces.

(b) A sequence showing the foldable drone
traversing a vertical, narrow gap assuming the
H morphology.

Figure 2.5: Adaptive morphology (a) allows a quadrotor to execute tasks that are not possible
for a vehicle with a fixed morphology. For example, it can traverse gaps (b) that are smaller
than its size, by assuming a suitable shape that lets it squeeze through them.

2.4 Applications of Vision-Based Quadrotors

This section presents the contributions of this thesis in terms of applications of vision-
based quadrotors. In particular, it contains a paper that is the result of the work towards
the MBZIRC 2017 competition, where the Robotics and Perception Group participated
in the Challenge 1, requiring an autonomous quadrotor to land on a moving platform.

20

https://youtu.be/jmKXCdEbF_E
https://www.mbzirc.com/winning-teams/2017

2.5. Unrelated Contributions

2.4.1 Paper F: Autonomous Landing on a Moving Platform

(P6) D. Falanga, A. Zanchettin, A. Simovic, J. Delmerico, and D. Scaramuzza. “Vision-based
Autonomous Quadrotor Landing on a Moving Platform”. In: IEEE Int. Symp. Safety,
Security, and Rescue Robot. (SSRR). Oct. 2017. doi: 10.1109/SSRR.2017.8088164

We present a quadrotor system capable of autonomously landing on a moving platform
using only onboard sensing and computing. We rely on state-of-the-art computer
vision algorithms, multi-sensor fusion for localization of the robot, detection and
motion estimation of the moving platform, and path planning for fully autonomous
navigation. Our system does not require any external infrastructure, such as motion-
capture systems. No prior information about the location of the moving landing target
is needed. We validate our system in both synthetic and real-world experiments using
low-cost and lightweight consumer hardware. To the best of our knowledge, this is
the first demonstration of a fully autonomous quadrotor system capable of landing on
a moving target, using only onboard sensing and computing, without relying on any
external infrastructure.

Related Videos

(V6) https://youtu.be/Tz5ubwoAfNE

2.5 Unrelated Contributions

During the Ph.D., six papers were co-authored that are not part of the Ph.D. work itself.
These papers have as main topic the development of algorithms for motion planning
and control of quadrotors for high-speed, agile flight.

(U1) P. Foehn, D. Falanga, N. Kuppuswamy, R. Tedrake, and D. Scaramuzza. “Fast Trajectory
Optimization for Agile Quadrotor Maneuvers with a Cable-Suspended Payload”. In:
Robotics: Science and Systems (RSS). June 2017. doi: 10.15607/RSS.2017.XIII.030

(U2) M. Faessler, D. Falanga, and D. Scaramuzza. “Thrust Mixing, Saturation, and Body-Rate
Control for Accurate Aggressive Quadrotor Flight”. In: IEEE Robot. Autom. Lett. 2.2 (Apr.
2017), pp. 476–482. issn: 2377-3766. doi: 10.1109/LRA.2016.2640362

(U3) R. Spica, D. Falanga, E. Cristofalo, E. Montijano, D. Scaramuzza, and M. Schwager.
“A Game Theoretic Approach to Autonomous Two-Player Drone Racing”. In: Robotics:
Science and Systems (RSS). June 2018. doi: 10.15607/RSS.2018.XIV.040

(U4) S. Kim, D. Falanga, and D. Scaramuzza. “Computing the Forward Reachable Set for a
Multirotor Under First-Order Aerodynamic Effects”. In: IEEE Robot. Autom. Lett. 3.4 (Oct.
2018), pp. 2934–2941. doi: 10.1109/LRA.2018.2848302

(U5) B. Nisar, P. Foehn, D. Falanga, and D. Scaramuzza. ““VIMO: Simultaneous Visual Inertial
Model-based Odometry and Force Estimation”. In: IEEE Robot. Autom. Lett. 4.3 (July
2019), pp. 2785–2792. doi: 10.1109/LRA.2019.2918689

(U6) H. Moon, J. Martinez-Carranza, T. Cieslewski, M. Faessler, D. Falanga, A. Simovic, D.
Scaramuzza, S. Li, M. Ozo, C. De Wagter, G. de Croon, S. Hwang, S. Jung, H. Shim, H.

21

https://doi.org/10.1109/SSRR.2017.8088164
https://youtu.be/Tz5ubwoAfNE
https://doi.org/10.15607/RSS.2017.XIII.030
https://doi.org/10.1109/LRA.2016.2640362
https://doi.org/10.15607/RSS.2018.XIV.040
https://doi.org/10.1109/LRA.2018.2848302
https://doi.org/10.1109/LRA.2019.2918689

Chapter 2. Contributions

Kim, M. Park, T.-C. Au, and S. J. Kim. “Challenges and implemented technologies used
in autonomous drone racing”. In: Intelligent Service Robotics 12.2 (Apr. 2019), pp. 137–148.
issn: 1861-2784. doi: 10.1007/s11370-018-00271-6

22

https://doi.org/10.1007/s11370-018-00271-6

3 Future Directions

When this doctoral work started, quadrotors were mostly a research platform. The
number of companies manufacturing drones was significantly lower than today, and
the capabilities of these vehicles were limited most of the time to manual flight within
line-of-sight. The past four years, however, have seen tremendous progress in the
field of aerial robotics, both in terms of off-the-shelf availability of quadrotors (one
find systems capable of some sort of autonomous flight in almost any electronics
shop) and autonomy of these robots. The recent advances in autonomous vision-based
quadrotor flight, highlighted by the impressive performance of the Skydio R1, recently
led researcher to question whether aerial robotics is still an open research area, and
what are the next challenges that academia should try to face in order to stay ahead
of industry 1. Nevertheless, before considering aerial robotics a solved problem, there
exist several technological and scientifical challenges to be tackled.

In this section, I will discuss the main limitations of the approaches I proposed to tackle
the research questions analyzed in this doctoral thesis, and will provide some possible
future search directions.

3.1 Limitations of the Proposed Approaches

Tight Coupling of Perception and Action. In my thesis, I tackled the problem of
coupling perception and action using two different approaches, namely by exploiting
both sampling-based [46] and optimization-based [49] methods. Sampling-based
methods do not guarantee optimality of the selected trajectory, and since they require
fast methods to compute candidate trajectories for each sample, it might be not possible
to guarantee feasibility in terms of inputs saturation. These issues can be solved by
adopting an optimization-based approach, which however struggle with dealing with
non-convex scenarios, where sampling-based methods instead can provide added value.
Therefore, both approaches have their own limitations, which might be overcome by
combining them: for example, one could use sampling-based planning to obtain a
candidate reference trajectory to initialize an optimization-based planning algorithm.

1http://www.seas.upenn.edu/~loiannog/workshopIROS2018uav/

23

http://www.seas.upenn.edu/~loiannog/workshopIROS2018uav/

Chapter 3. Future Directions

Low-Latency Sensing and Decision-Making. In [47] I analized the impact of sensing
latency on the speed a robot can achieve to navigate safely in an unknown environ-
ments, comparing standard cameras to event cameras. The main limitation of that
approach is the static environment assumption, where dynamic obstacles are expected
to significantly increase the advantages of event cameras against standard cameras
thanks to the fact that they are motion-activated sensors, and therefore are the perfect fit
for sensing moving objects. Additionally, the mathematical analysis performed makes
use of a second-order model for the robot, without considering any dynamics on the
inputs. Extending the same considerations to the case where the inputs cannot be
applied instantenously, but rather have their own dynamics, would potentially increase
the level of details of the aforementioned analys.

Adaptive Morphology for Enhanced Maneuverability. The morphing approach I
proposed in [50] allows a quadrotor to change its shape by folding the arms around the
main body. However, this comes at the cost of increasing the mechanical complexity
of the system, as well as its weight, in order to accommodate the additional hardware
required for changing morphology. Furthermore, the folding mechanism used in [50]
is particularly fragile, and suffers from crashes in real-world experiments. This can
potentially render the system unstable due to unexpected vibrations deriving from
damages to the servo-motors. Future work should focus on more robust, potentially
passive, folding mechanism, in order to increase the effectiveness of the proposed
approach. Additionally, the control scheme in [50] does not take into account the effects
of the morphing on the thrust produced by each motor, which future work should
consider in order to improve the tracking capabilities of the vehicle.

3.2 Future Work

Task representation. There exist several ways of formalizing a task in terms of per-
ception, planning, and control. Different representations can bring different advantages
and disadvantages. For example, a representation that simplifies perception could ren-
der trajectory planning and control more complicated. Similarly, representing the same
task in a way that makes trajectory planning easier could be not suited for vision-based
perception. As a concrete example, consider the task of traversing a narrow gap. The
approach I proposed in [46] simplifies perception, since only a gap detector is sufficient,
but complicates trajectory planning by introducing a perception-awareness requirement
to make the gap visible at all times. [99] tackled the same task in a way that simplifies
planning, since a single trajectory is computed and executed. However, it makes per-
ception more cumbersome since it relies on Visual-Inertial Odometry and, to account
for the drift in the localization, it would require an additional perception module to
detect the gap. This example shows how different representations for the same task
can impact the different modules that compose a robotic system, and the problem

24

3.2. Future Work

of choosing the best representation for the task at hand, simultaneously considering
perception, planning, and control, is still unsolved.

Tight coupling of perception and action. At the moment, most of the techniques for
perception-aware motion planning and control follow either one of the two approaches
reported in Sec. 1.4. However, a method that simultaneously understands the impact
of a given action on the quality of Visual-Inertial localization and renders the region
providing the highest visual information visible at all times is still missing. The
development of a real-time motion planning technique capable of doing so would
significantly increase the performance of vision-based closed-loop flight since it would
enhance the robustness of the localization system and the quality of its output. The main
challenge in developing such a system is formulating the expected quality of vision-
based localization (i.e., uncertainty, drift, the robustness of the features available) along
a candidate trajectory, based on the visual information currently available. Additionally,
such a formulation should be suitable for numerical optimization. Namely, it should
satisfy properties such as convexity and differentiability, and be usable in a real-time
optimization framework to allow fast re-planning.

Event-based control. As shown in Sec. 1.4, the exist a number of works that exploit
event cameras for low-latency control. However, the majority of these works accumulate
events for a given amount of time and process all the accumulated events simultane-
ously. In other words, most of the time, event cameras are used as edge-triggered,
high-frequency cameras, without exploiting the asynchronous nature of this sensor.
There is, therefore, a lack of asynchronous control algorithms that can exploit events
as they arrive at the processing unit, without waiting for them to be accumulated
and processed. Such control algorithms would depart from the standard approach of
exploiting feedback at a known rate and would have the critical advantage of being
able to exploit partial information (i.e., few events) to reduce the latency between per-
ception and action significantly. In this regard, the biggest challenge is represented by
determining how much information (i.e., how many events) is necessary for robust and
reliable inference. Indeed, single events do not provide information, and accumulating
too many events would lead to a synchronous use of event cameras.

Morphing design. Morphing can significantly enhance the capabilities and maneu-
verability of quadrotors. However, my work [50] still represents the only example of
shape-shifting multirotor capable of guaranteeing stable flight with any morphology.
Morphing capabilities are destined to become standard on future quadrotors. Nev-
ertheless, this field is mostly unexplored and offers excellent potentials in terms of:
(i) novel applications, since the possibility of changing shape and size while flying
can unlock the execution of tasks that are not possible with fixed-morphology drones;

25

Chapter 3. Future Directions

(ii) mechanical designs, investigating lightweight, crash-resilient and energy-efficient
morphing strategies; (iii) motion planning and control, where morphology awareness
is necessary to guarantee stability but can also be exploited to improve maneuverability
and efficiency.

Summary

Quadrotors are extremely powerful flying machines, offering enormous potentials
thanks to their agility and maneuverability. However, as of today, their potential is only
partially exploited. The main challenges towards a better usage of these capabilities lie
at the intersection between perception and action, given the need for algorithms that
reliably and effectively consider the limitations of vision-based perception (motion blur,
lack of texture, latency) for localization and sensing. Additionally, morphing offers
the chance to boost the maneuverability of a flying robot and the range of tasks it can
execute.

26

A Aggressive Flight through Narrow
Gaps

©2017 IEEE. Reprinted, with permission, from:

D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza. “Aggressive Quadrotor
Flight through Narrow Gaps with Onboard Sensing and Computing”. In: IEEE Int.
Conf. Robot. Autom. (ICRA). 2017. doi: 10.1109/icra.2017.7989679

27

https://doi.org/10.1109/icra.2017.7989679

Appendix A. Aggressive Flight through Narrow Gaps

Aggressive Quadrotor Flight through
Narrow Gaps with Onboard Sensing and

Computing using Active Vision

Davide Falanga, Elias Mueggler, Matthias Faessler and Davide Scaramuzza

Abstract — We address one of the main challenges towards au-
tonomous quadrotor flight in complex environments, which is flight
through narrow gaps. While previous works relied on off-board
localization systems or on accurate prior knowledge of the gap po-
sition and orientation in the world reference frame, we rely solely
on onboard sensing and computing and estimate the full state by
fusing gap detection from a single onboard camera with an IMU.
This problem is challenging for two reasons: (i) the quadrotor pose
uncertainty with respect to the gap increases quadratically with the
distance from the gap; (ii) the quadrotor has to actively control its
orientation towards the gap to enable state estimation (i.e., active
vision). We solve this problem by generating a trajectory that con-
siders geometric, dynamic, and perception constraints: during the
approach maneuver, the quadrotor always faces the gap to allow
state estimation, while respecting the vehicle dynamics; during the
traverse through the gap, the distance of the quadrotor to the edges
of the gap is maximized. Furthermore, we replan the trajectory dur-
ing its execution to cope with the varying uncertainty of the state
estimate. We successfully evaluate and demonstrate the proposed
approach in many real experiments, achieving a success rate of 80%
and gap orientations up to 45°. To the best of our knowledge, this
is the first work that addresses and achieves autonomous, aggres-
sive flight through narrow gaps using only onboard sensing and
computing and without prior knowledge of the pose of the gap.

28

A.1. Introduction

Supplementary Material

The accompanying video is available at:
http://rpg.ifi.uzh.ch/aggressive_flight.html

A.1 Introduction

Recent works have demonstrated that micro quadrotors are extremely agile and versatile
vehicles, able to execute very complex maneuvers [128, 29, 112]. These demonstrations
highlight that one day quadrotors could be used in search and rescue applications,
such as in the aftermath of an earthquake, to navigate through buildings, by entering
and exiting through narrow gaps, and to quickly localize victims.

In this paper, we address one of the main challenges towards autonomous quadrotor
flight in complex environments, which is flight through narrow gaps. What makes this
problem challenging is that the gap is very small, such that precise trajectory-following
is required, and can be oriented arbitrarily, such that the quadrotor cannot fly through
it in near-hover conditions. This makes it necessary to execute an aggressive trajectory
(i.e., with high velocity and angular accelerations) in order to align the vehicle to the
gap orientation (cf. Fig. A.1).

Previous works on aggressive flight through narrow gaps have focused solely on the
control and planning problem and therefore relied on accurate state estimation from
external motion-capture systems and/or accurate knowledge of the gap position and
orientation in the world reference frame. Since these systems were not gap-aware, the
trajectory was generated before execution and never replanned. Therefore, errors in
the measure of the pose of the gap in the world frame were not taken into account,
which may lead to a collision with gap. Conversely, we are interested in using only
onboard sensing and computing, without any prior knowledge of the gap pose in the world
frame. More specifically, we address the case where state estimation is done by fusing
gap detection through a single, forward-facing camera with an IMU. We show that this
raises an interesting active-vision problem (i.e, coupled perception and control). Indeed,
for the robot to localize with respect to the gap, a trajectory that guarantees that the
quadrotor always faces the gap must be selected (perception constraint). Additionally,
it must be replanned multiple times during its execution to cope with the varying
uncertainty of the state estimate, which is quadratic with the distance from the gap.
Furthermore, during the traverse, the quadrotor must maximize the distance from the
edges of the gap (geometric constraint) to avoid collisions. At the same time, it must
do so without relying on any visual feedback (when the robot is very close to the gap,
it exits from the field of view of the camera). Finally, the trajectory must be feasible
with respect to the dynamic constraints of the vehicle.

29

http://rpg.ifi.uzh.ch/aggressive_flight.html

Appendix A. Aggressive Flight through Narrow Gaps

(a) The quadrotor passing through the gap.

(b) View from the onboard camera

Figure A.1: Sequence of our quadrotor passing through a narrow, 45°-inclined gap. Our state
estimation fuses gap detection from a single onboard forward-facing camera with an IMU. All
planning, sensing, control run fully onboard on a smartphone computer.

Our proposed trajectory generation approach is independent of the gap-detection
algorithm being used; thus, to simplify the perception task, we use a gap with a
black-and-white rectangular pattern (cf. Fig. A.1) for evaluation and demonstration.

A.1.1 Related Work

A solution for trajectory planning and control for aggressive quadrotor flight was
presented in [112]. The authors demonstrated their results with aggressive flight
through a narrow gap, and by perching on inclined surfaces. The quadrotor state was
obtained using a motion-capture system.

To fly through a narrow gap, the vehicle started by hovering in a pre-computed position,

30

A.1. Introduction

flew a straight line towards a launch point, and then controlled its orientation to align
with the gap. The method was not plug-and-play since it needed training through
iterative learning in order to refine the launch position and velocity. This was due to
the instantaneous changes in velocity caused by the choice of a straight line for the
approach trajectory. Unlike their method, we use a technique that computes polynomial
trajectories which are guaranteed to be feasible with respect to the control inputs. The
result is a smooth trajectory, compatible with the quadrotor dynamic constraints, which
makes learning unnecessary. Indeed, in realistic scenarios, such as search-and-rescue
missions, we cannot afford training but must pass on the first attempt.

In [110], the same authors introduced a method to compute trajectories for a quadrotor
solving a Quadratic Program, which minimizes the snap (i.e., the fourth derivative
of position). In their experiments, agile maneuvers, such as passing through a hula-
hoop thrown by hand in the air, were demonstrated using state estimation from a
motion-capture system.

In [184], a technique that lets a quadrotor pass through a narrow gap while carrying
a cable-suspended payload was presented and was experimentally validated using a
motion-capture system for state estimation.

In [136], the authors proposed an unconstrained nonlinear model predictive control
algorithm in which trajectory generation and tracking are treated as a single, unified
problem. The proposed method was validated in a number of experiments, including
a rotorcraft passing through an inclined gap. Like the previous systems, they used a
motion-capture system for state estimation.

In [105], the authors proposed a vision-based method for autonomous flight through
narrow gaps by fusing data from a downward and a forward-looking camera, and
an IMU. Trajectory planning was executed on an external computer. However, the
authors only considered the case of an horizontal gap, therefore no agile maneuver was
necessary.

In [99], the authors proposed methods for onboard vision-based state estimation,
planning, and control for small quadrotors, and validated the approach in a number of
agile maneuvers, among which flying through an inclined gap. Since state estimation
was performed by fusing input from a downward-looking camera and an IMU, rather
than from gap detection, the gap position and orientation in the world reference frame
had to be measured very accurately prior to the execution of the maneuver. The
trajectory was generated before execution and never replanned. Therefore, errors in
the measure of the pose of the gap in the world frame were not taken into account,
which may lead to a collision with gap. To deal with this issue, the authors used a gap
considerably larger than the vehicle size.

All the related works previously mentioned relied on the accurate state estimates

31

Appendix A. Aggressive Flight through Narrow Gaps

from a motion-capture system or accurate prior knowledge of the gap position and
orientation in the world reference frame. Additionally, in all these works but [136]
and [99] trajectory generation was performed on an external computer. The advantages
of a motion-capture system over onboard vision are that the state estimate is always
available, at high frequency, accurate to the millimeter, and with almost constant noise
covariance within the tracking volume. Conversely, a state estimate from onboard vision
can be intermittent (e.g., due to misdetections); furthermore, its covariance increases
quadratically with the distance from the scene and is strongly affected by the type of
structure and texture of the scene. Therefore, to execute a complex aggressive maneuver,
like the one tackled in this paper, while using only onboard sensing and gap-aware state
estimation, it becomes necessary to couple perception with the trajectory generation process
(i.e., active vision). Specifically, the desired trajectory has to render the gap always
visible by the onboard camera in order to estimate its relative pose.

A.1.2 Contributions

Our method differs from previous works in the following aspects: (i) we rely solely
on onboard, visual-inertial sensors and computing, (ii) we generate a trajectory that
facilitates the perception task, while satisfying geometric and dynamic constraints, and
(iii) we do not require iterative learning, neither do we need to know a priori the gap
position and orientation in the world frame. To the best of our knowledge, this is the
first work that addresses and achieves aggressive flight through narrow gaps with state
estimation via gap detection from an onboard camera and IMU.

The remainder of this paper is organized as follows. Section A.2 presents the proposed
trajectory-generation algorithm. Section A.3 describes the state-estimation pipeline.
Section A.4 presents the experimental results. Section A.5 discusses the results and
provides additional insights about the approach. Finally, Section A.6 draws the conclu-
sions.

A.2 Trajectory Planning

We split the trajectory planning into two consecutive stages. First, we compute a
traverse trajectory to pass through the gap. This trajectory maximizes the distance from
the vehicle to the edges of the gap in order to minimize the risk of collision. In a second
stage, we compute an approach trajectory in order to fly the quadrotor from its current
hovering position to the desired state that is required to initiate the traverse trajectory.
While both trajectories need to satisfy dynamic constraints, the approach trajectory also
satisfies perception constraints, i.e., it lets the vehicle-mounted camera always face the
gap. This is necessary to enable state estimation with respect to the gap.

32

A.2. Trajectory Planning

A.2.1 Traverse Trajectory

During the gap traversal, the quadrotor has to minimize the risk of collision. We
achieve this by forcing the traverse trajectory to intersect the center of the gap while
simultaneously lying in a plane orthogonal to the gap (see Fig. A.2). In the following,
we derive the traverse trajectory in this orthogonal plane and then transform it to the
3D space.

Let W be our world frame. The vector pG and the rotation matrix RG denote the
position of the geometric center of the gap and its orientation with respect to W,
respectively. Let Π be a plane orthogonal to the gap, passing through its center and
parallel to the longest side of the gap (cf. Fig. A.2). Let e1 and e2 be the unit vectors
spanning such a plane Π, whose normal unit vector is e3. The e2 axis is orthogonal to
the gap and e1 = e2 × e3.

e3 gΠ

Π

e2

pf

p0

e1

pG

x y

z

g

Figure A.2: An inclined gap and the corresponding plane Π.

Intuitively, a trajectory that lies in the plane Π and passes through the center of the
gap, minimizes the risk of impact with the gap.

To constrain the motion of the vehicle to the plane Π, it is necessary to compensate
the projection of the gravity vector g onto its normal vector e3. Therefore, a constant
thrust of magnitude 〈g, e3〉 needs to be applied orthogonally to Π. By doing this, a
2D description of the quadrotor’s motion in this plane is sufficient. The remaining
components of g in the plane Π are computed as

gΠ = g− 〈g, e3〉 e3. (A.1)

Since this is a constant acceleration, the motion of the vehicle along Π is described by

33

Appendix A. Aggressive Flight through Narrow Gaps

Π Gap

d

l

p0

pfgΠ

e2

e1

pG

Figure A.3: The traverse trajectory in the plane Π.

the following second order polynomial equation:

pi(t) = pi(t0) + vi(t0)t +
1
2

gΠ,it2, (A.2a)

vi(t) = vi(t0) + gΠ,it, (A.2b)

where the subscript i = {1, 2} indicates the component along the ei axis. The quadrotor
enters the traverse trajectory at time t0, t is the current time, and p and v denote its
position and velocity, respectively.

Equation (A.2) describes a ballistic trajectory. When gΠ,2 = 0, it is the composition of
a uniformly accelerated and a uniform-velocity motion. In other words, in these cases
the quadrotor moves on a parabola in space.

Let l and d be the distance between pG and the initial point of the trajectory, p0, along e1

and e2, respectively (cf. Fig. A.3). These two parameters determine the initial position
and velocity in the plane Π, as well as the time tc necessary to reach pG. The values of d
and l are determined through an optimization problem, as explained later in Sec. A.2.2.

For a generic orientation RG of the gap, (A.2) is characterized by a uniformly accelerated
motion along both the axes e1 and e2. Therefore, it is not possible to guarantee that
the distance traveled along the e2 axis before and after the center of the gap are equal
while also guaranteeing that the initial and final position have the same coordinate
along the e1 axis. For safety reasons, we prefer to constrain the motion along the e2

axes, i.e., orthogonally to the gap, such that the distances traveled before and after the

34

A.2. Trajectory Planning

gap are equal.

Given the components of the unit vectors e1 and e2 in the world frame, it is now
possible to compute the initial conditions p0 = p(t0) and v0 = v(t0) in 3D space as
follows:

p0 = pG − le1 − de2, (A.3a)

v0 =

(
l
tc
− 1

2
gΠ,1tc

)
e1 +

(
d
tc
− 1

2
gΠ,2tc

)
e2, (A.3b)

where:

tc =

√
−2l
gΠ,1

(A.4)

is the time necessary to reach the center of the gap once the traverse trajectory starts.

Note that this solution holds if gΠ,2 ≥ 0 which applies if e2 is horizontal or pointing
downwards in world coordinates. The case gΠ,2 < 0 leads to similar equations, which
we omit for brevity. The final three-dimensional trajectory then has the following form:

p(t) = p0 + v0t +
1
2

gΠt2, (A.5a)

v(t) = v0 + gΠt, (A.5b)

a(t) = gΠ. (A.5c)

This trajectory is inexpensive to compute since it is solved in closed form. Also, note
that during the traverse the gap is no longer detectable. Nevertheless, since the traverse
trajectory is short and only requires constant control inputs (a thrust of magnitude 〈g, e3〉
and zero angular velocities), it is possible to track it accurately enough to not collide
with the gap, even without any visual feedback.

A.2.2 Optimization of the Traverse Trajectory

To safely pass through the gap, the quadrotor must reach the initial position and velocity
of the traverse trajectory described by (A.3a)-(A.3b) with an acceleration equal to gΠ

at time t0. An error in these initial conditions is propagated through time according
to (A.5a)-(A.5c), and therefore may lead to a collision. The only viable way to reduce
the risk of impact is to reduce the time duration of the traverse. More specifically,
(A.4) shows that one can optimize the value of l to reduce the time of flight of the
traverse trajectory. On the other hand, (A.3b) and (A.4) show that reducing l leads to
an increase in the norm of the initial velocity v0. Intuitively speaking, this is due to the

35

Appendix A. Aggressive Flight through Narrow Gaps

fact that, for a given value of d, if the time of flight decreases, the velocity along the e2

axis has to increase to let the vehicle cover the same distance in a shorter time. The
initial velocity also depends on d, which can be tuned to reduce the velocity at the start
of the traverse. The value of d cannot be chosen arbitrarily small for two reasons: (i) it
is necessary to guarantee a safety margin between the quadrotor and the gap at the
beginning of the traverse; (ii) the gap might not be visible during the final part of the
approach trajectory. For this reason, we compute the values of the traverse trajectory
parameters solving the following optimization problem:

min
d,l

tc s.t. ‖v0‖ ≤ v0,max, d ≥ dmin, (A.6)

where v0,max and dmin are the maximum velocity allowed at the start of the traverse and
the minimum value of d, respectively. We solve the nonlinear optimization problem
described by (A.6) with Sequential Quadratic Programming (SQP [89], using to the
NLopt library [78]. Thanks to the small dimensionality of the problem, it can be solved
onboard in few tens of milliseconds.

A.2.3 Approach Trajectory

Once the traverse trajectory has been computed, its initial conditions (namely, position,
velocity, and acceleration) are known. Now we can compute an approach trajectory
from a suitable start position to these initial conditions. Note that this start position is
not the current hover position but also results from the proposed trajectory generation
method. Our goal in this step is to find a trajectory that not only matches the initial
conditions of the traverse trajectory, but also enables robust perception and state
estimation with respect to the gap.

Robust state estimation with respect to the gap can only be achieved by always keeping
the gap in the field of view of a forward-facing camera onboard the quadrotor. Since it
is difficult to incorporate these constraints into the trajectory generation directly, we
first compute trajectory candidates and then evaluate their suitability for the given
perception task. To do so, we use the approach proposed in [130], where a fast method
to generate feasible trajectories for flying robots is presented. In that paper, the authors
provide both a closed-form solution for motion primitives that minimize the jerk and a
feasibility check on the collective thrust and angular velocities. The benefit of using
such a method is twofold. First, it allows us to obtain a wide variety of candidate
trajectories within a very short amount of time by uniformly sampling the start position
and the execution time within suitable ranges. This way we can quickly evaluate a large
set of candidate trajectories and select the best one according to the optimality criterion
described in Sec. A.2.5. Each of these candidate trajectories consists of the quadrotor’s
3D position and its derivatives. Second, and most importantly, since the computation
and the verification of each trajectory takes on average a two tenths of millisecond, it is

36

A.2. Trajectory Planning

possible to replan the approach trajectory at each control step, counteracting the effects
of the uncertainty in the pose estimation of the quadrotor when it is far away from the
gap. Each new approach trajectory is computed using the last state estimate available.
In the following, we describe how we plan a yaw-angle trajectory for each candidate
and how we select the best candidate to be executed.

A.2.4 Yaw-Angle Planning

In [110], the authors proved that the dynamic model of a quadrotor is differentially flat.
Among other things, this means that the yaw angle of the quadrotor can be controlled
independently of the position and its derivatives. In this section, we present how to
compute the yaw angle such that a camera mounted on the quadrotor always faces
the gap. Ideally, the camera should be oriented such that the center of the gap is
projected as close as possible to the center of the image, which yields the maximum
robustness for visual state estimation with respect to the gap against disturbances on
the quadrotor.

To compute the desired yaw angle, we first need to compute the ideal orientation of the
camera. Let pG be the coordinates of the center of the gap with respect to the world
frame W. Furthermore, let RWC and pC be the extrinsic parameters of the camera: pC

is the camera’s position and the rotation matrix RWC = (r1, r2, r3) defines the camera
orientation with respect to the world frame, where r3 is the camera’s optical axis.

For a given trajectory point, we can compute the vector from the camera to the center
of the gap d = pG − pC. Ideally, we can now align the camera’s optical axis r3 with d
but since the trajectory constrains the quadrotor’s vertical axis zb, we can generally not
do this. Therefore, we minimize the angle between d and r3 by solving the following
constrained optimization problem:

r∗3 = arg max
x
〈x, d〉 s.t. ‖x‖ = 1, 〈x, zb〉 = k, (A.7)

where the last constraint says that the angle between the quadrotor’s vertical body
axis zb and the camera’s optical axis is constant and depends on how the camera is
mounted on the vehicle. For example, k = 0 if the camera is orthogonal to the zb axis
as it is the case in our setup with a forward-facing camera.

Letting d⊥zb = d− 〈d, zb〉 zb be the component of d perpendicular to zb, the solution
of (A.7) is

r∗3 =
√

1− k2 d⊥zb

‖d⊥zb‖
+ kzb, (A.8)

which is a vector lying in the plane spanned by d and zb, and the minimum angle

37

Appendix A. Aggressive Flight through Narrow Gaps

between the ideal and the desired optical axis is arccos(〈r∗3 , d〉 /‖d‖), i.e.,

θmin = arccos
(
(
√

1− k2‖d⊥zb‖+ k 〈d, zb〉) / ‖d‖
)

. (A.9)

Once r∗3 is known, we can compute the yaw angle such that the actual camera optical
axis r3 is aligned with r∗3 .

Observe that in the particular case of a trajectory point that allows to align r3 with d,
we have 〈d, zb〉 = k‖d‖ and the solution of (A.7) reduces to r∗3 = d

‖d‖ , with a minimum
angle θmin = arccos(〈r3, d〉 /‖d‖) = arccos(1) = 0.

A.2.5 Selection of the Approach Trajectory to Execute

In the previous sections, we described how we compute a set of candidate trajectories
in 3D space and yaw for approaching the gap. All the candidate trajectories differ in
their start position and their execution time. From all the computed candidates, we
select the one that provides the most reliable state estimate with respect to the gap. As
a quality criterion for this, we define a cost function J composed of two terms:

• the Root Mean Square (RMS) θrms of (A.9) over every sample along a candidate
trajectory;

• the straight-line distance d0 to the gap at the start of the approach.

More specifically:

J =
θrms

θ̄
+

d0

d̄
, (A.10)

where θ̄ and d̄ are normalization constants that make it possible to sum up quantities
with different units, and render the cost function dimensionless. This way, the quadrotor
executes the candidate approach trajectory that keeps the center of the gap as close
as possible to the center of the image for the entire trajectory, and at the same time
prevents the vehicle from starting too far away from the gap.

A.2.6 Recovery after the Gap

Since we localize the quadrotor with respect to the gap in order to traverse it, the
quadrotor is left with no state estimate after the traversal. Therefore, at this point it
has to recover a vision-based state estimate and then hover in a fixed position without
colliding with the environment. We solve this problem using the automatic recovery
system detailed in [42], where the authors provide a method to let a quadrotor stabilize
automatically after an aggressive maneuver, e.g. after a manual throw in the air.

38

A.3. State Estimation

A.3 State Estimation

A.3.1 State Estimation from Gap Detection

Our proposed trajectory generation approach is independent of the gap-detection
algorithm being used; thus, to simplify the perception task, we use a black-and-white
rectangular pattern to detect the gap (cf. Fig. A.1). A valid alternative to cope with
real-world gaps would be to use monocular dense-reconstruction methods, such as
REMODE [144]; however, they require more computing power (GPUs).

We detect the gap in each image from the forward-facing camera by applying a sequence
of steps: first, we run the Canny edge detector, undistort all edges, and group close
edges [180]; then, we search for quadrangular shapes and run geometrical consistency
checks. Namely, we search for a quadrangle that contains another one and check the
area ratio of these two quadrangles. Finally, we refine the locations of the eight corners
to sub-pixel accuracy using line intersection.

Since the metric size of the gap is known, we estimate the 6-DOF pose by solving a
Perspective-n-Points (PnP) problem (where n = 8 in our case). As a verification step,
we require that the reprojection error is small. We then refine the pose by minimizing
also the reprojection error of all edge pixels. To speed up the computation, we only
search the gap in a region of interest around the last detection. Only when no detection
is found, the entire image is searched. The detector runs with a frequency of more than
30 Hz onboard the quadrotor.

Finally, we fuse the obtained pose with IMU measurements to provide a full state
estimate using the multi-sensor fusion framework of [103].

A.4 Experiments

A.4.1 Experimental Setup

We tested the proposed framework on a custom-made quadrotor, assembled from
off-the-shelf hardware, 3D printed parts, and self-designed electronic components (see
Fig. A.4). The frame of the vehicle is composed of a 3D printed center cross and four
carbon fiber profiles as arms. Actuation is guaranteed by four RCTimer MT2830 motors,
controlled by Afro Slim ESC speed controllers. The motors are tilted by 15° to provide
three times more yaw-control action, while only losing 3 % of the collective thrust.

Our quadrotor is equipped with a PX4FMU autopilot that contains an IMU and a micro
controller on which our custom low-level controller runs. Trajectory planning, state
estimation and high-level control run on an Odroid-XU4 single-board computer. Our
algorithms have been implemented in ROS, running on Ubuntu 14.04. Communication

39

Appendix A. Aggressive Flight through Narrow Gaps

Figure A.4: The quadrotor platform used in the experiments. (1) Onboard computer. (2)
Forward-facing fisheye camera. (3) TeraRanger One distance sensor and (4) downward-facing
camera, both used solely during the recovery phase. (5) PX4 autopilot. The motors are tilted by 15°
to provide three times more yaw-control action, while only losing 3 % of the collective thrust.

between the Odroid and the PX4 runs over UART.

Gap-detection is done through a forward-facing fisheye camera (MatrixVision mvBlueFOX-
MLC200w 752× 480-pixel monochrome camera with a 180° lens), which ensures that
the gap can be tracked until very close. To allow the robot to execute the recovery
maneuver after traversing the gap, we mounted the same hardware detailed in [42],
which consists of a TeraRanger One distance sensor and a downward-facing camera.
Notice, however, that these are not used for state estimation before passing the gap but
only to recover and switch into stable hovering after the traverse.

The overall weight of the vehicle is 830 g, while its dimension are 55× 12 cm (largest
length measured between propeller tips). The dimensions of the rectangular gap are
80× 28 cm. When the vehicle is at the center of the gap, the tolerances along the
long side and short sides are only 12.5 cm, and 8 cm, respectively (cf. Fig. A.5). This
highlights that the traverse trajectory must be followed with centimeter accuracy to
avoid a collision.

The parameters of the traverse trajectory (Sec. A.2.2) have been set as v0,max = 3 m s−1,
dmin = 0.25 cm. The normalization constants θ̄ and d̄, introduced in Sec. A.2.5, have
been manually tuned to let the quadrotor start the maneuver close enough to render
vision-based pose estimation reliable and, at the same time, keep the gap as close as
possible to the center of the image.

The dynamic model and the control algorithm used in this work are the same presented

40

A.4. Experiments

Figure A.5: Our quadrotor during a traverse.

in [42]. We refer the reader to that for further details.

A.4.2 Results

To demonstrate the effectiveness of the proposed method, we flew our quadrotor
through a gap inclined at different orientations. We consider both rotations around
the world x and y axes, and denote them as roll and pitch, respectively. Overall, we
ran 35 experiments with the roll angle ranging between 0° and 45° and the pitch angle
between 0° and 30°. We discuss the choice of these values in Sec. A.5.3. With the
gap inclined at 45°, the quadrotor reaches speeds of 3 m s−1 and angular velocities of
400 ° s−1.

We define an experiment as successful if the quadrotor passes through the gap without
collision and recovers and locks to a hover position. We achieved a remarkable success
rate of 80%. When failure occurred, we found this to be caused by a persistent absence
of a pose estimate from the gap detector during the approach trajectory. This led to a
large error in matching the initial conditions of the traverse trajectory, which resulted
in a collision with the frame of the gap.

Figure A.6 shows the estimated position, velocity, and orientation against ground truth
for some of the most significant experiments and for different orientations of the gap
(namely: 20° roll, 0° pitch; 45° roll, 0° pitch; and 30° roll, 30° pitch). Ground truth
is recorded from an OptiTrack motion-capture system. It can be observed that the
desired trajectories were tracked remarkably well. Table A.1 reports the statistics of

41

Appendix A. Aggressive Flight through Narrow Gaps

the errors when the quadrotor passes through the plane in which the gap lies (i.e., at
t = tc), measured as the distance between actual and desired state. These statistics
include both the successful and the unsuccessful experiments. The average of the norm
of the position error at the center of the gap was 0.06 m, with a standard deviation
of 0.05 m. The average of the norm of the velocity error was below 0.19 m s−1, with a
standard deviation of 0.20 m s−1. We refer the reader to the attached video for further
experiments with different orientations of the gap. Figure A.7 shows a picture of one of
the experiments with the executed approach and traverse trajectories marked in color.

(a) Gap: 20° roll, 0° pitch. (b) Gap: 45° roll, 0° pitch. (c) Gap: 30° roll, 30° pitch.

x

y

z

tct0

Time [s]

P
os
it
io
n
[m

]

Position

0 0.5 1 1.5 2
−1

−0.5

0

(d) Gap: 20° roll, 0° pitch.

x

y

z

tct0

Time [s]

P
os
it
io
n
[m

]

Position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−1

−0.5

0

(e) Gap: 45° roll, 0° pitch.

x

y

z

tct0

Time [s]

P
os
it
io
n
[m

]

Position

0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

(f) Gap: 30° roll, 30° pitch.

x

y

z

tct0

Time [s]

V
el
oc
it
y
[m

/s
]

Velocity

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

(g) Gap: 20° roll, 0° pitch.

x

y

z

tct0

Time [s]

V
el
oc
it
y
[m

/s
]

Velocity

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−1

0

1

2

3

(h) Gap: 45° roll, 0° pitch.

x

y

z

tct0

Time [s]

V
el
oc
it
y
[m

/s
]

Velocity

0 0.5 1 1.5 2 2.5
−2

−1

0

1

2

(i) Gap: 30° roll, 30° pitch.

roll

pitch

yaw

tct0

Time [s]

O
ri
en
ta
ti
on

[d
eg
]

Orientation

0 0.5 1 1.5 2

−20

0

20

40

(j) Gap: 20° roll, 0° pitch.

roll

pitch

yaw

tct0

Time [s]

O
ri
en
ta
ti
on

[d
eg
]

Orientation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−20

0

20

40

60

(k) Gap: 45° roll, 0° pitch.

roll

pitch

yaw

tct0

Time [s]

O
ri
en
ta
ti
on

[d
eg
]

Orientation

0 0.5 1 1.5 2 2.5
−40

−20

0

20

40

(l) Gap: 30° roll, 30° pitch.

Figure A.6: Comparison between ground truth and estimated position (top), velocity (center),
and orientation (bottom). Each column depicts the result of an experiment conducted with a
different configuration of the gap: d, g and j 20° of roll and 0° of pitch; e, h and k 45° of roll
and 0° of pitch; f, i and l 30° of roll and 30° of pitch. The approach trajectory starts at t = 0 and
ends at t = t0, when the traverse trajectory is executed. The quadrotor reaches the center of the
gap at t = tc and starts the recovery maneuver at the final time of each plot. We refer the reader
to the accompanying video for further experiments with different orientations of the gap.

42

A.5. Discussion

Position [m] Velocity [m s−1] Orientation [°]

x y z x y z roll pitch

µ 0.04 0.04 0.03 0.09 0.15 0.08 6.04 8.89

σ 0.03 0.02 0.03 0.08 0.10 0.06 3.70 5.85

Table A.1: Position, velocity and orientation error statistics at time t = tc. The mean error µ and
the standard deviation σ are computed using ground truth data gathered from 35 experiments
conducted with the gap at different orientations.

Figure A.7: Our quadrotor executing the whole trajectory split into approach (blue), traverse
(red).

A.5 Discussion

In this section, we discuss our approach and provide more insights into our experi-
ments.

A.5.1 Replanning

The method we use to compute the approach meneuver [130] can fail to verify whether
a trajectory is feasible or not, as also highlighted by the authors. This usually happens
when the time duration of the trajectory is short. In such a case, we skip the replanning
and provide the last available approach trajectory to our controller.

43

Appendix A. Aggressive Flight through Narrow Gaps

A.5.2 Trajectory Computation Times

The trajectory planning approach we adopt for the approach phase is fast enough to
compute and test 40, 000 trajectories in less then one second, even with the additional
computational load induced by our check on the gap perception. The computation
of each trajectory on the on-board computer takes on average (0.240± 0.106)ms, in-
cluding: (i) generation of the trajectory; (ii) feasibility check; (iii) trajectory sampling
and computation of the yaw angle for each sample; (iv) evaluation of the cost function
described in (A.10); (v) comparison with the current best candidate. It is important to
point out that these values do not apply to the replanning of the approach trajectory
during its execution, since the initial state is constrained by the current state of the
vehicle and there is no cost function to evaluate. In such a case, the computation is
much faster and for each trajectory it only takes (0.018± 0.011)ms on average.

A.5.3 Gap configuration

Our trajectory generation formulation is able to provide feasible trajectories with any
configuration of the gap, e.g., when the gap is perfectly vertical (90° roll angle) or
perfectly horizontal (90° pitch angle). However, in our experiments we limit the roll
angle of the gap between 0° and 45° and the pitch angle between 0° and 30°. We do
this for two reasons. First, when the gap is heavily pitched, the quadrotor needs more
space to reach the initial conditions of the traverse from hover. This renders the gap
barely or not visible at the start of the approach, increasing the uncertainty in the pose
estimation. Second, extreme configurations, such as roll angles of the gap up to 90°,
require high angular velocities in order to let the quadrotor align its orientation with
that of the gap. This makes gap detection difficult, if not impossible, due to motion
blur. Also, our current experimental setup does not allow us to apply the torques
necessary to reach high angular velocities because of the inertia of the platform and
motor saturations.

A.5.4 Dealing with Missing Gap Detections

The algorithm proposed in Sec. A.3.1 fuses the poses from gap detection with IMU
readings to provide the full state estimate during the approach maneuver. In case
of motion blur, due to high angular velocities, or when the vehicle is too close to
the gap, the gap detection algorithm does not return any pose estimate. However,
these situations do not represent an issue during short periods of time (a few tenths
of a second). In these cases, the state estimate from the sensor fusion module is still
available and reliable through the IMU.

44

A.6. Conclusion

A.6 Conclusion

We developed a system that lets a quadrotor vehicle safely pass through a narrow
inclined gap using only onboard sensing and computing. Full state estimation is
provided by fusing gap detections from a forward-facing onboard camera and an IMU.

To tackle the problems arising from the varying uncertainty from the vision-based state
estimation, we coupled perception and control by computing trajectories that facilitate
state estimation by always keeping the gap in the image of the onboard camera.

We successfully evaluated and demonstrated the approach in many real-world experi-
ments. To the best of our knowledge, this is the first work that addresses and achieves
autonomous, aggressive flight through narrow gaps using only onboard sensing and
computing, and without requiring prior knowledge of the pose of the gap. We believe
that this is a major step forward autonomous quadrotor flight in complex environments
with onboard sensing and computing.

45

B Perception-Aware Model Predictive
Control

©2018 IEEE. Reprinted, with permission, from:

D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza. “PAMPC: Perception-Aware Model
Predictive Control for Quadrotors”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS).
Oct. 2018. doi: 10.1109/IROS.2018.8593739

47

https://doi.org/10.1109/IROS.2018.8593739

Appendix B. Perception-Aware Model Predictive Control

PAMPC: Perception-Aware Model
Predictive Control for Quadrotors

Davide Falanga, Philipp Foehn, Peng Lu and Davide Scaramuzza

Abstract — We present the first perception-aware model predictive
control framework for quadrotors that unifies control and planning
with respect to action and perception objectives. Our framework
leverages numerical optimization to compute trajectories that satisfy
the system dynamics and require control inputs within the limits of
the platform. Simultaneously, it optimizes perception objectives for
robust and reliable sensing by maximizing the visibility of a point of
interest and minimizing its velocity in the image plane. Considering
both perception and action objectives for motion planning and control
is challenging due to the possible conflicts arising from their respec-
tive requirements. For example, for a quadrotor to track a reference
trajectory, it needs to rotate to align its thrust with the direction of
the desired acceleration. However, the perception objective might re-
quire to minimize such rotation to maximize the visibility of a point
of interest. A model-based optimization framework, able to con-
sider both perception and action objectives and couple them through
the system dynamics, is therefore necessary. Our perception-aware
model predictive control framework works in a receding-horizon
fashion by iteratively solving a non-linear optimization problem. It
is capable of running in real-time, fully onboard our lightweight,
small-scale quadrotor using a low-power ARM computer, together
with a visual-inertial odometry pipeline. We validate our approach
in experiments demonstrating (i) the conflict between perception and
action objectives, and (ii) improved behavior in extremely challenging
lighting conditions.

48

B.1. Introduction

Supplementary material

Video: https://youtu.be/9vaj829vE18

Code: https://github.com/uzh-rpg/rpg_mpc

B.1 Introduction

Thanks to the progresses in perception algorithms, the availability of low-cost cameras,
and the increased computational power of small-scale computers, vision-based per-
ception has recently emerged as the de facto standard in onboard sensing for micro
aerial vehicles. This made it possible to replicate some of the impressive quadrotor
maneuvers seen in the last decade [112, 110, 130, 18], which relied on motion-capture
systems, using only onboard sensing, such as cameras and IMUs [46, 99, 179].

Cameras have a number of advantages over other sensors in terms of weight, cost, size,
power consumption and field of view. However, vision-based perception has severe
limitations: it can be intermittent and its accuracy is strongly affected by both the
environment (e.g., texture distribution, light conditions) and motion of the robot (e.g.,
motion blur, camera pointing direction, distance from the scene). This means that one
cannot always replace motion-capture systems with onboard vision, since the motion
of a camera can negatively affect the quality of the estimation, posing hard bounds
on the agility of the robot. On the other hand, perception can benefit from the robot
motion if it is planned considering the necessities and the limitations of onboard vision.
For example, to pass through a narrow gap while localizing with respect to it using
an onboard camera, it is necessary to guarantee that the gap is visible at all times.
Similarly, to navigate through an unknown environment, it is necessary to guarantee
that the camera always points towards texture-rich regions.

To fully leverage the agility of autonomous quadrotors, it is necessary to create synergy
between perception and action by considering them jointly as a single problem.

B.1.1 Contributions

Model Predictive Control (MPC) has become increasingly popular for quadrotor con-
trol [81, 136, 9] thanks to its capability of simultaneously dealing with different con-
straints and objectives through optimization. In this work, we present an MPC algo-
rithm for quadrotors able to optimize both action and perception objectives.

Our framework satisfies the robot dynamics and computes feasible trajectories with
respect to the input saturations. Such trajectories are not constrained to specific time
or space parametrization (e.g., polynomials in time or splines), and tightly couple

49

https://youtu.be/9vaj829vE18
https://github.com/uzh-rpg/rpg_mpc

Appendix B. Perception-Aware Model Predictive Control

Figure B.1: An example application of our PAMPC, where a quadrotor is asked to fly at 3 m s−1

around a region of interest while keeping it visible in the field of view of its camera.

perception and action. To do so, perception objectives aimed at rendering vision-based
estimation more robust are taken into account in the optimization problem. Such
objectives are the visibility of a point of interest the robot needs to maintain in the
image, and the minimization of the velocity of its projection onto the image plane.
The main challenge in this is to simultaneously cope with action (e.g., dynamics,
underactuation, saturations) and perception objectives, due to the potential conflicts
between them.

To solve this problem, we leverage numerical optimization to compute trajectories
that are optimal with respect to a cost function considering both the dynamics of the
robot and the quality of perception. To fully exploit the agility of a quadrotor, we
incorporate perception objectives into the optimization problem not as constraints, but
rather as components to be optimized. This results in a perception-aware framework
which is intrinsically tailored to agile navigation, since the optimizer can trade off
between perception and action objectives (cf. Fig. B.1, depicting fast circle flight
while adjusting the heading to look at a point of interest). Furthermore, considering
perception in the cost function reduces the computation load of the model predictive
control pipeline, allowing it to run in real-time on a low-power onboard computer.
Our approach does not depend on the task and can potentially provide benefits to a
large variety of applications, such as vision-based localization, target tracking, visual
servoing, and obstacle detection. We validate our perception-aware model predictive
control framework in real-world experiments using a small-scale, lightweight quadrotor
platform.

50

B.1. Introduction

B.1.2 Related Work

The aforementioned shift from offboard to onboard sensing based on cameras resulted
in an increased number of works trying to connect perception and action.

In [141], the authors proposed a method to compute minimum-time trajectories that
take into account the limited field of view of a camera to guarantee visibility of points
of interests. Such a method requires the trajectory to be parametrized as a B-spline
polynomial, constraining the kind of motion the robot can perform. Also, perception is
included in the planning problem as hard constraint, posing an upper-bound to the
agility of the robot since such constraints must be satisfied at all times. Furthermore,
the velocity of the projection of the points of interest in the image is not taken into
account. Finally, the algorithm was not suited for real-time control of a quadrotor, and
was only tested in simulations..

In [174], the authors focused on combining visual servoing with active Structure from
Motion and proposed a solution to modify the trajectory of a camera in order to
increase the quality of the reconstruction. In such a work, a trajectory for the tracked
features in the image plane was required, and the null space of the visual servoing
task was exploited in order to render it possible for such feature to track the desired
trajectory. Furthermore, the authors did not consider the underactuation of the robot,
which can significantly lower the performance of the overall task due to potentially
conflicting dynamics and perception objectives.

In [28] and [57], information gain was used to bridge the gap between perception and
action. In the first work, the authors tackled the problem of selecting trajectories that
minimize the pose uncertainty by driving the robot toward regions rich of texture. In
the second work, a technique to minimize the uncertainty of a dense 3D reconstruction
based on the scene appearance was proposed. In both works, however, near-hover
quadrotor flight was considered, and the underactation of the platform was not taken
into account.

In [169], a hybrid visual servoing technique for differentially flat systems was presented.
A polynomial parameterization of the flat outputs of the system was required, and
due to the computational load required by the designed optimization framework,
an optimal trajectory was computed in advance and never replanned. This did not
allow coping with external disturbances and unmodelled dynamics, which during the
execution of the trajectory can lead to behaviours different from the expected one.

In [133] and [134], a real-time motion planning method for aerial videography was
presented. In these works, the main goal was to optimize the viewpoint of a pan-tilt
camera carried by an aerial robot in order to improve the quality of the video record-
ings. Both works were mainly targeted to cinematography, therefore they considered
objectives such as the size of a target of interest and its visibility. Conversely, we target

51

Appendix B. Perception-Aware Model Predictive Control

robotic sensing and consider objectives aimed at facilitating vision-based perception.

In [145], the authors proposed a two-step approach for target-aware visual navigation.
First, position-based visual servoing was exploited to find a trajectory minimizing the
reprojection error of a landmark of interest. Then, a model predictive control pipeline
was used to track such a trajectory. Conversely, we solve the trajectory optimization and
tracking within a single framework. Additionally, that work only aimed at rendering
the target visible, but did not take into account that, due to the motion of the camera,
it might not be detectable because of motion blur. We cope with this problem by
considering in the optimization problem the velocity of the projection of the point of
interest in the image plane.

B.1.3 Structure of the Paper

The remainder of this paper is organized as follows. In Sec. B.2 we provide the general
formulation of the problem. In Sec. B.3 we derive the model for the dynamics of the
projection of a 3D point into the image plane for the case of a quadrotor equipped
with a camera. In Sec. B.4 we present our perception-aware optimization framework,
describing the objectives and the constraints it takes into account. In Sec. B.5 we
validate our approach in different real-world experiments showcasing the capability of
our framework. In Sec. B.6 we discuss our approach and provide additional insights
and in Sec. B.7 we draw the conclusions.

B.2 Problem Formulation

For truly autonomous robot navigation, two components are essential: (I) perception,
both of the ego-motion and of the surrounding environment; (II) action, meant as the
combination of motion planning and control algorithms. A very wide literature is
available for both of them. However, they are rarely considered as a joint problem.

The need for coupled perception and action can be easily explained. To guarantee
safety, accurate and robust perception is necessary. Nevertheless, the quality of vision-
based perception is strongly affected by the motion of the camera. On the one hand, it
can degrade its performance by not making it possible to extract sufficiently accurate
information from images. For example, lack of texture or blur due to camera motion
can lead to algorithm failure. On the other, the quality of vision-based perception
can improve significantly if its limitations and requirements are considered, e.g. by
rendering highly-textured areas visible in the image and by reducing motion blur.
Therefore it is necessary to create synergy between perception and action.

Let x and u be the state and input vectors of a robot, respectively. Assume its dynamics
to be described by a set of differential equations ẋ = f (x, u). Furthermore, let z be the

52

B.3. Methodology

state vector of the perception system (e.g., 3D points’ projection onto the image plane),
and œ a vector of parameters characterizing it (e.g., the focal length of the camera or its
field of view). The perception state and the robot state are coupled through the robot
dynamics, namely z = fp (x, u, œ). Given certain action objectives, we can define an
action cost La (x, u). Similarly, we can define a cost Lp (z) for the perception objectives.

We can then formulate the coupling of perception and action as an optimization
problem:

min
u

∫ t f

t0

La (x, u) + Lp (z) dt

subject to r(x, u, z) = 0

h(x, u, z) ≤ 0,

(B.1)

where r(x, u, z) and h(x, u, z) represent equality and inequality constraints that the
solution should satisfy for perception, action, or both of them simultaneously.

B.3 Methodology

Any computer vision algorithm aimed at providing a robot with the information neces-
sary for navigation (e.g., pose estimation, obstacle detection, etc) has two fundamental
requirements. First, the points of interest used by the algorithm to provide the afore-
mentioned information must be visible in the image. For example, such points can be
the landmarks used for pose estimation by visual odometry algorithms, or the points
belonging to an object for obstacle detection. If such points are not visible while the
robot is moving, there is no way the algorithm can cope with the absence of information.
Second, such points of interest must be clearly recognizable in the image. Depending
on the motion of the camera and the distance from the scene, the projection of a 3D
point onto an image can suffer from motion blur, making it very complicated, if not
impossible, to extract meaningful information. Therefore, the motion of the camera
should be thoroughly planned to guarantee robust visual perception.

Based on the considerations above, in this work we consider two perception objectives
in our framework: (I) visibility of points of interest, and (II) minimization of the velocity
of their projection onto the image plane. In the following, we study the relation between
the motion of a quadrotor equipped with an onboard camera and the projection onto
the image plane of a point in space. Without loss of generality, we consider the case
of a single 3D point of interest. Our goal is to couple perception and action into an
optimization framework by expressing the dynamics of its projection onto the image
plane as a function of the state and input vectors of a quadrotor.

53

Appendix B. Perception-Aware Model Predictive Control

xW

yW

zW

W

xB

yB

zB

B

TWB

zC

xC

yC

TBC C

v

u

s0

s

W pf

Figure B.2: A schematics representing the world frame W, the body frame B and the camera
frame C. The position and orientation of B with respect to W is provided by TWB. The constant
rigid body transformation TBC provides the extrinsics of the camera. A feature located at Wp f
is projected into the image plane onto a point of coordinates s. s0 represents the principal point.

B.3.1 Nomenclature

In this work, we make use of a world frame W with orthonormal basis {xW , yW , zW}.
The quadrotor frame B, also referred to as the body frame, has orthonormal basis
{xB, yB, zB}. Finally, we assume the robot to be equipped with a camera, whose
reference frame C has orthonormal basis {xC, yC, zC}. Fig. B.2 provides a clear overview
about the reference frames.

Throughout this manuscript, we represent vectors as bold quantities having a prefix,
representing the frame in which they are expressed, and a suffix, indicating the origin
and the end of such a vector. For example, the quantity WpWB represents the position
of the body frame B with respect to the world frame W, expressed in the world frame.
To simplify the notation, if a vector has no prefix, we assume it to be expressed in the
first frame reported in the suffix (i.e., the frame where the vectors origin is).

We use quaternions to represent the orientation of a rigid body. The time derivative of
a quaternion q =

(
qw, qx, qy, qz

)ᵀ is given by q̇ = 1
2 Λ (!) · q, where the skew-symmetric

matrix Λ (!) of a vector ! =
(
ωx, ωy, ωz

)ᵀ is defined as:

Λ (ω) =

0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 . (B.2)

54

B.3. Methodology

Finally, we use the operator � to denote the multiplication between a quaternion and a
vector. More specifically, multiplying a vector v with the quaternion q means rotating v
by the rotation induced by q. By doing so, we obtain a vector v′ = v� q = Qv where:

Q =

 1− 2q2
y − 2q2

z 2(qxqy + qwqz) 2(qxqz − qwqy)

2(qxqy − qwqz) 1− 2q2
x − 2q2

z 2(qyqz + qwqx)

2(qxqz + qwqy) 2(qyqz − qwqx) 1− 2q2
x − 2q2

y

 .

B.3.2 Quadrotor Dynamics

Let pWB =
(

px, py, pz
)ᵀ and qWB =

(
qw, qx, qy, qz

)ᵀ be the position and the orientation
of the body frame with respect to the world frame W, expressed in world frame,
respectively (cf. Fig. B.2). Additionally, let vWB =

(
vx, vy, vz

)ᵀ be the linear velocity
of the body, expressed in world frame, and ΩB =

(
ωx, ωy, ωz

)ᵀ its angular velocity,
expressed in the body frame. Finally, let c = (0, 0, c)ᵀ be the mass-normalized thrust
vector, where c = (f1 + f2 + f3 + f4) /m, fi is the thrust produced by the i-th motor,
and m is the mass of the vehicle. In this work, we use the dynamical model of a
quadrotor proposed in [130]:

ṗWB = vWB

v̇WB = g + qWB � c

q̇WB =
1
2

Λ (ΩB) · qWB

(B.3)

where g = (0, 0,−g)ᵀ is the gravity vector, with g = 9.81 m s−2. The state and the input
vectors of the system are x = [pWB, vWB, qWB]

ᵀ and u = [c, Ω
ᵀ
B]

ᵀ, respectively.

B.3.3 Perception Objectives

Let Wp f =
(

W p f x,W p f y,W p f z
)

be the 3D position of a point of interest (landmark)
in the world frame W (cf. Fig. B.2). We assume the body to be equipped with a
camera having extrinsic parameters described by a constant rigid body transformation
TBC = [pBC, qBC], where pBC and qBC are the position and the orientation of C with
respect to B. The coordinates Cp f =

(
C p f x,C p f y,C p f z

)ᵀ of Wp f in the camera frame C
are given by:

Cp f = (qWB qBC)
−1 �

(
Wp f − (qWB � pBC + pWB)

)
. (B.4)

The point Cp f in camera frame is projected into the image plane coordinates s = (u, v)ᵀ

according to classical pinhole camera model [181]:

u = fx
C p f x

C p f z
, v = fy

C p f y

C p f z
(B.5)

55

Appendix B. Perception-Aware Model Predictive Control

where fx, fy are the focal lengths for pixel rows and columns, respectively.

To guarantee robust vision-based perception, the projection s of a point of interest Wp f

should be as close as possible to the center of the image for two reasons. First, keeping
its projection in the center of the image results in the highest safety margins against
external disturbances. The second reason comes from the fact that the periphery of
the image is typically characterized by a non-negligible distortion, especially for large
field of view cameras. A number of models for such distortion are available in the
literature, as well as techniques to estimate their parameters to compensate the effects
of the distortion. However, such a compensation is never perfect and this can degrade
the accuracy of the estimates.

As previously mentioned, in addition to rendering the point of interest visible in the
image, we are interested in reducing the velocity of its projection onto the image plane.
We assume the point of interest to be static, but similar considerations apply to the
case where such a point of interest moves with respect to the world frame. To express
the projection velocity as a function of the quadrotor state and input vectors, we can
differentiate (B.5) with respect to time:

u̇ = fx
C ṗ f x C p f z − C p f x C ṗ f z

C p2
f z

,

v̇ = fy
C ṗ f y C p f z − C p f y C ṗ f z

C p2
f z

.
(B.6)

Eq. (B.6) can be written in a compact form as:

ṡ =

u̇
v̇
0

 =

0 − fx

C p2
f z

0
fy

C p2
f z

0 0

0 0 0

 (Cp f ×C ṗ f
)

. (B.7)

To compute the term Cṗ f , we can differentiate (B.4) with respect to time:

Cṗ f = −
1
2

Λ (ΩC) Cp f −C vWC, (B.8)

where:

CvWC = (qWB qBC)
−1 �

(
1
2

Λ (ΩB) qWB � pBC + vWB

)
,

ΩC = q−1
BC � ΩB.

(B.9)

56

B.4. Model Predictive Control

B.3.4 Action Objectives

For a quadrotor to execute a desired task (e.g., reach a target position in space), a
suitable trajectory has to be planned. In this regard, for a quadrotor two objectives
should be considered.

The first comes from the bounded inputs available to the system. The thrust each motor
can produce has both an upper and a lower bound, leading to a limited input vector
u. Therefore, denoting the subset of the allowed inputs as U , the planned trajectory
should be such that the condition u(t) ∈ U ∀t can be satisfied.

The second objective to be considered comes from the underactuated nature of a
quadrotor. In the most common configuration, all the rotors point in the same direction,
typically along the axis zB of the body. This means that the robot can accelerate only in
this direction. Therefore, to move in the 3D space, it is necessary to exploit the system
dynamics (B.3) by coupling the translational and the rotational motions of the robot to
follow the desired trajectory.

B.3.5 Challenges

The perception (Sec. B.3.3) and the action (Sec. B.3.4) objectives previously described
are both necessary for vision-based quadrotor navigation. Considering them simultane-
ously is challenging due to the possible conflict among them. Indeed, for a quadrotor to
track a reference trajectory, it needs to rotate to align its thrust with the direction of the
desired acceleration. However, the perception objective might require to minimize such
rotation to maximize the visibility of a point of interest. A model-based optimization
framework able to consider both perception and action objectives and couple them
through the system dynamics is therefore necessary.

B.4 Model Predictive Control

Formulating coupled perception and action as an optimization problem has the ad-
vantages of being able to satisfy the underactuated system dynamics and actuator
constraints (i.e., input boundaries) and to minimize the predicted costs along a time
horizon. In contrast, classical control schemes are incapable of predicting costs and
the corresponding trajectory (e.g., PID controllers) and guaranteeing input boundaries
(PID, LQR).

The basic formulation of such an optimization is given in (B.1), which in our case
results in a non-linear program with quadratic costs. This can then be approximated by
a sequential quadratic program (SQP) where the solution of the non-linear program is
iteratively approximated and used as a model predictive control (MPC). To this regard,

57

Appendix B. Perception-Aware Model Predictive Control

for the MPC to be effective, the optimization scheme has to run in real-time, at the
desired control frequency. To achieve this, we first discretize the system dynamics
with a time step dt for a time horizon th into xi ∀i ∈ [1, N] and ui ∀i ∈ [1, N − 1]. We
define the time-varying state cost matrix as Qx,i ∀i ∈ [1, N]. Furthermore, the time-
varying perception and input cost matrices are defined as Qp,i and Ri, ∀i ∈ [1, N − 1],
respectively. Finally, let z = [s, ṡ] be the perception function. It is important to recall
that z is a function of the quadrotor’s state and input variables, as remarked in Eq. (B.4)
to (B.9). The resulting cost function we consider is:

L = x̄ᵀNQx,N x̄N +
N−1

∑
i=1

(
x̄ᵀi Qx,ix̄i + z̄ᵀi Qp,iz̄i + ūᵀ

i Riūi
)

, (B.10)

where the values x̄, z̄, ū refer to the difference with respect to the reference of each
value. In our case, the reference value for z is the null vector (i.e., center of the image
and zero velocity) and the reference for the states and inputs are given by a target pose
or a precomputed trajectory (that neglects the perception objectives).

The inputs u, consisting of c and ΩB, as well as the velocity vWB are limited by the
constraints:

cmin ≤ c ≤ cmax, (B.11)

−Ωmax ≤ ΩB ≤ Ωmax, (B.12)

−vmax ≤ vWB ≤ vmax, (B.13)

where cmin, cmax, Ωmax, vmax ∈ R+.

To include the dynamics as in (B.3), we use multiple shooting as transcription method
and a Runge-Kutta integration scheme. We refer the reader to [76] and [75] for more
details on the transcription of the dynamics for optimization.

We approximate the solution of the optimization problem by executing one iteration at
each control loop and use as initial state the most recent available estimate xest provided
by a Visual-Inertial Odometry pipeline running onboard the vehicle (see Sec. B.5.1).
To achieve good approximations, it is important to run these iterations significantly
faster than the discretization time of the problem and to keep the previous solution
as initialization trajectory of the next optimization. Such a SQP scheme leads to a fast
convergence towards the exact solution, since the system is always close to the last
linearization, and the deviation of each state xi between two iterations is very small.

58

B.5. Experiments

Figure B.3: The quadrotor used for the experiments.

Figure B.4: A sequence of the visibility experiment for the hover-to-hover flight experiment,
with time progressing from left to right. The quadrotor performs a maneuver to fly to a new
reference pose, exploiting additional height to pitch less and keep the point of interest (centroid
of the vision features, marked as cyan circle) in the center of the image. The corresponding
footage is available in the accompanying video.

B.5 Experiments

In order to show the potential of our perception-aware model predictive control, we
ran our approach onboard a small, vision-based, autonomous quadrotor. We refer the
reader to the attached video showcasing the experiments.

59

Appendix B. Perception-Aware Model Predictive Control

1.5

2

2.5

3

(a) Reprojection for the circular
trajectory.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

(b) Reprojection for the hover-
to-hover experiment.

1.5

2

2.5

3

3.5

4

(c) Reprojection for the dark-
ness experiment.

Figure B.5: Reprojection of the point of interest in image plane, colored according to the depth
with respect to the camera frame.

B.5.1 Experimental Setup

We used a small and lightweight quadrotor platform to achieve high agility through
high torque-to-inertia and thrust-to-weight ratios, and improve simplicity and safety
for the user (cf. Fig B.3). The quadrotor had a take-off weight of 420 g, a thrust-to-
weight ratio of ∼ 2, and a motor-to-motor diagonal of 220 mm. We used a Qualcomm
Snapdragon Flight board with a quad-core ARM processor at up to 2.26 GHz and
2 GB of RAM, paired with a Qualcomm Snapdragon Flight ESC. The board was
equipped with an Inertial Measurement Unit and a forward-looking, wide field-of-view
global-shutter camera tilted down by 45° for visual-inertial odometry (VIO) using the
Qualcomm mvSDK. It ran ROS on Linux and our self-developed flight stack. We setup
the optimization with ACADO and used qpOASES as solver. As discretization step,
we chose dt = 0.1 s with a time horizon of th = 2 s and ran one iteration step in each
control loop with a frequency of 100 Hz. Therefore, the iteration ran roughly 10× faster
than the discretization time, resulting in small deviations of the predicted state vector
between iterations and facilitating convergence. The code developed in this work is
publicly available as open-source software.

B.5.2 Experiment Description and Results

To prove the functionality and importance of our PAMPC, we ran three experiments. In
the first experiment, the controller modified a circular trajectory to improve the visibility
of a point of interest. In the second experiment, the controller handled hover-to-hover
flight by deviating from a straight line trajectory to keep the point of interest visible. In
the third experiment, it enabled vision-based flight in an extremely challenging scenario.
All the experiments were conducted with onboard VIO and onboard computation of
the PAMPC, without any offline computation and without any motion-capture system.

60

B.5. Experiments

Circular Flight

We setup a small pile of boxes in the middle of a room otherwise poor of texture. We
did this to force the VIO pipeline to use such boxes as features for state estimation.
The centroid of these features was set as our point of interest. We provided the robot
with a circular reference trajectory around the aforementioned boxes and asked it to fly
along such a trajectory while maintaining the boxes visible in the center of the image
(cf. Fig. B.1). We evaluated the performance of our framework for speeds along the
circle from 1 m s−1 to 3 m s−1.

The results of one run of the circular flight experiments at 3 m s−1 are depicted in
Fig. B.6. Despite the agility of the maneuver, which requires large deviations from the
hover conditions, the robot is able to keep the point of interest visible in the onboard
image. Fig. B.5a reports the reprojection in the image plane for such point of interest.

Hover-To-Hover Flight

In this experiment within the same scenario as in Sec. B.5.2, we showed the capabilities
of our framework for hover-to-hover flight. More specifically, we requested a pose jump
from a position p1 to p2 at equal height (cf. Fig. B.4). During that maneuver, the
quadrotor had to pitch down to reach the desired acceleration, but controversially
should pitch as little as possible to keep the point of interest visible. A sequence of this
experiment is visible in Fig. B.4.

One can easily see that, despite the start and end positions are at the same height, the
quadrotor not only pitches to go towards the new reference in an horizontal motion,
but also accelerates upward (i.e., in positive z, cf. Fig. B.7). This results in a smaller
pitch angle and a higher thrust to reach the same y-acceleration, which is helpful for
perception since it brings the features towards the center of the frame due to the higher
altitude. If perception objectives were not considered, the resulting trajectory would
have not required any height change, potentially leading to a poor visibility of the
point of interest. The full motion of the quadrotor is depicted in Fig. B.7, where the
exploitation of the added height and the orientation of the camera frame can be seen.
Finally, in Fig. B.5b we show the reprojection in the image plane for the point of interest.

Darkness Scenario

This experiment was targeted towards extremely challenging scenarios, such as flight
in a very dark environment, or otherwise difficult illumination conditions (cf. Fig. B.8).
To demonstrate the performance in such a scenario, we flew the vehicle several times
in a dark room with two illuminated spots. If the illuminated spots left the field of
view for a moment, the VIO pipeline would drift quickly or even completely loose

61

Appendix B. Perception-Aware Model Predictive Control

Figure B.6: Executed trajectory with quadrotor heading while the arrow points toward the
point of interest (blue).

track, potentially leading to a crash. Therefore, in such scenarios it was of immense
importance to keep the few available features always visible. The flown path was given
by a trajectory passing through four waypoints forming a rectangle, but without any
heading reference. The quadrotor correctly adjusts its heading to keep the illuminated
spot in its field of view, because this is the only source of trackable features. Fig. B.9
visualizes a setup with two spotlights and a cardboard wall in between, where the
quadrotor first focuses on the upper right illuminated spot, and further down the track
switches to the second illuminated spot behind the wall. The reprojection of the point
of interest in the image plane is shown in Fig. B.5c.

B.6 Discussion

B.6.1 Choice of the optimizer

To implement the optimization problem, we chose to use ACADO because of two main
reasons: (I) it is capable of transcribing system dynamics with single- and multiple-
shooting and integration schemes, as well as provide an interface to a solver; (II) it
generates c++ code, which then is compiled directly on the executing platform, which
allows it to use accelerators and optimizations tailored to the platform.

62

B.6. Discussion

Figure B.7: Quadrotor path in hover-to-hover, looking towards the centroid of tracked features
(blue), with the camera frame indicated by {xC, yC, zC}.

Figure B.8: A sequence of the darkness experiment with time progressing from left to right.
The quadrotor, highlighted by a red circle in the figures in the first row, tracks a trajectory and
adjusts its heading to keep the point of interest (centroid of the vision features) in field of view.

B.6.2 Convexity of the problem

Our state and input space is a convex domain, hence also any quadratic cost in those
is convex. The perception costs could be argued to be non-convex due to the division

63

Appendix B. Perception-Aware Model Predictive Control

Figure B.9: Path of the quadrotor, looking towards light spots (yellow), with camera direction
(red triangle) and point-of-interest direction (blue arrow).

by C p f z in the projection (B.5). However, on examination of the projection one will
notice that the denominator C p f z is always positive, since the pinhole camera projection
model does not allow negative or zero depths. We can therefore constrain C p f z to be
positive, rendering all possible solutions in the positive halfplane R+ and therefore
recover convexity.

B.6.3 Choice of point of interest

In our experiments, we used the centroid of detected features as our point of interest.
Assuming that all the features are equally important, instead of optimizing for each
individually, we can summarize them as their centroid, which results in the same
optimal solution.

B.6.4 PAMPC Parameters

We chose a discretization of dt = 0.1 s and a time horizon of th = 2 s. One could
always argue that a longer time horizon and a shorter discretization step are beneficial,

64

B.7. Conclusions

but they also increase the computation time by roughly O(N2) with the number of
discretization nodes N = th

dt . In our experience, we could not identify any significant
gain from smaller discretization steps nor from a longer time horizon.

B.6.5 Computation Time

Since the computation time must be low enough to execute the optimization in a
real time scheme, we show that it is significantly lower than the one required by the
controller frequency of 100 Hz. Indeed, our PAMPC requires on average 3.53 ms. It is
interesting to note that this is the case for both an idle CPU and while running the full
pipeline with VIO and our full control pipeline. This is due to the quad-core ARM CPU
and the fact that our full pipeline without the PAMPC takes up only 3 cores leaving
one free for the PAMPC. However, the standard deviation increases significantly if the
CPU is under load (from 0.155 ms to 0.354 ms), even though the maximal execution
time always stays below 5 ms.

B.6.6 Drawbacks of a Two-Step Approach

An alternative approach to the problem tackled in this work is to use the differential
flatness as in [110] to plan a translational trajectory connecting the start and end
positions, and subsequentially plan the yaw angle to point the camera towards the
point of interest. After planning, a suitable controller could be used to track the desired
reference trajectory. Although possible, such a solution would lead to sub-optimal
results because of the following reasons: (I) the roll and pitch angles of the quadrotor
would be planned without considering the visibility objective, therefore might render
the point of interest not visible in the image despite the yaw control; (II) because of
the split between planning and control, even if the first would provide guarantees
about visibility, these could not be preserved during the control stage due to deviations
from the nominal trajectory; (III) it would be challenging to provide guarantees about
the respect of the input saturations. Therefore, our proposed approach considering
perception, planning and control as a single problem leads to superior results.

B.7 Conclusions

In this work, we presented a perception-aware model predictive control (PAMPC)
algorithm for quadrotors able to optimize both action and perception objectives. Our
framework computes trajectories that satisfy the system dynamics and inputs limits
of the platform. Additionally, it optimizes perception objectives by maximizing the
visibility of a point of interest in the image and minimizing the velocity of its projection
into the image plane for robust and reliable sensing. To fully exploit the agility of a
quadrotor, we incorporated perception objectives into the optimization problem not

65

Appendix B. Perception-Aware Model Predictive Control

as constraints, but rather as components in the cost function to be optimized. Our
algorithm is able to run in real-time on an onboard ARM processor, in parallel with a
VIO pipeline, and is used to directly control the robot. We validated our approach in
real-world experiments using a small-scale, lightweight quadrotor platform.

66

C The Role of Perception Latency in
Obstacle Avoidance

©2019 IEEE. Reprinted, with permission, from:

D. Falanga, S. Kim, and D. Scaramuzza. “How Fast is Too Fast? The Role of Perception
Latency in High-Speed Sense and Avoid”. In: IEEE Robot. Autom. Lett. 4.2 (Apr. 2019),
pp. 1884–1891. issn: 2377-3766. doi: 10.1109/LRA.2019.2898117

67

https://doi.org/10.1109/LRA.2019.2898117

Appendix C. The Role of Perception Latency in Obstacle Avoidance

How Fast is Too Fast? The Role of
Perception Latency in High-Speed Sense

and Avoid

Davide Falanga, Suseong Kim, and Davide Scaramuzza

Abstract — In this work, we study the effects that perception latency
has on the maximum speed a robot can reach to safely navigate
through an unknown cluttered environment. We provide a general
analysis that can serve as a baseline for future quantitative reasoning
for design trade-offs in autonomous robot navigation. We consider
the case where the robot is modeled as a linear second-order system
with bounded input and navigates through static obstacles. Also, we
focus on a scenario where the robot wants to reach a target desti-
nation in as little time as possible, and therefore cannot change its
longitudinal velocity to avoid obstacles. We show how the maximum
latency that the robot can tolerate to guarantee safety is related to
the desired speed, the range of its sensing pipeline, and the actuation
limitations of the platform (i.e., the maximum acceleration it can
produce). As a particular case study, we compare monocular and
stereo frame-based cameras against novel, low-latency sensors, such
as event cameras, in the case of quadrotor flight. To validate our
analysis, we conduct experiments on a quadrotor platform equipped
with an event camera to detect and avoid obstacles thrown towards
the robot. To the best of our knowledge, this is the first theoretical
work in which perception and actuation limitations are jointly con-
sidered to study the performance of a robotic platform in high-speed
navigation.

68

C.1. Introduction

Supplementary material

All the videos of the experiments are available at:
http://youtu.be/sbJAi6SXOQw

C.1 Introduction

High-speed robot navigation in cluttered, unknown environments is currently an active
research area [83, 22, 151, 120, 152, 10, 79] and benefits of over 50 million US dollar
funding available through the DARPA Fast Lightweight Autonomy Program (2015-2018)
and the DARPA Subterranean Challenge (2018-2021).

To prevent a collision with an obstacle or an incoming object, a robot needs to detect
them as fast as possible and execute a safe maneuver to avoid them. The higher the
relative speed between the robot and the object, the more critical the role of perception
latency becomes.

Perception latency is the time necessary to perceive the environment and process the
captured data to generate control commands. Depending on the task, the processing
algorithm, the available computing power, and the sensor (e.g., lidar, camera, event
camera, RGB-D camera), the perception latency can vary from tens up to hundreds of
milli-seconds [22, 151, 120, 152, 10, 79].

At the current state of the art, the agility of autonomous robots is bounded, among
the other factors (such as their actuation limitations), by their sensing pipeline. This is
because the relatively high latency and low sampling frequency limit the aggressiveness
of the control strategies that can be implemented. It is typical in current robots to have
latencies of tens or hundreds of milli-seconds. Faster sensing pipelines can lead to
more agile robots.

Despite the importance of the perception latency, very little attention has been devoted
to study its impact on the agility of a robot for a sense and avoid task. Analyzing the
role of sensing latency allows one to understand the limitations of current perception
systems, as well as to comprehend the benefits of exploiting novel image sensors and
processors, such parallel visual processors (e.g., SCAMP [67]), with a theoretical latency
of few milli-seconds, or event cameras, with a theoretical latency of micro-seconds (e.g.,
the DVS [95]) or even nano-seconds (e.g., CeleX [68]).

In the context of robot navigation, it is also important to correlate the sensing latency
to the actuation capabilities of the robot. Broadly speaking, the larger the acceleration
a robot can produce, the lower the time it needs to avoid an obstacle and, therefore,
the larger the latency it can tolerate. Consequently, the coupling between sensing
latency and the actuation limitations of a robot represents a key research problem to be

69

http://youtu.be/sbJAi6SXOQw

Appendix C. The Role of Perception Latency in Obstacle Avoidance

addressed.

C.1.1 Related Work

Sensing latency is a known issue in robotics and has already been investigated before.
For example, this problem is particularly interesting when the state estimation process
is done through visual localization. A number of vision-based solutions for low-latency
localization based either on standard cameras [56, 124] or novel sensors (e.g., event
cameras [22, 155, 198]) have been proposed. Impressive results have been achieved,
however no information about the environment is available since visual localization
only provides the robot the information about its pose.

It is not yet clear what the maximum latency of a perception system for a navigation
task should be. A first step in that direction is available in [69], where the authors
studied under which circumstances a high frame-rate is best for real-time tracking,
providing quantitative results that help selecting the optimal frame-rate depending on
required performance. The results of that work were tailored towards visual localization
for state estimation. In [187] the performance of visual servoing as a function of a
number of parameters describing the perception system (e.g., frame-rate, latency) was
studied, and a relation between the tracking error in the image plane and the latency
of the perception was derived.

In [11], a framework to predict and compensate for the latency between sensing and
actuation in a robotic platform aimed at visually tracking a fast-moving object was
proposed and experimental results showed the benefits of that framework. Nevertheless,
the impact of the latency on the performance of the executed task without the proposed
compensation framework was not discussed.

The most similar work to ours is [166], where the authors studied the performance of
vision-based navigation for mobile robots depending on the latency and the sensing
range of the perception system. A trade-off among camera frame rate, resolution, and
latency was shown to represent the best configuration for navigation in unstructured
terrain. However, such results were only supported by experimental results, without
any theoretical evidence. Different from our work, the actuation capabilities of the
robot were not considered.

To the best of our knowledge, no previous works analyzed the coupling between
sensing latency and actuation limitations in a robotic platform from a theoretical
perspective. Similarly, the problem of highlighting their impact on the performance of
high-speed navigation has not been addressed in the literature.

70

C.1. Introduction

C.1.2 Contributions

In this work, we focus on the effects of perception latency and actuation limitations on
the maximum speed a robot can reach to safely navigate through an unknown, static
scenario.

We consider the case where a generic robot, modeled as a linear system with bounded
inputs, moves in a plane and relies on onboard perception to detect static obstacles along
its path (cf. Fig. C.1). We focus on a scenario where the robot wants to reach a target
destination in as little time as possible, and therefore cannot change its longitudinal
velocity to avoid obstacles. We show how the maximum latency the robot can tolerate
to guarantee safety is related to the desired speed, the agility of the platform (e.g., the
maximum acceleration it can produce), as well as other perception parameters (e.g.,
the sensing range). Additionally, we derive a closed-form expression for the maximum
speed that the robot can reach as a function of its perception and actuation parameters,
and study its sensitivity to such parameters.

We provide a general analysis that can serve as a baseline for future quantitative
reasoning for design trade-offs in autonomous robot navigation, and is completely
agnostic to the sensor and robot type. As a particular case study, we compare standard
cameras against event cameras for autonomous quadrotor flight, in order to highlight
the potential benefits of these novel sensors for perception. Finally, we provide an
experimental evaluation and validation of the proposed theoretical analysis for the case
of a quadrotor, equipped with an event camera, avoiding a ball thrown towards it at
speeds up to 9 m s−1.

To the best of our knowledge, this is the first work in which perception and actuation
limitations are jointly considered to study the performance of a robot in high-speed
navigation.

C.1.3 Assumptions

This works is based on the following assumptions. First, we assume that the robot can
be model as a linear system. Robotic systems are typically characterized by non-linear
models. However, a large variety of them can be linearized through either static or
dynamic feedback [176], rendering them equivalent from a control perspective to a
chain of integrators. It is important to note that feedback linearization is different from
Jacobian linearization: the first is an exact representation of the original non-linear
system over a large variety of working conditions, while the second is only valid
locally [71]. Linear models for mobile robots have already been used in the past [83],
and come with the advantage of allowing a simple, yet effective mathematical analysis
of the behaviour of the system in closed-form. Also, they cover a large variety of
systems, rendering our analysis valid for different kinds of robots.

71

Appendix C. The Role of Perception Latency in Obstacle Avoidance

Second, we assume that the robot can execute holonomic 2D maneuvers. For non-
holonomic systems, such as fixed-wing aircraft, the coupling of the longitudinal and
lateral dynamics would break the assumptions of our model and would deserve a
different analysis.

Finally, since we are interested in the role of sensing latency and actuation limitations
on the agility of a robot, we assume that, for any other aspect, the sensing and actuation
system are ideal. In other words, we assume that there is no uncertainty in the obstacle
detection, no illumination issues, no artifacts in the measurements, and the robot’s
dynamics is perfectly known and can be controlled with errors. This allows us to
clearly isolate and analyze the impact of sensing latency and actuation limitations in
our analysis, where otherwise it would not be possible to distinguish the role of these
two from the impact of other sources of non-ideality.

C.1.4 Structure of the Paper

In Sec. C.2, we provide the mathematical formulation of the problem and perform a
qualitative analysis. In Sec. C.3, we particularize our study to vision-based navigation
and analyze it for both standard and event cameras. A detailed mathematical analysis
of these sensors is provided in the supplementary material. In Sec. C.4, we compare
standard cameras (monocular and stereo) against event cameras for the case study
of autonomous quadrotor flight. In Sec. C.5, we validate our analysis performing
experiments on an actual quadrotor avoiding obstacle thrown towards it. Further
details about the experiments are provided in the supplementary material. Finally, in
Sec. C.6, we draw the conclusions.

C.2 Problem Formulation

We consider the case of a mobile robot navigating in a plane, which covers a large
number of scenarios, e.g. an aerial robot flying in a forest [83], where the third
dimension would not help with the avoidance task. The robot moves along a desired
direction with a desired speed, provided by a high-level planner, towards its goal,
which has to be reached in as little time as possible. Therefore, the robot cannot change
its longitudinal velocity. In the following analysis, we consider the case where the robot
only faces one single obstacle along its path and then provide an intuitive explanation
of how our conclusions can be extended to the case of multiple obstacles.

72

C.2. Problem Formulation

e1

e2

E

ro

rv

r

EpoEpR

rv EvR

s

α

Figure C.1: A schematics representing the obstacle and the robot model in the frame E. The
robot is represented as a square of size 2rv centered at EpR, and moves with a speed EvR. The
dashed triangle starting from the robot’s position represents its sensing area, α is the field of
view and s the maximum distance it is able to perceive. The obstacle, represented by the green
square on the right side of the image, has size 2ro. We expand the square representing the
obstacle by a quantity rv such that the robot can be considered to be a point mass.

C.2.1 Modelling

Robot Model

Let E be the inertial reference frame, having basis {e1, e2}, and let EpR and EvR be the
position and velocity, respectively, of the robot in E. Also, let EpO be the position of an
obstacle in E. In the remainder, we will refer to e1 as the longitudinal axis, and e2 as the
lateral axis. Finally, let rv be the half-size of the square centered at EpR containing the
entire robot (cf. Fig. C.1).

We model both the longitudinal and lateral dynamics as a chain of integrators. As
shown in [176], a large variety of mechanical systems can be linearized by using
nonlinear feedback, which, from a control perspective, renders them equivalent to a
chain of integrators. Additionally, the dynamics of the actuators is usually faster than
the mechanical dynamics and can, therefore, be neglected.

The longitudinal and lateral dynamics are modeled by a position pi, a speed vi and an
input ui given by:

ṗ1(t) = v1(t), v̇1(t) = u1(t), (C.1)

ṗ2(t) = v2(t), v̇2(t) = u2(t). (C.2)

Both inputs are assumed to be bounded such that ui ∈ [−ūi, ūi], i = 1, 2. We assume

73

Appendix C. The Role of Perception Latency in Obstacle Avoidance

the robot to move only along the longitudinal axis with an initial speed v1,0 = v̂1,
meaning that the lateral speed is zero before the avoidance maneuver starts. The
case where the robot has non-zero lateral velocity can be analyzed using the same
mathematical framework. Also, we assume that the robot cannot change its longitudinal
speed, namely u1(t) = 0 ∀t, and can therefore only exploit the lateral dynamics to
avoid an obstacle. As shown in Sec. C.2.1 of the supplementary material, a lateral
avoidance maneuver requires less time at high speed, allowing faster navigation along
the longitudinal axis.

Obstacle Avoidance: Brake or Avoid?

To avoid an obstacle, a robot can either stop before colliding or circumvent it by
moving laterally. Fig. C.2 shows a comparison between (i) the minimum time t = v̂1

ū1

required for a robot to brake and stop before colliding, and (ii) the minimum time
required to avoid the obstacle laterally without braking (see Sec. C.2.2). We considered
ū1 = ū2 = 25 m/s2, and the horizontal axis reports the longitudinal speed towards
the obstacle. The results show that the lateral avoidance maneuver requires less time
at high speed, allowing faster navigation along the longitudinal axis. Additionally,
a continuous motion along the desired direction is preferable over a stop-avoid-go
behaviour, since would allow the robot to navigate faster and reach its goal earlier.
Therefore, we consider only the case where the robot does not brake to prevent the
collision, but rather executes a lateral avoidance maneuver.

Obstacle Model

We consider static obstacles enveloped by a square of width 2ro. To study the motion
of the robot considering only the position of its center, we expand the obstacle width
by a quantity rv on each side. The expanded size of the obstacle is r = 2(rv + ro), as
shown in Fig. C.1.

Sensor Model

In this work, we assume that at least one edge of the obstacle must enter the sensing
area to allow a detection. We define the sensing latency τ ∈ R+ as the interval between
the time the obstacle enters the sensing area and the moment the robot’s initiates
the avoidance maneuver. The latency of a sensor is typically the sum of multiple
contributions, and in general depends on the sensor itself and the time necessary to
process a measurement (which depends on the algorithm used, the computational
power available, and other factors). In general, it is hard to provide exact bounds for
each of these contributions, therefore we consider as latency the sum of the sensor’s
and the sensing algorithm’s latency. We denote by s ∈ R+ the robot’s sensing range,

74

C.2. Problem Formulation

Figure C.2: Comparison between the minimum time required for a robot to completely stop
before colliding (solid blue line) and the minimum time required to move laterally by an
amount r (dashed lines), depending on the speed v̂1 (horizontal axis).

i.e. the largest distance it is able to perceive. We assume the field of view of the sensor
to be such that the obstacle’s edge is fully contained in the sensing area when the
distance between the robot and the obstacle is equal to the sensing range. This provides
a lowerbound for the field of view α ≥ 2 arctan

(ro
2s

)
.

C.2.2 Obstacle Avoidance

Time to Contact and Avoidance Time

We define the time to contact tc as the time it takes the vehicle to collide with the obstacle
once it enters the sensing range of its onboard sensor. Since the longitudinal motion
has a constant speed v̂1 and the distance between the vehicle and the obstacle at the
time the obstacle enters the sensing area is s, the time to contact tc is:

tc =
s

v̂1
. (C.3)

In order for the robot to avoid the obstacle, it has to reach a safe lateral position in an
avoidance time ts shorter than the time to contact (C.3).

tc ≥ ts. (C.4)

75

Appendix C. The Role of Perception Latency in Obstacle Avoidance

Time-Optimal Avoidance

The avoidance maneuver along the lateral axis leads to a safe navigation if p2(tc) ≥ r.
We consider the case p2(tc) = r, which represents the minimum lateral deviation for
the avoidance maneuver to be executed safely. For this to happen, we assume the robot
to use a time-optimal strategy u∗2(t) :

u∗2(t) = arg min
u2(t)

ts

subject to ṗ2(t) = v2(t), v̇2(t) = u2(t),

p2(0) = 0, v2(0) = 0,

p2(ts) = r, v2(ts) = 0,

u2(t) ∈ [−ū2, ū2] ∀t.

(C.5)

We require v2(ts) = 0 because there would be no advantage in having a non-zero lateral
speed in terms of progressing towards the goal, since we considered the longitudinal
axis to be the direction of motion. Leaving the final lateral speed free would lead to a
lower execution time for the avoidance maneuver, but this could potentially result in
a large lateral speed, which is typically not desirable because the robot is not able to
sense the environment in such a direction. As well known in the literature [12], the
problem (C.5) leads to a bang-bang solution:

u∗2(t) =

{
ū2 if 0 ≤ t ≤ t̂

−ū2 if t̂ < t ≤ ts
, (C.6)

where the t̂ =
√

r
ū2

is the switching time and ts = 2
√

r
ū2

is the avoidance time..

Obstacle Avoidance with Sensing Latency

In Sec. C.2.2 we defined the time to contact tc as the time between when the obstacle
enters the sensing range and the moment when the collision occurs, as defined in (C.3).
However, in the presence of sensing latency, the time t

′
c remaining to the collision when

the robot is informed about the presence of the obstacle is t
′
c (τ) = tc − τ. Therefore,

in order for a robot equipped with a sensor with sensing range s and latency τ to
safely avoid an obstacle, the condition t

′
c (τ) ≥ ts must hold. In this case, we can

compute (C.4) as:

s
v̂1
− τ ≥ 2

√
r

ū2
. (C.7)

The worst case in which the robot manages to avoid the obstacle occurs when (C.7) is

76

C.2. Problem Formulation

2 4 6 8 10 12 14

-0.5

0

0.5

1

1.5

2

2.5

Figure C.3: Maximum latency τ̄ that the robot can tolerate in order to safely perform the
avoidance maneuver when r = 0.5 m.

satisfied with equality. In this case, the robot passes tangent to the obstacle, whereas it
would have some safety margin if (C.7) was satisfied with the inequality sign. We can
study (C.7) to compute the maximum latency τ̄ the system can tolerate such that the
avoidance can still be performed safely:

τ̄ =
s

v̂1
− 2
√

r
ū2

. (C.8)

Fig. C.3 shows the maximum latency τ̄ for different values of ū2 and s for the case
r = 0.5 m. As one can notice, the importance of low latency increases as the navigation
speed increases. Also, for some speeds v̂1 the robot is unable to perform the avoidance
maneuver safely given its actuation capabilities and the sensing range of its sensor. This
is clear from the negative values the maximum latency τ̄ assumes in some intervals.
In this case the robot should be either more agile (i.e. capable of generating higher
lateral accelerations) or should be equipped with a sensor with a higher sensing range
in order to avoid the obstacle at such speeds.

Similarly, we can use (C.8) to compute the maximum longitudinal speed the robot can
have to avoid the obstacle:

v̄1 =
s

τ + 2
√

r
ū2

. (C.9)

Fig. C.4 shows the maximum speed the robot can navigate safely (i.e., being still able
to avoid the obstacle although this is perceived with some delay), depending on the
latency of its sensing pipeline.

77

Appendix C. The Role of Perception Latency in Obstacle Avoidance

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

4

6

8

10

12

14

16

18

Figure C.4: Maximum speed v̄1 that the robot can move in order to safely perform the avoidance
maneuver when r = 0.5 m.

C.3 Vision-Based Perception

In the following, we particularize our analysis to the case of vision-based perception
for three modalities: (i) a monocular frame-based camera, (ii) a stereo frame-based
camera, (iii) a monocular event camera, and analyze the impact of their latency on the
maximum speed. For brevity reasons, the mathematical derivation of the expressions
for the sensing range and the latency of each of these sensing modalities is reported in
the supplementary material attached to this work.

C.3.1 Frame-Based Cameras and Event Cameras

Most computer vision research has been devoted to frame-based cameras, which have
latencies in the order of tens of milli-seconds, thus, putting a hard bound on the
achievable agility of a robotic platform. By contrast, event cameras [95] are bio-inspired
vision sensors that output pixel-level brightness changes at the time they occur, with a
theoretical latency of micro-seconds or even nano-seconds. More specifically, rather
than streaming frames at constant time intervals, each pixel fires an event (a pixel-
level brightness change), independently of the other pixels, every time it detects a
change of brightness in the scene. Broadly speaking, we can consider event cameras
as motion-activated, asynchronous edge detectors: events fire only if there is relative
motion between the camera and the scene.

Exploiting frame-based cameras for obstacle avoidance typically requires the analysis
of all the pixels of the image to detect an obstacle, independently of the texture.
Conversely, since the pixels of an event camera only trigger information when there is
change of intensity, it has the advantage of requiring very little processing to detect an

78

C.3. Vision-Based Perception

obstacle. Furthermore, since the smallest time interval between two consecutive events
on the same pixel is in the order of 1 µs, or generally much smaller than the typical
framerate of frame-based cameras, this can safely be neglected. These factors result in
a theoretical advantage of event cameras against frame-based cameras.

C.3.2 Sensing Range of a Vision-Based Perception System

Monocular Frame-Based Camera

The sensing range sM of a monocular camera depends, as shown in Sec. C.9.1 of the
supplementary material, on the size ro of the obstacle, the number of pixels N it must
occupy in the image to be detected, and the camera’s angular resolution θ.

Stereo Frame-Based Camera

The sensing range sS of a stereo camera depends, as shown in Sec. C.10.1 of the
supplementary material, on the baseline b, the focal length f , the uncertainty in the
disparity εP and the maximum percentual uncertainty k in the depth estimation.

Event Camera

In Sec. C.11.1 of the supplementary material we show that the sensing range sE of an
event camera can be computed using (C.10). It depends on how large the object must
be in the image such that, when its edges generate an event, they are sufficiently far
apart.

C.3.3 Latency of a Vision-Based Perception System

Monocular Frame-Based Camera

The latency τM of a monocular camera depends on the time tf between two consecutive
triggers of the sensor, the exposure time tE, the transfer time tT, the processing time
and the number of images necessary to detect the obstacle. As shown in Sec C.9.2
of the supplementary material, if two consecutive images are sufficient to detect an
obstacle, it can vary between τM = tf + tT + tE and τM = 2tf.

Stereo Frame-Based Camera

In Sec. C.10.2 of the supplementary material, we analyze the possible range of the
latency τS of a stereo camera. In general, it can span between a best-case value equal
to the time between two consecutive frames, and a worst-case value, which we derive

79

Appendix C. The Role of Perception Latency in Obstacle Avoidance

analyzing the datasheet of several stereo cameras.

Event Camera

The latency τE of an event camera depends, as shown in Sec. C.11.2 of the supplementary
material, on the distance between the camera and the obstacle, the speed of the camera,
the focal length, and the amount of pixels the projection of the obstacle must move in
the image such that it fires an event. However, to derive the maximum speed achievable
with an event camera, it is necessary to jointly consider the expression of the latency
of an event camera and (C.4). We refer the reader to Sec. C.11.2 of the supplementary
material for further details.

C.4 Case Study: Vision-Based Quadrotor Flight

In this section, we analyze the case of vision-based quadrotor flight. We consider
a quadrotor equipped with a sensing pipeline based on frame-based cameras in a
monocular and stereo configuration, and a monocular event camera. For each sensing
modality, we provide an upper and a lower-bound of the sensing range and the latency
according to the model in Sec. C.3. We compute the maximum speed achievable
with each sensor for a value of each parameter equal to its lower-bound, its upper-
bound, and the average between the upper and the lower-bound. Finally, we consider
four different values for the maximum lateral acceleration the quadrotor can produce.
Three values correspond to commercially available state-of-the-art quadrotors with
low, medium and high thrust-to-weight ratio. The fourth one, instead, represents a
quadrotor with a thrust-to-weight ratio that is, as of today, particularly hard to achieve
with current technology, but might become common in the future. This ideal platform
serves us to show that more agile quadrotors would significantly highlight the benefits
of lower-latency sensors for obstacle avoidance.

C.4.1 Sensing Range

Monocular Frame-Based Camera

We use the results of Sec. C.9.1 of the supplementary material to obtain the upper-
bound and the lower-bound for the sensing range of a monocular camera. The best-case
scenario occurs when the obstacle to be detected occupies 5% of the image, leading
to an upper-bound sM = 6 m. We consider as worst-case scenario when the obstacle
occupies 10%, leading to a lower-bound sM = 2 m .

80

C.4. Case Study: Vision-Based Quadrotor Flight

Stereo Frame-Based Camera

We assume the robot to be equipped with a stereo system having a baseline b = 0.10 m
and each camera having a VGA resolution. As shown in Sec. C.10.1 of the supple-
mentary material, we consider sS = 2 m and sS = 8 m to be reasonable values for the
lower-bound and the upper-bound of the sensing range.

Event Camera

As mentioned in Sec. C.11.1 of the supplementary material, the sensing range of an
event camera can reach values above sE = 10 m. Intuitively speaking, this is because to
potentially detect an obstacle with an event camera, it is sufficient that the projection
of its edges move on the image by 1 pxl and are far apart from each others by an
amount that is at least on order of magnitude larger (i.e., at least 10 pxl apart). However,
to render our comparison more fair and realistic, we consider a lower-bound that is
comparable to the one of frame cameras. Indeed, when a robot navigates cluttered
environments, its distance from the obstacles is typically lower than 10 m, which makes
it necessary to consider a lower value for the smallest sensing range of event camera.
Therefore, we assume sE = 2 m as lower-bound for the sensing range of an event
camera, and sE = 8 m as its upper-bound.

C.4.2 Latency

Monocular Frame-Based Camera

We consider a frame-based camera with (i) a framerate of 50 Hz, meaning that tf = 0.020 s;
(ii) an exposure time of tE = 0.005 s; (iii) VGA resolution and USB 3.0 connection, which
leads to tT = 0.000,4 s. Therefore, based on Sec. C.9.2 of the supplementary material,
the upper-bound and the lower-bound latency for the frame-based camera considered
in this analysis are, respectively, τM = 0.040 s and τM = 0.026 s.

Stereo Frame-Based Camera

As mentioned in Sec. C.10.2 of the supplementary material, it is hard to evaluate
the latency of a stereo system. However, based on the datasheet of commercially
available stereo cameras suitable for quadrotor flight, we can obtain an estimate of the
upper-bound and the lower-bound. As upper-bound, we consider the Bumblebee XB3,
whose datasheet reports a latency of τS = 0.070 s. For the lower-bound, since no further
information are available in the datasheet of other stereo cameras, we assume it to be
equal to the inverse of the frame-rate of the fastest available sensor (Intel RealSense
R200) leading to τS = 0.017 s.

81

Appendix C. The Role of Perception Latency in Obstacle Avoidance

Event Camera

In Sec. C.11.2 of the supplementary material we discuss how the latency of an event
camera depends on the relative distance and speed between the robot and the obstacle.
Also, we highlight that, in order to compute it, it is necessary to jointly consider the
sensing range (Sec. C.11.1), Eq. (C.8) and Eq. (C.14). Therefore, to analyze the maximum
speed achievable with an event camera we proceed as follows: (i) we consider a value
of the sensing range as described in Sec. C.3.2; (ii) we plug (C.9) into (C.14) and solve
it for v̂1 to compute the maximum speed achievable; (iii) we use (C.8) to obtain the
corresponding value of the latency of an event camera, given its distance from the
obstacle and its speed.

C.4.3 Quadrotor Model

The dynamical model of a quadrotor is differentially flat and the vehicle can be
considered as a linear system using nonlinear feedback linearization [110] both from
a control [101] and a planning perspective [130]. We considered four cases for the
maximum lateral acceleration the robot can produce: ū2 = 10 m s−2, ū2 = 25 m s−2,
ū2 = 50 m s−2, and ū2 = 200 m s−2. These values correspond to a thrust-to-weight ratio
of approximately 1.5, 2.8 5.2 and 20, respectively. The first three cover a large range
of the lift capabilities of commercially available drones, while the fourth represents
a vehicle currently not yet available, but which might be available in the future. We
assume rv = 0.25 m and ro = 0.50 m, leading to an expanded obstacle size of r = 0.75 m.

C.4.4 Results

The results of our analysis for vision-based quadrotor flight are available in Table C.1.
For each sensing modality (first column) we combined three values for the sensing range
(second column) and the latency (third column), and computed the maximum speed
the robot can achieve depending on the maximum lateral acceleration it can produce
(fourth column). For frame-based camera (monocular and stereo), we considered as
values for the sensing range and the latency the lower-bound, the upper-bound and
the average between upper-bound and lower-bound.

Similarly, we considered three values for the sensing range of an event camera. However,
as mentioned in Sec. C.4.2, the latency of event cameras is strictly connected to the
robot’s agility. As shown in Sec. C.11.2 of the supplementary material, the theoretical
latency of an event camera depends on both its distance to the obstacle and its velocity
towards it (c.f. Eq. (C.14)). Broadly speaking, the faster the robot, the earlier the
desired amount of events for the detection are generated. However, for the obstacle
avoidance problem to be well-posed, the robot cannot be arbitrarily fast, but its speed
must be such that the avoidance maneuver requires an amount of time smaller than

82

C.4. Case Study: Vision-Based Quadrotor Flight

Sensor Type Sensing Range [m] Latency [s]
Max. speed [m s−1]

ū2 = 10 m s−2 ū2 = 25 m s−2 ū2 = 50 m s−2 ū2 = 200 m s−2

Mono Frame

2.0 0.026 3.48 5.37 7.38 13.47
2.0 0.033 3.44 5.27 7.20 12.83
2.0 0.040 3.40 5.17 7.02 12.30
4.0 0.026 5.23 8.06 11.07 26.94
4.0 0.033 5.17 7.91 10.79 25.73
4.0 0.040 5.10 7.76 10.53 24.62
6.0 0.026 6.97 10.74 14.76 40.41
6.0 0.033 6.89 10.54 14.39 38.59
6.0 0.040 6.81 10.35 14.03 36.93

Stereo Frame

2.0 0.017 3.54 5.51 7.64 14.37
2.0 0.043 3.38 5.13 6.93 12.06
2.0 0.070 3.24 4.80 6.35 10.39
5.0 0.017 8.86 13.77 19.11 35.93
5.0 0.043 8.50 12.83 17.34 30.16
5.0 0.070 8.10 12.01 15.88 25.98
8.0 0.017 14.17 22.03 30.57 57.50
8.0 0.043 13.54 20.53 27.75 48.25
8.0 0.070 12.95 19.21 25.40 41.56

Mono Event
2.0 0.002 - - - 16.12
2.0 0.003 - - 8.06 -
2.0 0.004 - 5.70 - -
2.0 0.007 3.60 - - -
5.0 0.004 - - - 39.53
5.0 0.008 - - 19.76 -
5.0 0.011 - 13.98 - -
5.0 0.017 8.84 - - -
8.0 0.006 - - - 62.06
8.0 0.012 - - 31.03 -
8.0 0.018 - 21.94 - -
8.0 0.029 13.88 - - -

Table C.1: The results of our case study. We compare monocular frame-based cameras, stereo
frame-based cameras and event cameras for different robot agility values. The dashes in the
columns reporting the maximum speed achievable with an event camera are due to the fact that,
given a value for the sensing range and the maximum lateral acceleration, we can compute the
maximum achievable speed and the corresponding latency (c.f. Sec. C.4.4 for a more detailed
explanation).

the time to contact (Eq. (C.4) and (C.7)). This means that the theoretical latency of
an event camera depends also on the maximum lateral input the robot can produce.
Therefore, for a given sensing range and robot’s maximum input, one can compute
the corresponding maximum velocity achievable and, consequently, the latency of
an event camera mounted on such a robot. Since different robot’s maximum input
would produce different maximum velocity, the same event camera will similarly have
different latencies (Eq. (C.14)). This motivates the dashed values in Table C.1.

As one can notice, when the sensing range and the robot’s agility are small, the
difference among mononocular frame cameras, stereo frame cameras and event cameras
is not remarkable. Conversely, frame cameras in stereo configuration and event cameras
allow faster flight than a monocular frame camera when either the sensing range or the
robot’s agility increase. In particular, increasing the sensing range, as expected from
Sec. C.7, allows the robot to navigate faster thanks to a sensible increase of the time to
contact.

83

Appendix C. The Role of Perception Latency in Obstacle Avoidance

Similarly, making the robot more agile (i.e., increasing ū2) allows it to fly faster thanks
to the decrease of the avoidance time. As one can notice by the results in the column of
the quadrotor having and ū2 = 200 m s−2, the difference between the maximum speed
achievable with stereo frame-based cameras and event cameras become significant.
Depending on the sensing range, low-latency event cameras allow the robot to reach
a maximum speed that can be between 7% and 12% larger than the one achievable
with a stereo frame-based camera. It is important to remark that, despite the numbers
provided for the case ū2 = 200 m s−2 are very high, they are not as far as one could
think from what is currently achievable by agile quadrotors. Indeed, First-Person-
View (FPV) quadrotors are currently capable of reaching speeds above 40 m s−1 with
thrust-to-weight ratios above 10 and, given the pace of the technological progress in
the FPV community, it is not hard to believe that, in the near future, quadrotors will be
able to reach speeds significantly beyond the current values. In FPV racing, a small
increase in the maximum flight speed can represent the step necessary to outperform
other vehicles participating in the race. This is particularly interesting in the contest of
autonomous FVP drone racing, an extremely active area of research [84, 165].

C.5 Experiments

To validate our analysis, we performed real-world experiments with a quadrotor
platform equipped with an Insightness SEEM1 sensor 1, a very compact neuromorphic
camera providing standard frame, events and Inertial Measurement Unit data. The
obstacle was a ball of radius 10 cm thrown towards the quadrotor, and the vehicle only
relied on the onboard event camera to detect it and avoid it. From the perspective of
our model, this is equivalent to the case where the robot moves towards the obstacle,
since the time to contact depends on the absolute value of the relative longitudinal
velocity. This experimental setup allowed us to reach large relative velocities in a
confined space. Further details about the experimental platform used in this work are
available in Sec.C.13.1 of the supplementary material.

C.5.1 Obstacle Detection with an Event Camera

To detect the obstacle, whose size is supposed to be known, we use a variation of
the algorithm proposed in [119] to remove events generated by the static part of
the environment due to the motion of the camera. Different from [119], we do not
compensate for the camera’s motion using numerical optimization, but rather exploiting
the gyroscope’s measurements. This allows our pipeline to be faster, but comes at the
cost of a higher amount of not compensated events.

We accumulate motion-compensated events over a sliding window of 10 ms, obtaining

1http://www.insightness.com/technology

84

http://www.insightness.com/technology

C.5. Experiments

an event-frame containing the timestamp of the events due to the motion of moving
objects. Such event-frame typically consists of several separated blobs, which are clus-
tered together using the DBSCAN algorithm [39] based on their relative distance, their
direction of motion (obtained using Lucas-Kanade tracking [102]) and the timestamp
of the events. We fit a rectangle around the blobs belonging to the same cluster and
look for the rectangle having the most similar aspect ratio to the expected one. Since
we assume the size of the obstacle to be known, we compute its expected aspect ratio
and, after finding the most similar cluster, we project its the centroid into the world
frame using the standard pinhole camera projection model.

To render our algorithm most robust to outliers, we considered the obstacle to be
detected only when at least n measurements in the world frame are obtained and
their relative distance is below a threshold. Our experimental evaluation showed that
2 consecutive measurements at a relative distance lower than 20 cm were sufficient
to detect the ball in a reliable way. Also, we fixed the sensing range by discarding
detections happening when the ball was at a distance from the robot larger than its
sensing range.

It is important to note that our detection algorithm was designed with the aim of
reducing the latency of the sensing pipeline and, during the tuning stage, speed was
prioritized against accuracy. Accurate obstacle detection with event cameras of obstacles
of unknown size and shape is beyond of the scope of this paper.

C.5.2 Expected and Measured Latency

Theoretically, a 1 pxl motion of the projection of point in the image is sufficient to
generate an event. However, in our experiment we realized that a larger motion is
necessary to obtain reliable obstacle detection with an event camera. More specifically,
the algorithm was able to detect the obstacle thrown towards the vehicle whenever a
displacement between of at least 5 pxl was verified. In Sec. C.13.3 of the supplementary
material we analyze this aspect and discuss the main reasons causing the discrepancy
between the theoretical ideal model and real data. Also, we exploited the model
proposed in Sec. C.11.2 of the supplementary material to compute the theoretical
latency for an event camera having the same resolution of the sensor used in our
experiments, for a pixel displacement of 5 pxl. Sec. C.13.2 of the supplementary
material reports the theoretical latency for an obstacle detection pipeline based on an
Insightness SEEM1, and the measured latency for our algorithm. As one can see from
Fig. C.12, Fig. C.13, and Tab. C.2 in the supplementary material, the experimental data
agree with the theoretical model. Sec. C.13.3 of the supplementary material discusses
the discrepancy between our model and actual data.

85

Appendix C. The Role of Perception Latency in Obstacle Avoidance

C.5.3 Results

We performed experiments where the quadrotor described in Sec. C.13.1 of the sup-
plementary material, equipped with an Insightness SEEM1 sensor and running the
detection algorithm described in Sec. C.5.1, was commanded to avoid a ball thrown
towards it. The ball was thrown with a speed spanning between v̂1 = 5 m s−1 and
v̂1 = 9 m s−1. The sensing range was 2 m, meaning that any detection at distance
larger than this amount was neglected. Therefore, the time to contact spanned between
tc = 0.22 s and tc = 0.40 s. The robot was commanded to execute an avoidance maneu-
ver either upwards, laterally or diagonally. The obstacle radius was ro = 10 cm, while
the robot’s size was computed as either its height (rv = 15 cm) or half its tip-to-tip
diagonal (rv = 25 cm), depending on the direction of the the avoidance maneuver.
Therefore, the expanded obstacle radius spanned between r = 25 cm and r = 35 cm.
The avoidance spanned between ts = 0.17 s and ts = 0.25 s. In all the experiments,
the ball would have hit the vehicle if the avoidance maneuver was not executed, as
confirmed by ground truth data provided by the motion-capture system.

C.6 Conclusions

In this work, we studied the effects that perception latency has on the maximum speed
a robot can reach to safely navigate through an unknown environment. We provided a
general analysis for a robot modeled as a linear second-order system with bounded
inputs. We showed how the maximum latency the robot can tolerate to guarantee
safety is related to the desired speed, the agility of the platform (e.g., the maximum
acceleration it can produce), as well as other perception parameters (e.g., the sensing
range). We compared frame-based cameras (monocular and stereo) against event
cameras for quadrotor flight. Our analysis showed that the advantage of using an
event camera is higher when the robot is particularly agile. We validated our study
with experimental results on a quadrotor avoiding a ball thrown towards it a speeds
up to 9 m s−1 using an event camera. Future work will investigate the use of event
cameras for obstacle avoidance on a completely vision-based quadrotor platform, using
on-board Visual-Inertial Odometry for state estimation.

Supplementary Material of:

How Fast is Too Fast? The Role of Perception Latency
in High-Speed Sense and Avoid

Davide Falanga, Suseong Kim and Davide Scaramuzza

86

C.7. Sensitivity Analysis

Figure C.5: Sensitivity of the maximum speed v̄1 with respect to the perception (s, τ) and
actuation (ū2) parameters of the system for the case s = 2.5 m, τ = 0.05 s, ū2 = 50 m s−2.

C.7 Sensitivity Analysis

Eq. (C.9) is particularly interesting for robot design to analyze what the best config-
uration in terms of perception and actuation systems is. As one can easily derive
from (C.9), reducing the latency increases the maximum speed at which the robot can
navigate the environment safely. However, it might not always be possible to reduce
the sensing latency, or it might be better to change some other parameters of the system
(e.g., the sensing range or the maximum acceleration), since this might produce better
improvements at a lower cost. By performing a sensitivity analysis, we can study the
impact of the sensing range, the latency, and the maximum input on the speed that the
robot can reach.

To do so, it is necessary to first define a set of parameters. For example, we consider
the case s = 2.5 m, τ = 0.05 s, ū2 = 50 m s−2. This set of parameters, chosen as a
representative case for the study in Sec. C.4, according to (C.9) allow the robot to
navigate at a maximum speed v̄1 = 10 m s−1. Based on these values, we vary each of
the parameters while keeping the others constant to understand how the maximum
speed the robot can achieve changes.

Fig. C.5 shows the results of this numerical analysis for a variation of the parameters
between −100% and 100% of the reference value (horizontal axis). On the vertical
axis the percentage variation of v̄1 is reported. As one can see, v̄1 is very sensitive
to the sensing range, whereas, except for extreme decreases of the maximum lateral
acceleration (far left end of the blue line), the sensitivities with respect to ū2 and τ

87

Appendix C. The Role of Perception Latency in Obstacle Avoidance

are comparable. However, it is not always possible to change the range of a sensing
pipeline, whereas it could be possible to reduce its latency. This is the case, for example,
of a DAVIS [16], a neuromorphic sensor comprising a frame and an event camera
sharing the same pixel array and optics. In such a case, it is possible to use frames or
events depending on the need, but the sensing range, which depends on the sensor
itself, cannot be modified for one modality without affecting the other. For this reason,
in the remainder of this work will focus on the impact of the latency on the maximum
speed a robot can navigate.

C.8 Generalization to Multiple Obstacles

So far, we only considered the case where the robot faces a single obstacle and needs
to avoid it. Although mathematically simple, our approach can generalize to multiple
obstacles by iteratively running the same considerations previously described. Indepen-
dently of the number of obstacles, we can always consider the closest obstacle to the
robot along its direction of motion and perform the evaluation of Sec. C.2.2 and C.2.2.
If the robot reaches a safe lateral position within the time to contact (C.3), we can
consider the obstacle avoided, and the robot has to avoid the next obstacle along its
path. The only difference with respect to the previously avoided obstacle is the distance
between the obstacle and the robot along the longitudinal and lateral axes.

A conservative, yet effective analysis can be conducted for the case of navigation in
environments with multiple obstacles by using our formulation under the following
assumptions: (i) all the obstacles are considered to have the same size (i.e., the size
of the largest obstacle); (ii) the distance between two consecutive obstacles along the
longitudinal axis is sufficiently large to guarantee that the avoidance time in the case of
no latency is lower than the time to contact.

C.9 Monocular Frame-Based Camera

C.9.1 Sensing Range

For an obstacle to be detected with a frame-based camera, it has to occupy a sufficiently
large number of pixels in the image. Let N be the number of pixels necessary to detect
an obstacle. Furthermore, let α be the field of view of the sensor. Without loss of
generality, we only consider the projection of an object along the horizontal axis of the
camera, but similar results apply to the vertical axis.

Let q be the horizontal resolution of a camera. The angular resolution of the camera
can be computed as θ = α

q . Let ro be the size of an obstacle, d its distance to the camera,
and assume it is placed such that the camera optical axis passes through its center

88

C.9. Monocular Frame-Based Camera

Figure C.6: A schematics representing the obstacle in front of the camera. The obstacle is
represented in red, while the camera is in black on the left side of the image and has resolution
q. The field of view α is highlighted in green, while the angle spanned by the obstacle in the
image φ is highlighted in blue. d is the distance between the camera and the obstacle, while f
is the focal length of the camera.

(cf. Fig. C.6). The obstacle spans an angle φ = 2 arctan
(ro

2d

)
. For the obstacle to be

visible in the image, it must be at a distance d such that φ = θ, which would result in
a projection in the image of 1 pxl. However, 1 pxl is typically not sufficient to detect
an obstacle. Let N be the number of pixels one needs to detect an obstacle. For the
obstacle to occupy at least N pixels in the image, we want that φ ≥ Nθ. We define the
sensing range of a monocular camera sM the maximum distance at which the obstacle
is still detectable, namely the distance at which the previous condition is satisfied with
the equality constraint:

sM =
ro

2 tan
(Nθ

2

) . (C.10)

Eq. (C.10) shows that the sensing range of a monocular camera depends on its angular
resolution θ. Fig. C.7 shows the range at which a monocular system can detect an
obstacle of size ro = 0.5 m when this occupies a percentage k = 5%, k = 10% and
k = 15% of the image size q.

C.9.2 Latency

The latency of a camera-based perception system depends on (i) the time tf between two
consecutive images, (ii) the number of images necessary for detection, and (iii) the time
to process each image. The first one only depends on the sensor itself, and includes,
among the other things, the exposure time and the transfer time. The second and the
third depend on the sensor, the computational power available and the algorithm used
to detect the obstacle. It is therefore hard to provide an exact estimate of the actual
latency of a perception system based on a monocular camera, since it depends on a

89

Appendix C. The Role of Perception Latency in Obstacle Avoidance

Figure C.7: The sensing range sM for a monocular system depending on the field of view α.
The the number of pixels N necessary to detect an obstacle of size ro = 0.5 m are computed as
a percentage k of the image resolution.

large variety of factors. Thus, in this work we analyze its theoretical upper-bound
and lower-bound to provide a back-of-the-envelope analysis of the possible performance
achievable.

For a vision-based perception system to be effective, it has to produce its output in
real-time. This means that, if n is the number of images necessary for the detection,
the latter must happen before the frame n + 1 arrives. Therefore, the frame-rate tf

of a camera provides an upper-bound for the latency of a monocular vision system.
Assuming that 2 frames are sufficient to detect an obstacle along the robot’s path, the
latency for a monocular camera has an upper-bound given by τM = 2tf.

To have an estimate of the theoretical lower-bound of the latency of a frame-based
camera, we neglect the processing time and only consider the delays caused by how
such cameras work. More specifically, in the ideal case of negligible processing time, the
lower-bound of the latency depends on (i) the time tf between two consecutive triggers
of the sensor, (ii) the exposure time tE, and (iii) the time tT necessary to transfer each
frame. In the ideal case of no processing time, the latency of a frame-based camera has
a lower-bound τM = tf + tT + tE. Typically, an image is transferred to the processing
unit before the next one arrives, which means 0 < tT < tf. The time tT depends on the
size of the image and the protocol used to communicate with the sensor. For example,
a gray-scale VGA resolution image (i.e., 640× 480 pxl) has a size of 2.1 Mbit and can be
transferred in approximately 5 ms with a USB 2.0 connection (480 Mbit/s) and 0.4 ms

90

C.10. Stereo Frame-Based Camera

with a USB 3.0 connection (5 Gbit/s). The exposure time depends on the amount of
light available in the environment and cannot be larger than the time between two
consecutive frames, i.e. 0 < tE < tf.

C.10 Stereo Frame-Based Camera

C.10.1 Sensing Range

Using stereo cameras, it is possible to triangulate points using only one measurement
consisting of two frames grabbed at the same time. Let b be the baseline between the
two cameras, f their focal length and l the disparity between the two images of a point
of interest. The depth of such a point is given by d = f b

l . However, the uncertainty
in the depth estimation εD grows proportional to the square of the distance between
the camera and the scene [62], namely εD = z2

b f εP, where εP is the uncertainty in the
disparity matching. Therefore, we consider the sensing range for a stereo camera sS as
the maximum depth such that the uncertainty in the depth estimation is below a given
percentage threshold k:

sS =
k f b
εP

. (C.11)

Fig. C.8 shows the sensing range of a stereo camera as a function of the baseline b such
that the depth uncertainty εD is below 5% and 20% of the actual depth, for the cases of
VGA (640× 480 pxl) and QVGA (320× 240 pxl) resolutions, assuming εP = 1 pxl.

C.10.2 Latency

Differently from monocular systems, stereo cameras capture simultaneously two frames
using two cameras placed at a relative distance b. It is therefore possible to use a single
measurement, i.e. two frames from two different cameras, to detect obstacles, for
example computing the disparity between such frames, a depth map or an occupancy
map. Depending on the technique used to detect obstacle using a stereo camera,
the computational power available and the resolution of the output, the latency of
a stereo system can vary significantly. For example, the Intel RealSense, provides
a depth map at a frequency of 60 Hz (RealSense R2002), while the Bumblebee XB33

only provides its output at up to 16 Hz. However, computing the latency of those
measurements is not an easy task, since most of the commercially available sensors do
not provide such information in their datasheets. An estimate of the latency of a wide

2https://tinyurl.com/realsenser200
3https://tinyurl.com/bumblebeexb3

91

https://tinyurl.com/realsenser200
https://tinyurl.com/bumblebeexb3

Appendix C. The Role of Perception Latency in Obstacle Avoidance

0.05 0.075 0.1 0.125 0.15

2

4

6

8

Figure C.8: The sensing range sS for a stereo system depending on the baseline b for a focal
length of 4 mm. This sensing range guarantees that the uncertainty εD is below 5% and 20% of
the actual depth.

92

C.11. Monocular Event Camera

variety of depth cameras is available thanks to the effort of the robotics community4,
according to which most of the stereo systems have a latency of one frame. Therefore,
we consider as a lower-bound for stereo cameras the inverse of the frame-rate of the
fastest sensor currently available on the market, namely the Intel RealSense, leading to
a lower-bound τS = 0.017 s. For the upper-bound, instead, we can refer to the datasheet
of the Stereolab ZED Mini5, which has an estimated latency τS = 0.07 s.

C.11 Monocular Event Camera

C.11.1 Sensing Range

Since monocular frame-based cameras and event camera often share the same sensor,
we can use (C.10) to compute the sensing range of an event camera. However, the
amount of pixels the obstacle must occupy in the image in order to be detected is
significantly smaller. In principle, the obstacle would generate an event when each
of its two edges occupy at least 1 pxl in the image. However, due to the noise of this
sensor, the obstacle can be detected with an event camera when it occupies an amount
of pixels in the image which is significantly larger than the amount of pixels it has to
move to generate an event (see Sec. C.11.2 of this document). In this work, we assume
that the obstacle size in the image must be at least one order of magnitude larger than
the amount of pixels it has to move to fire an event. Therefore, we compute the sensing
range of an event camera using (C.10) with N = 10. This leads to a sensing range for
an event camera which, depending on the field of view of the sensor, can span between
sE = 10 m and sE = 20 m for an obstacle of size ro = 0.5 m.

C.11.2 Latency

In this work, we assume that an obstacle can be detected using an event camera
whenever its edges generate an event. For this to happen, there must be sufficient
relative motion between the camera and the obstacle to cause a change of intensity
sufficiently large to let an event fire. Typically, as shown in [125], the edge of an
obstacle generates an event when its projection on the image plane moves by at least
1 pxl. Without loss of generality, we analyze the horizontal motion of the obstacle in
the image. Let d be the distance between the robot and the obstacle along the camera
optical axis, and let ro be the radius of the obstacle. Furthermore, assume the optical
axis of the camera to pass through the geometric center of the obstacle, which we model
here as a segment (cf. Fig. C.9). The projection of a point p into the image plane has

4https://rosindustrial.org/3d-camera-survey/
5https://www.stereolabs.com/zed-mini/

93

https://rosindustrial.org/3d-camera-survey/
https://www.stereolabs.com/zed-mini/

Appendix C. The Role of Perception Latency in Obstacle Avoidance

Figure C.9: A schematics representing the translation necessary for the obstacle to generate an
event. The obstacle (in red on the left side of the picture) is projected on the image plane on a
point which has horizontal component u depending on the distance di from the camera. The
quantity ∆d represents the distance the camera has to move such that the projection edge of the
obstacle on the image plane moves by 1 pxl.

horizontal component u given by [70]:

u = f c px

c pz
, (C.12)

where c px and c pz are the components of p in the camera reference frame, and f is
the camera focal length. In our case, c px = ro and c pz = d. We can compute (C.12)
for two values d1 and d2 = d1 − ∆d of the distance along the optical axis, obtaining
two different values u1 and u2, respectively. Equating ∆u = u2 − u1 to the desired
translation in the image plane necessary to generate an event (in our case, ∆u = 1 pxl),
we can compute the camera translation ∆d as:

∆d =
∆ud2

1
f ro + ∆ud1

. (C.13)

The time it takes the robot to cover such a distance ∆d depends on its speed v̂1:

τE =
1
v̂1

∆ud2
1

f ro + ∆ud1
. (C.14)

Eq. (C.14) shows the time necessary to get an event from the edge of the aforementioned
obstacle.

It is important to note that, since the transfer time for an event is in the order of a few
microseconds [126], we consider it negligible. Similarly, we neglect the processing time

94

C.11. Monocular Event Camera

2 4 6 8 10 12 14 16 18 20

0

0.005

0.01

0.015

0.02

0.025

0.03

Figure C.10: The latency τE for an event camera depending on its distance from the obstacle d
and the speed v̂1. We considered the case of an event camera with a VGA resolution sensor
and a focal length of 4 mm.

for the case of event-based vision, since each pixel triggers asynchronously from the
other and, therefore, the amount of data to be processed is significantly lower than the
case where an entire frame has to be analyzed.

Fig. C.10 shows the latency for an event camera (C.14) depending on its distance from
the obstacle d and the speed v̂1 in the case of VGA resolution and focal length of 4 mm.
It is clear that the theoretical latency of an event camera is not constant, but rather
depends on the relative distance and the speed between the camera and the obstacle.
Therefore, to compute the maximum latency that a robot can tolerate in order to safely
navigate using an event camera, it is necessary to jointly consider the sensing range
(Sec. C.3.2), and Eq. (C.8) and (C.14). Intuitively speaking, this is due to the fact that
event cameras are motion activated sensors. In order for the edges of an obstacle to
generate an event, their projection in the image must move by at least 1 pxl. For this to
happen, the robot must move towards the obstacle by a quantity ∆d which depends on
its distance to the obstacle through (C.13). Therefore, the latency of an event camera, i.e.
the time it takes the obstacle to generate an event, is given by the ratio between such a
distance ∆d and the robot’s speed v̂1, as shown by (C.14). However, the relative distance
and speed between the robot and the obstacle also influence the time to contact (C.3),
which must be larger than the avoidance time (C.4) for the robot the able to avoid the
obstacle before colliding with it. Therefore, it is not possible to arbitrarly reduce the
latency of an event camera for obstacle avoidance by increasing the robot’s speed, since
this might result in unfeasible avoidance maneuvers.

95

Appendix C. The Role of Perception Latency in Obstacle Avoidance

C.12 Discussion

C.12.1 Stereo Frame or Monocular Event?

As shown in Tab. C.1, stereo cameras and event cameras provide results that, at least for
currently available quadrotors, are comparable in terms of magnitude. Stereo cameras
are currently still among the best options for autonomous quadrotor flight, since they
provide a good compromise between latency and sensing range, without being very
expensive. However, technological development in the event cameras might render
them better solutions in the the future since (i) increasing the resolution would lead to
higher angular resolution, which results in longer ranges, and (ii) they will be become
cheaper as mass-production starts. Also, the sensing range of stereo cameras strongly
depends on the baseline between the two cameras, which for small quadrotors are not
always possible. Additionally, carrying one camera instead of two makes the platform
lighter and, therefore, more agile [90]. Finally, event cameras have other advantages
compared to frame-based cameras such as: (i) high dynamic range, which makes them
more suited for navigation in adverse lighting conditions, where frame-based cameras
might fail; (ii) their latency does not depend on the exposure time, which plays an
important role in frame-based cameras and can significantly increase their latency; (iii)
high temporal resolution, which reduces the motion blur and makes obstacle detection
easier at high speed; (iv) low power consumption, which is desirable with small-scale
robots [140].

C.12.2 Dynamic Obstacles

In this work, we only considered the case of navigation through static obstacles.
Nevertheless, the mathematical framework provided in Sec. C.2 can be used to consider
the case of moving obstacles by taking into account that, in that case, the time to contact
and the avoidance time depend on the relative distance and speed between the robot
and the obstacle along the longitudinal and the lateral axes.

A fundamental assumption of our work is that the robot moves along a direction which
makes the obstacle detectable and eventually leads to a collision. In the case of moving
obstacles, this might not always be the case. Indeed, depending on the relative distance
and speed between the robot and the obstacle, a number of cases can occur: (i) the
robot detects the obstacle, but their relative motion does not lead to a collision; (ii) the
robot detects the obstacle, and their relative motion leads to a collision; (iii) the robot
cannot detect the obstacle, and their relative motion does not lead to a collision; (iv)
the robot cannot detect the obstacle, but their relative motion leads to a collision. It is
clear that, in the case of moving obstacle, the amount of cases to be taken into account
and the parameters to be considered increases significantly. For example, the field
of view of the robot also plays a crucial role in the case of moving obstacles. Indeed,

96

C.13. Experiments

for a given relative speed, depending on the field of view of the sensing pipeline it is
equipped with, the robot might or might not be able to detect the obstacle. In the case
it is able to detect the obstacle, the relative distance at the moment the latter enters the
sensing range depends on how large the field of view is, which then determines the
time to contact. Therefore, in the case of a robot navigating through moving obstacles,
a broader and more detailed analysis of the dependence of the maximum achievable
speed on each parameter is necessary.

Intuitively, moving obstacles would highlight the benefits of event cameras against
other sensors. To compute the latency of an event camera, we considered the case of
a robot moving towards a static obstacle, placed in the center of the image, along a
direction parallel to the camera’s optical axis. This represents a sort of worst case for
event cameras, since the apparent motion between the sensor and the obstacle is small.
Conversely, an obstacle moving along the lateral axis would increase the apparent
motion in the image and, therefore, generate an event earlier than in the case of static
obstacles. Additionally, when obstacles enter the sensing area at a short distance, the
importance of latency increases as the time to contact decreases. For this reason, we
expect that event cameras would allow faster flight in the case of moving obstacles,
especially for short sensing ranges (or, equivalently, for obstacles entering the sensing
area at short distances). We are currently working on analyzing the impact of the
sensing pipeline’s parameters (latency, sensing range and field of view) for the case of
moving obstacles from a mathematical point of view.

C.13 Experiments

C.13.1 Experimental Platform

We used a custom-made quadrotor platform to perform the experiments. The vehicle
was built using the DJI F330 frame, and was equipped with Cobra CM2208 motors
and Dalprop 6045 propellers. The tip-to-tip diagonal of the quadrotor was 50 cm,
with an overall take-off weight of approximately 860 g and a thrust-to-weight ratio of
roughly 3.5. We used an Optitrack motion-capture system to measure the state of the
quadrotor, as well as the position and velocity of the ball. The ball measurements were
not used by the vehicle, which only relied on the information coming from the onboard
obstacle detection algorithm, and were used as ground truth to benchmark the sensing
pipeline. To detect the obstacle, we mounted an Insightness SEEM1 6 neuromorphic
sensor looking forward, and an Intel UpBoard computer running the obstacle detection
algorithm described in the previous section. The horizontal field of view of the sensor
was approximately 90°. Whenever the obstacle was detected, a trigger signal was sent
to a ground-station computer connected to the motion-capture system and running

6http://www.insightness.com/technology

97

http://www.insightness.com/technology

Appendix C. The Role of Perception Latency in Obstacle Avoidance

Figure C.11: The quadrotor used for the experiments. (1) The Insigthness SEEM1 sensor. (2)
The Intel Upboard computer, running the detection algorithm. (3) The Lumenier F4 AIO flight
controller, receiving commands from the ground station.

98

C.13. Experiments

the control stack described in [44], which then initiated the avoidance maneuver. The
control commands (i.e., collective thrust and body rates) were sent to a Lumenier F4
AIO flight controller by the ground-station through a Laird RM024 radio module.

C.13.2 Obstacle Detection with an Event Camera: Theoretical and Practical
Latency

As described in Sec. C.5 of the main manuscript, we performed actual experiment on
a quadrotor equipped with an Insightness SEEM1 sensor having QVGA resolution
(i.e., 320× 240 pxl). We estimated that, in order to obtain reliable measurements of
the obstacle, a displacement ∆u of 5 pxl was typically necessary. Fig. C.12 shows the
theoretical latency of such a sensor for obstacle detection, according to the model
proposed in Sec. C.11.2, for a sensing range of 1 m, 2 m and 3 m, with ∆u = 5 pxl.

To validate these results, we performed a quantitative analysis using ground truth data
provided by an Optitrack motion-capture system. More specifically, we performed 100
experiments throwing the ball, anchored to a table through a leash to prevent collisions,
towards the quadrotor, and used data from the motion-capture system to measure the
moment when the ball entered the sensing range s of the camera. This was manually
set to three different values, i.e. s = 1 m, s = 2 m and s = 3 m. For each of these values,
we computed the time when the sensing pipeline detected the ball for the first time,
and compared it to the time when the obstacle actually entered the sensing range using
data from the motion-capture system. This comparison allowed us to estimate the
latency of our event-based obstacle detection algorithm, and the results are shown in
Fig. C.13 for a range of obstacle speeds between 5 m s−1 and 9 m s−1 .

s [m] µ [s] σ [s]
1 0.0037 0.0030
2 0.0688 0.0474
3 0.1832 0.0766

Table C.2: The mean µ and standard deviation σ of the latency for the obstacle detection
algorithm proposed in this work based on the Insightness SEEM1 sensor.

C.13.3 Obstacle Detection with an Event Camera: Discrepancy Between
Theory and Practice

As one can notice, the results in Fig. C.13 agree with the theoretical lower-bound of the
latency expected for the sensor used in our experiments, shown in Fig. C.12. Tab. C.2
reports the mean µ and standard deviation σ of the latency of our event-based obstacle
detection algorithm, depending on the desired sensing range. As the sensing range
increases, also the error between the mean value and the expected theoretical latency

99

Appendix C. The Role of Perception Latency in Obstacle Avoidance

2 4 6 8 10 12 14 16 18 20

0

0.05

0.1

0.15

0.2

0.25

Figure C.12: The theoretical latency τE for the Insigthness SEEM1 used in our experiments,
depending on its distance from the obstacle d and the speed v̂1. We considered the case of an
event camera with a QVGA resolution sensor and a focal length of 4 mm.

5 6 7 8 9 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure C.13: The measured latency τE of our event-based obstacle detection algorithm using an
Insightness SEEM1, depending on its distance from the obstacle d and the speed v̂1.

100

C.13. Experiments

increases. Similarly, the standard deviation becomes larger. We believe this effects to be
mainly due to two factors.

First, the output of an event camera is particularly noisy. The higher the noise level,
the larger the amount of events that need to be processed and, therefore, the higher
the computational cost of our algorithm. In our case, the noise comes from both actual
sensor noise and events generated by the static part of the scene which are not perfectly
compensated by our algorithm.

Second, the resolution of our sensor is particularly low. This has a twofold consequence.
The first is that the size of the obstacle in the image is not very large when it is far away
from the camera. The second is that, when the obstacle is far from the camera, it needs
to move by a significant amount in order for its projection in the image to move by an
amount ∆u = 5 pxl. The closer it gets to the camera, the smaller the distance it has to
travel to produce such displacement ∆u, which, for a constant velocity of the obstacle,
translates into a lower detection latency. Additionally, when the obstacle is close to the
camera, it occupies a significant portion of the image, making its detection easier.

Therefore, as the sensing range increases, the difference between the theoretical model
(Sec. C.11.2) and the actual sensing pipeline becomes more and more important.
However, near-future improved versions of event-based sensors can bridge this gap
and render event-based obstacle detection pipelines closer to the theoretical model we
propose in this work. More specifically, we believe that event cameras with higher
resolution could lead to better and faster obstacle detection pipelines. An additional
benefit of large resolutions is the possibility of mounting lenses providing larger field of
views, which are desirable to sense obstacles, without sacrificing the angular resolution
of the sensor.

101

D Event-Based Avoidance

©2019 AAAS. Reprinted, with permission, from:

D. Falanga, K. Kleber, and D. Scaramuzza. “Low Latency Avoidance of Dynamic
Obstacles for Quadrotors with Event Cameras”. In: AAAS Science Robotics, Under
Review (2019)

103

Appendix D. Event-Based Avoidance

Low Latency Avoidance of Dynamic
Obstacles for Quadrotors with Event

Cameras

Davide Falanga, Kevin Kleber, and Davide Scaramuzza

Abstract — In this paper, we address one of the fundamental chal-
lenges for micro aerial vehicles: dodging fast moving objects using
only onboard sensing and computation. Effective avoidance of mov-
ing obstacles requires fast reaction times, which entails low-latency
sensors and algorithms for perception and decision making. All
existing works rely on standard cameras, which have latencies of
tens of milliseconds and suffer from motion blur. We depart from
state of the art by relying on a novel bioinspired sensor, called event
camera, with reaction times of microseconds, which perfectly fits our
task requirements. However, because the output of this sensor is not
images but a stream of asynchronous events that encode per-pixel in-
tensity changes, standard vision algorithms cannot be applied. Thus,
a paradigm shift is necessary to unlock the full potential of event
cameras. Our proposed framework exploits the temporal information
contained in the event stream to distinguish between static and dy-
namic objects, and makes use of a fast strategy to generate the motor
commands necessary to avoid the detected obstacles. Our resulting
algorithm has an overall latency of only 3.5 ms, which is sufficient
for reliable detection and avoidance of fast-moving obstacles. We
demonstrate the effectiveness of our approach on an autonomous
quadrotor avoiding multiple obstacles of different sizes and shapes,
at relative speeds up to 10 m s−1, both indoors and outdoors.

104

D.1. Introduction

Figure D.1: Sequence of an avoidance maneuver.

Videos of the Experiments

All the experiments reported in this manuscript is available at http://rpg.ifi.uzh.
ch/event_based_avoidance

D.1 Introduction

Micro aerial vehicles (MAVs) are at the forefront of this century’s technological shift.
They are becoming ubiquitous, giving birth to new, potentially disruptive markets
worth several billion dollars, such as aerial imaging (forecast value of 4 billion USD
by 2025 1), last-mile delivery (90 billion USD by 20302) and aerial mobility (almost 8
billion USD in 2030 3).

Keeping a vehicle airborne above a crowd poses large safety risks. Several drone crashes
have been recently reported in the news, due to either objects tossed at quadrotors
during public events 4 5, or collisions with birds 6 7. Enabling MAVs to evade fast-
moving objects (cf. Fig. D.1) is therefore critical for the deployment of safe flying robots
on a large scale and is still unsolved.

D.1.1 The Challenge

The temporal latency between perception and action plays a key role in obstacle
avoidance. The higher the latency, the lower the time the robot has to react and execute
an avoidance maneuver [47]. This is especially critical for MAVs, where a collision can
not only damage the environment, but also cause severe hardware failure. Additionally,
micro quadrotors have reduced payload capabilities, which puts a hard bound on the

1http://bit.do/aerial-imaging-market
2http://bit.do/aerial-delivery-market
3http://bit.do/air-mobility-market
4http://bit.do/forbes-drone-taken-down
5http://bit.do/standard-argentina-drone-takedown
6http://bit.do/daily-mail-eagle-drone
7http://bit.do/cnet-hawk-drone

105

http://rpg.ifi.uzh.ch/event_based_avoidance
http://rpg.ifi.uzh.ch/event_based_avoidance
http://bit.do/aerial-imaging-market
http://bit.do/aerial-delivery-market
http://bit.do/air-mobility-market
http://bit.do/forbes-drone-taken-down
http://bit.do/standard-argentina-drone-takedown
http://bit.do/daily-mail-eagle-drone
http://bit.do/cnet-hawk-drone

Appendix D. Event-Based Avoidance

sensing and computing resources they can carry.

The existing literature on obstacle avoidance for MAVs relies on standard cameras (in a
monocular [38, 3, 97] or stereo configuration [138, 20, 121, 10]) or on depth cameras [98,
100, 77]. However, these works assume that the obstacles in the environment are either
static or quasi-static (i.e., slow relative motion).

Similarly, state-of-the-art consumer drones are not currently capable to reliably detect
and avoid moving obstacles. For example, the Skydio drone, as of today one of the most
advanced autonomous drones on the market, is not capable of dealing with moving
objects (If you throw a ball at it, it’s almost certainly not going to get out of the way, said
Adam Bry, CEO of Skydio 8).

Developing effective algorithms to avoid dynamic obstacles is therefore a key challenge
in robotics research, as well as a highly admired goal by major industry players.

D.1.2 Event Cameras

The limitations of standard cameras arise from their physical nature and cannot be
solved with sophisticated algorithms. The solution is given by a novel type of sensor,
called event camera, which has a sensing latency virtually negligible.

Event cameras [96] are bio-inspired sensors that work radically different from traditional
cameras. Instead of capturing images at a fixed rate, an event camera measures per-pixel
brightness changes asynchronously. This results in a stream of events at microsecond
resolution. More specifically, an event camera has smart pixels that trigger information
independently of each other: whenever a pixel detects a change of intensity in the scene
(e.g., caused by relative motion), that pixel will trigger an information at the time the
intensity change was detected. This information is called event, and encodes the time
(at microsecond resolution) at which the event occurred, the pixel location, and the sign
of the intensity changes. Let tk-1 be the last time when an event fired at a pixel location
x, and let Lk-1 = L (x, tk-1) be the intensity level at such pixel at time tk-1. A new event is
fired at the same pixel location at time tk as soon as the difference between the intensity
Lk-1 and Lk is larger than a user-define threshold C > 0. In other words, an event
is fired if ‖L (x, tk)− L (x, tk-1)‖ > C (positive event) or ‖L (x, tk)− L (x, tk-1)‖ < −C
(negative event). We refer the reader to [61] for further details.

To better highlight what happens across the entire sensor, we compare the output of an
event camera to the one of a conventional camera in Fig. D.2 and in a video 9.

Event cameras can thus be seen as asynchronous, motion-activated sensors, since they

8http://spectrum.ieee.org/automaton/robotics/drones/skydio-r1-drone
9https://youtu.be/LauQ6LWTkxM?t=32

106

http://spectrum.ieee.org/automaton/robotics/drones/skydio-r1-drone
https://youtu.be/LauQ6LWTkxM?t=32

D.1. Introduction

h

Figure D.2: Comparison of the output of a conventional camera and that of an event camera
when they are looking at a rotating disk with a black dot. While a conventional camera captures
frames at a fixed rate, an event camera only outputs the sign of brightness changes continuously
in the form of a spiral of events in space-time (red: positive changes, blue: negative changes).

provide measurements only if and where there is relative motion between the camera
and the environment. And because their latency is in the order of microseconds, they
are a natural choice for detection and avoidance of fast moving obstacles by flying
MAVs.

If one removes the events induced by the ego-motion of the vehicle [119, 178], one can
directly obtain information about the moving part of the scene. This leads to multiple
advantages over standard cameras for detection of dynamic obstacles: (i) the output
is sparser and lighter than a frame, therefore cheaper to process; (ii) no segmentation
between static and dynamic objects is necessary, since to do so it is possible to exploit
the temporal statistic of each event; (iii) their high temporal resolution (in the order of
microseconds) allows low-latency sensing.

D.1.3 Related Work

In recent years, event cameras have attracted the interest of the robotics community [61].
Obstacle detection is among the applications with the highest potential, and previ-
ous works investigated the use of these sensors to detect collisions [161] and track
objects [119, 113]. However, very few examples of closed-loop control based on event
cameras are available in the literature. Among these, the majority of the works focuses
on simple, low-dimensional tasks, such as 1-DoF heading regulation [21, 127], stereo-
camera gaze control [65, 66], 2-DoF pole balancing [27], 1-DoF robotic goalkeeping [33,
32], or navigating ground robots among static obstacles [25, 63, 13].

Examples of closed-loop control of more complex robotic systems, such as quadrotors,
using event cameras are our recent works [154, 126, 162]. In [154], we proposed an
event-based visual-inertial odometry algorithm for state estimation and closed-loop
trajectory tracking of a quadrotor. Instead, [126] and [162] are the most related to this
paper. In [126], we analyzed the feasibility of detecting spherical objects thrown at a

107

Appendix D. Event-Based Avoidance

stationary event camera on small embedded processors for quadrotors. In [162], we
showed preliminary results in using shallow neural networks for segmenting moving
objects from event streams and demonstrated an application to quadrotor obstacle
avoidance. However, the resulting sensing latency was 60 ms rather than the 3.5 ms of
this paper, thus strongly limiting the maximum relative speed at which moving objects
could be evaded. Additionally, differently from this paper, there we did not consider
the relative distance and velocity to compute the avoidance commands. To the best of
our knowledge, this is the first work that implements and demonstrates low latency
(3.5 ms) dynamic obstacle dodging on an autonomous quadrotor with relative speeds
up to 10 m s−1.

D.1.4 Overview of the Approach and Contributions

Our moving-obstacle detection algorithm works by collecting events during a short-
time sliding window and compensating for the motion of the robot within such time
window. Fig. D.3 shows the effects of the ego-motion compensation: on the left side,
the 3D volume of the events accumulated during an arbitrary time window of 10 ms,
on the right side the same events, after ego-motion compensation, back-projected on
the image plane. We analyze the temporal statistics of the motion-compensated events
to remove those generated by the static part of the environment.

Broadly speaking, our algorithm is based on the intuition that the the static part of
the scene fires events uniformly across the entire time window and, after the ego-
motion compensation, the pixels where they belong show a uniform distribution of
timestamps; conversely, dynamic objects generate ego-motion compensated events
that are accumulated around specific sections of the time window, and can therefore
be distinguished. An intuitive explanation of how and why our algorithm works is
provided in Sec. D.1.5, while we refer the reader to Sec. D.3.1 for a detailed explanation
of this process, which allows us to obtain a so-called event frame, containing only events
coming from moving objects, at very high rate. We leverage a fast clustering algorithm
to tell apart different objects in the event frame, and use a Kalman filter to obtain
information about their velocity. Fig. D.4 provides a visual explanation of the steps
involved in our algorithm, which is thoroughly described in Sec. D.3.1.

The position and velocity of each obstacle relative to the camera is then fed to a fast
avoidance algorithm designed to leverage the low sensing latency. To do so, we use a
reactive avoidance scheme based on the use of artificial potential fields [85] relying on
fast geometric primitives to represent the obstacles, which renders it computationally
inexpensive. We propose a novel formulation of the repulsive field which better suits
the task of avoiding fast moving obstacles by taking into account the need for a prompt
reaction of the robot when an obstacle is detected. Compared to previous approaches,
our formulation of the repulsive potential increases significantly faster as the distance

108

D.1. Introduction

(a) The 3D volume of the events generated
within a time window of 10 ms.

(b) The same events, projected into the im-
age plane after ego-motion compensation.

Figure D.3: Our algorithm collects all the events that fired during the last 10 ms, here repre-
sented in the 3D volume on the left side, and used the Inertial Measurement Unit to compensate
for the motion of the camera. The ego-motion compensated events are therefore projected into
a common image frame, here shown on the right side, where each pixel contains potentially
multiple events. By analyzing the temporal statistics of all the events projected into each pixel,
our approach is able to distinguish between pixels belonging to the static part of the scene and
to moving objects.

between the robot and the obstacle decreases in order to render the avoidance maneuver
more reactive and agile. Additionally, we consider both the magnitude and the direction
of the obstacle’s velocity to decide in which direction to evade, and introduce a decay
factor in the magnitude of the potential to take into account that the obstacles we
consider are dynamic, i.e. they do not occupy the same position in time. Further details
about the avoidance strategy are available in Sec. D.3.2.

Our approach prioritizes computation speed over accuracy, therefore, we trade-off
detection accuracy for latency. Nevertheless, in Sec. D.2.1 we show that our algorithm
only takes on average 3.5 ms (from the moment it receives the events to process to when
it sends the first command to avoid the detected obstacles) to detect moving obstacles
with a position error usually in the order of a few tens of centimeters.

Trading-off detection accuracy for latency is not only a necessity for robotic platforms,
but it has been frequently observed also among animals [23] for the execution of several
tasks involving visual sensing.

We demonstrate the effectiveness of our approach in real experiments with a quadrotor
platform. We validate our system with both a monocular setup (for obstacles of known
size) and a stereo setup (for obstacles of unknown size), both indoors and outdoors. The
entire avoidance framework is capable of running in real-time on a small single-board
computer on-board the vehicle, together with the entire software stack necessary to let

109

Appendix D. Event-Based Avoidance

(a) Frame provided by the In-
sightness SEEM1, which shows
clearly the motion blur due to
the relative motion between the
sensor and the moving obsta-
cle.

(b) All the events accumulated
in a time window. Red in-
dicates positive events, while
negative events are reported in
blue.

(c) The same events, motion-
compensated using the IMU: if
a pixel is colored in white, it
means that at least one event
has been backprojected there
after motion-compensation.

(d) The motion-compensated
events, with color code repre-
senting the normalized mean
timestamp (Eq. (D.4)): the
events belonging to the dy-
namic part of the scene are rep-
resented in yellow.

(e) Mean-timestamp image af-
ter threhsolding: green and
purple indicate the static and
the moving part of the scene,
respectively.

(f) Events belonging to moving
obstacles. This frame is used
to segment out the different
dynamic objects in the scene
(Sec. D.3.1).

Figure D.4: A figure summarizing all the steps of our ego-motion compensation algorithm
to isolate the events belonging to moving obstacles. Fig. D.4a shows a frame capture by the
Insightnes SEES1 camera. Fig. D.4b reports all the events accumulated in the last window, with
red and blue indicating the polarity (positive and negative, respectively). Fig. D.4c reports the
result of the ego-motion compensation, showing in white all the pixels where there has been at
least one event in the time window. We compute the normalized mean timestamp of all the
events belonging to a given pixel, and the resulting values are shown in Fig. D.4d. Based on the
normalized mean timestamp, we can disambiguate between the events belonging to the static
part of the scene and those belonging to the dynamic objects (Fig. D.4e, where green represents
static events and purple moving events). Finally, we obtain a frame containing only the events
belonging to the dynamic part of the scene, as shown in Fig. D.4f.

110

D.1. Introduction

the robot fly (i.e., state estimation, high level control, communication with the flight
controller). Experimental results show that our framework allows the quadrotor to
avoid obstacles moving towards it at relative speeds up to 10 m s−1 from a distance of
around 3 m.

D.1.5 Time Statistics of Events to Detect Moving Obstacles

To provide an intuitive example of how and why our algorithm successfully classifies
static and dynamic events, Fig. D.5 shows the simplified case of a mono-dimensional
event camera (i.e., an event camera having only one row), rotating in a plane while
observing both a static and a dynamic object. The dynamic object (in red) moves from
left to right, while the event camera rotates counter-clockwise.

In the center of the figure, we consider a time window spanning from an initial time
t1 to a final time t5, and we discretize this interval into five time instants to visualize
the sequence of events generated by both the motion of the camera and the dynamic
object. Let us assume that at time t1 both objects generate an event due to the motion
of the camera: the static object fires an event at pixel p1, the dynamic object at pixel p2.
At time t2, the motion of the dynamic object causes another event at pixel p3, while at
time t3 the motion of the camera generates events at pixels p2 (static) and p4 (dynamic).
The same concept applies to times t4 and t5. After collecting all these events, if we
motion-compensate them to remove the effects of the motion of the camera, we obtain
a situation like the one depicted at the bottom of the center part of the image, where
multiple events get back-projected into the same pixel location.

On the right side of the figure, we report the time statistics of the event project into
pixels p1 to p4, which are the only ones having motion-compensated events. As one
can see, the events belonging to the static part of the scene are equally spread across
the time window, while the events fired due to the motion of the dynamic object are
concentrated either at the beginning, the center, or the end of the window. If we now
compute the mean timestamp of all the events falling in each pixel, subtract the mean
of all the events and normalize it by the length of the time window, we obtain a score
for each pixel spanning between −1 and 1. We expect events belonging to the static
part of the scene to have a score of approximately zero, since they contain events spread
across the entire window more or less uniformly. On the contrary, events belonging to
the dynamic part of the scene have scores that can span between −1 and 1, depending
on where they are concentrated within the time window. In particular, the events
generated by the dynamic object at the beginning of the window have a score of −1,
those fired at the center of the window have a zero score, while those generated at the
end of the window have a score of approximately 1. Since we are interested only about
the latest position of the dynamic obstacles, we discard non-positive scores, taking into
account only events with score above zero.

111

Appendix D. Event-Based Avoidance

Static

Dynamic

p1 p2 p3 p4 p5 p6 p7 p8 p9

t1

t2

t3

t4

t5

After ego-motion compensation

t1

t3

t5

t1 t2

t3

t4

t5

T
im

e

Pixel Index

p1 p2 p3 p4 p5 p6 p7 p8 p9

Event Camera

t1 t2 t3 t4 t5

p2

t1 t2 t3 t4 t5

p1

t1 t2 t3 t4 t5

p3

t1 t2 t3 t4 t5

p4

Figure D.5: A simple, yet effective example to explain the working principle of our algorithm.
On the left side, a one-dimensional event camera is placed in front of two objects: a static object,
represented in green, and a dynamic object, in red. The dynamic object moves from left to
right, while the event camera rotates in the opposite direction. In the center of the figure, we
show on top the sequence of events generated by the motion of the camera and of the dynamic
object, for a fixed number of time instant (from an initial time t1 to a final time t5), while at the
bottom the ego-motion compensated events. On the right side, finally, we report the histogram
of the timestamps of all the events falling in each pixel. These histogram clearly highlight
the difference in terms of temporal distribution within the time window between the events
generated by the static object and the events belonging to the dynamic object.

It is important to notice that, for the sake of making this example simple enough, we
only considered one type of events (either positive or negative), while in a real case
each objects generated both positive and negative events, simultaneously. However, the
principle can be easily extended to events with polarity. Additionally, we invite the
reader to notice that not every motion can be compensated, but rather only rotations
and roto-translations with respect to a planar scene. Indeed, these motions can be
modeles as homographies, and the events they generate can be motion-compensated.
However, since we only consider the events that fire within a very short time window,
the majority of the scene moves by a very small amount of pixels, therefore we can
approximate the camera motion as a homography. The mathematical description of the
motion compensation algorithm is provided in Sec. D.3.1.

112

D.1. Introduction

(a) A scene without moving objects. The patch highlighted in red in the left mean timestamp
image belongs to a static part of the scene, and is reported in the center figure. On the right
side, we show the histogram of all the ego-motion events belonging in such patch.

(b) A scene with one moving object. In this case, we selected a patch belonging to a dynamic
part of the scene, namely a ball thrown through the field of view of the camera and moving
from left to right in the frame. As one can notice, several pixels report a high mean timestamp,
and the histogram of all the ego-motion compensated events belonging to the patch confirms
this trend.

Figure D.6: A figure reporting the statistics of the events within a single time window for two
cases: no dynamic object in the scene (top row) and one dynamic object in the scene (bottom
row). For each row, we report: on the left, the mean timestamp image, with color-code shown
on the right side representing the mean of the timestamps of all the events back-projected
to each pixel location; in the center, a 4× 4 pxl patch belonging to a static part (top row) or
dynamic part (bottom row) of the scene, taken from the region highlighted in red in the mean
timestamp image; on the right, the distribution of the events belonging to that patch. As one
can notice, the events in a patch belonging to the static part of the scene report a fairly uniform
distribution of their timestamps within the window. Conversely, the events belonging to a
dynamic object are very concentrated towards one side of the window (in this case, the end).

113

Appendix D. Event-Based Avoidance

D.2 Results

D.2.1 Evaluation of the Event-Based Obstacle Detector

In this section, we perform a quantitative evaluation of the performance and effective-
ness of our algorithm to detect moving obstacles using event cameras. The first analysis
we conduct is about the accuracy of the detections. We collected a large datasets of
obstacle detections, including ground-truth data from an Optitrack motion-capture
system, in order to characterize the detection error of our algorithm, and in Sec. D.2.1
we provide the main results for both the monocular and stereo cases.

In Sec. D.2.1, we analyze the computational cost of the algorithm, providing some
details about how each component contributes to the overall time. Finally, in Sec. D.2.1
we show that our algorithm can detect different sized and shaped obstacles, while in
Sec. D.2.1 we discuss the detection of multiple, simultaneous obstacles.

Accuracy

We collected a dataset of more than 250 throws, obtaining around 1200 detections,
and compared the output of our event-based detector with ground-truth data from
a motion-capture system. For each detection, we computed the norm of the position
error and in Tab. D.1 we summarize the results.

We grouped together measurements falling within bins of size 0.5 m, with the first one
starting from a distance of 0.2 m along the camera’s optical axis, since the algorithm
did not successfully detect the obstacles at closer ranges. In the case of the monocular
detector, it was necessary to discard some of the data we collected due to the fact
that, at short distances, the obstacle is often only partially visible, and therefore our
monocular algorithm fails to correctly estimate its distance since it would fit a known
size to a partially visible object. This issue becomes less significant as the distance
to the camera increases, and after 1 m it does not significantly impact the detector’s
performance. On the other hand, as expected, the stereo configuration is more precise
at low ranges: the further the distance between the cameras and the object, the higher
the uncertainty in the triangulation and, therefore, the larger the error.

Independently of the configuration, however, the data in Tab. D.1 show that our algo-
rithm, although not tailored towards accuracy, but rather optimized for low latency,
provides measurements that are sufficiently accurate to allow a quadrotor to effectively
perceive its surroundings and detect moving obstacles. Among the factors that con-
tribute to the error in estimating the obstacles’ position, the low resolution of the camera
certainly plays a key role. In Sec. D.2.2 we discuss this, as well as other drawbacks of
current event cameras.

114

D.2. Results

Monocular Stereo
Distance [m] Mean Median Std. Dev. M.A.D. Mean Median Std. Dev. M.A.D.

0.2 - 0.5 m 0.08 0.05 0.18 0.09 0.07 0.05 0.07 0.06
0.5 - 1.0 m 0.10 0.05 0.22 0.10 0.10 0.05 0.18 0.10
1.0 - 1.5 m 0.10 0.05 0.20 0.10 0.13 0.07 0.21 0.12

Table D.1: A table summarizing the accuracy of our event-based algorithm to detect moving
obstacles. We analyzed both the monocular and the stereo setups, and compared the detections
with ground-truth data provided by a motion-capture system. For each configuration, we report
(expressed in meters) the mean, the median, the standard deviation and the maximum absolute
deviation of the norm of the position error, for different ranges of distances.

Computational Cost

To quantify the computational cost of our detection algorithm, we ran an extensive
evaluation by throwing objects within the field of view of the event camera, while
simultaneously rotating it, and measured the time necessary to process all the events
that fired within the last time window of 10 ms. Table D.2 shows the results of
our evaluation, highlighting how each step of the algorithm, described in details in
Sec. D.3.1, contributes to the overall computation time. Our evaluation was performed
on a NVIDIA Jetson TX2 board, with the algorithm running exclusively on the CPU
(i.e., the GPU available on the same board was not used at all). The numbers reported
in Tab. D.2 refer to the time required to run the detection algorithm with one camera,
however running multiple instances of the same algorithm for multiple cameras (as for
example in the stereo case) does not affect the performance in a significant way, as the
individual parts can be computed in parallel.

The most expensive part of the algorithm is given by the ego-motion compensation,
which on average requires 1.31 ms (36.80% of the overall time), with a standard de-
viation of 0.35 ms. As one can imagine, the time necessary for this step depends on
the number of events that need to be processed, and Fig. D.7 clearly shows a linear
dependence between the two. To understand how many events are typically generated
in real-world scenarios during our experiments, we collected some statistics about the
number of events that the algorithm needs to process. The data we collected that, on
average, both indoors and outdoors, the number of events belonging to a time window
of 10 ms spanned between 2000 and 6000.

Another step that depends on the relative motion between the camera and the scene is
the clustering of the events belonging to the dynamic obstacles. This step is necessary
to understand how many objects are in the scene, and to associate each event to them.
Clustering the events usually requires 0.69 ms (19.39% of the overall time), with a
standard deviation of 0.20 ms. The actual processing time to cluster the events depend
on the number of pixels where events belonging to dynamic obstacles fired, and Fig. D.8

115

Appendix D. Event-Based Avoidance

0 2000 4000 6000 8000 10000 12000 14000

0.5

1

1.5

2

2.5

3

Figure D.7: Time necessary to perform the ego-motion compensation as a function of the
number of events generated.

Step µ [ms] σ [ms] Perc. [%]
Ego-Motion Comp. 1.31 0.35 36.80

Mean Timestamp Thresh. 0.98 0.05 27.52
Morphological Ops. 0.58 0.04 16.29

Clustering 0.69 0.20 19.39
Total 3.56 0.45 100

Table D.2: The mean µ and standard deviation σ of the computation time of the obstacle
detection algorithm proposed in Sec. D.3.1.

shows how long our clustering algorithm takes as a function of the number of pixels to
process.

Finally, thresholding the mean timestamp image and applying some morphological
operations to the thresholded image do not depend on the amount of events to be
processed (as shown by their very low standard deviations), since the entire picture
has to be processed, and they require on average 0.98 ms (27.52%) and 0.58 ms (16.29%
of the overall time), respectively.

It is important to notice that in our evaluation of the computational time required by
the algorithm we neglected the estimation of the 3D position of the obstacle. This
step requires very simple calculations (c.f. Sec. D.3.1), which are independent on the
number of events generated and on average require times in order of few µs. Therefore,
their impact on the overall computational time is negligible.

116

D.2. Results

0 500 1000 1500 2000 2500

0.5

1

1.5

2

Figure D.8: Time necessary to perform the clustering of the scene’s dynamic part, depending
on the amount of pixels belonging to moving objects.

Different Types of Obstacles

The main reason for us to adopt a stereo configuration for our framework is the
necessity to be able to correctly detect moving obstacles independently on their shape
and size. Using a single camera, this is not possible as long as the size of the obstacle is
not known in advance. Figure D.9 shows that the algorithm we propose in this paper
to detect moving obstacles using two event cameras is able to detect different kinds
of obstacles. In that figure, one can notice how obstacles with completely different
geometries can be detected: a small ball, a box, a whiteboard marker, a frisbee, a
quadrotor and a bowling pin. The first column reports a frame grabbed from the
SEEM1 camera, where the object is often not clearly visible due to motion blur (we
manually highlighted the region where the objects is in the frame with a red circle). The
remaining columns depict the previously described steps of our detection algorithm,
with the same color code used in Fig. D.4.

Detection of Multiple, Simultaneous Obstacles

Thanks to the clustering process proposed in Sec. D.3.1 and the measurements’ associa-
tion step described in Sec. D.3.1, our pipeline is able to deal with multiple obstacles
moving in the scene simultaneously.

Figure D.10 shows an example where the proposed algorithm correctly detects and
clusters together the events belonging to three different moving obstacles in the scene.
In this case, three small-sized balls (manually highlighted by a red circle to facilitate the
reader’s understanding) are thrown by hand in front of the camera, and the algorithm

117

Appendix D. Event-Based Avoidance

(a) A small-sized ball (radius 4 cm).

(b) A small-sized marker (width 6 cm, height 9.5 cm, thickness 2.5 cm).

(c) A whiteboard marker (length 14 cm, thickness 1.5 cm).

(d) A frisbee (radius 13.5 cm, height 3.5 cm).

(e) A drone (tip-to-tip diagonal 60 cm, height 10 cm).

(f) A bowling pin (length 25 cm, thickness 6 cm).

Figure D.9: Our algorithm is able to detect different kind of objects, as shown in this figure.
Each row of shows the detection of a different objects, depicted in the pictures in the first
column. From top to bottom: a small-sized ball, a box, a whiteboard marker, a frisbee, a
quadrotor and a bowling pin. These objects were detected using our stereo setup, without
any prior information about their shape or size. As one can notice, the frame provided by the
on-board camera (second column) presents some motion blur due to the speed of the object,
which however is not a problem for our event-based detection algorithm (last column).

118

D.2. Results

(a) A frame from
the on-board Insight-
ness SEEM1 camera.
The three circles high-
light the dynamic ob-
stacles in the scene
(three balls of differ-
ent sizes).

(b) The normalized
mean timestamp im-
age generated using
the events accumu-
lated in the last time
window.

(c) The normalized
mean timestamp im-
age after threshold-
ing.

(d) Clustering of the
three dynamic obsta-
cles present in the
scene.

Figure D.10: An example of our algorithm detecting and clustering multiple moving obstacles.
(D.10a) The frame from the on-board camera, where three moving obstacles, manually circled in
red, are visible. (D.10b) The mean-timestampe image. (D.10c) The mean-timestamp image after
thresholding: green represents the static part of the scene, purple indicates events belonging to
dynamic obstacles. (D.10d) Clustering of the events belonging to different dynamic obstacles.

successfully associates each event to the object they belong to.

The main limitation of our approach is due to the fact that, when two or more obstacles
are very close to each other in the frame containing the events belonging to dynamic
objects, it is very hard, if not impossible, to disambiguate among them. This is due
to the fact that no prior information about the obstacles is used (e.g., shape or, in the
stereo case, size), as well as not exploiting any intensity information (i.e., the frames
from the on-board camera) in order to tell apart objects that are impossible to segment
out using only events.

In our experimental evaluation this turned out not to be a real issue for the system
itself, since as soon as the overlapping obstacles move away from each others, the
system is able to promptly detect them and treat them as separate entities.

D.2.2 Experiments

To validate our obstacle avoidance framework, we conducted a large set of experiments
in real-world scenarios. The experiments were executed in two different scenarios, one
indoors, the other one outdoors. The indoor experiments were conducted within a
motion-capture system, in the same setup we used in our previous work [47], and the
aim was twofold: (i) collecting ground-truth data in order to verify the effectiveness of
the framework in situations where a collision with the obstacle would have happened
(which was checked in post-processing thanks to the data from the motion-capture);

119

Appendix D. Event-Based Avoidance

(ii) validate the overall framework in an easier setup before moving to more complex
scenarios. We used the same quadrotor platform we presented in [47] for the indoor
experiments, equipped with a monocular setup. Conversely, the outdoor experiments
were conducted using a different vehicle, equipped with a stereo setup, as presented in
Sec. D.3.3. In the remainder of this section, we provide additional details about both
the indoor (Sec. D.2.2) and outdoor (Sec. D.2.2) experiments.

Indoor Experiments

As previously mentioned, the main goal of the indoor experiments is to determine
the effectiveness of our framework to avoid dynamic obstacles by determining if a
collision was actually prevented by analyzing the data coming from a motion-capture
system. The indoor experiments were realized using the same platform described
in [47], in the monocular setup. We repeatedly threw a ball of known size towards the
quadrotor, which used the event camera to detect and avoid it. Using the ground-truth
measurements coming from the Optitrack motion-capture system, we could intersect
the trajectory of the ball with the position where the vehicle was hovering, in order
to determine if, without the execution of the escape maneuver, the ball would have
hit the vehicle or not. The outcome of this analysis is that our algorithm is capable
of preventing actual collisions between a flying robot and a dynamic obstacles, at
relative speeds up to 10 m s−1, as confirmed by the ground-truth data about the objects
trajectory provided by the motion-capture system.

Figure D.11 shows one of the indoor experiments, reporting four snapshot recorded
with a static camera. The ball takes approximately 0.25 s to reach the vehicle from
the moment it is thrown (Fig. D.11a). At that time, as shown in Fig. D.11d, the
quadrotor already moved to the side to prevent the collision, showing that the algorithm
successfully detected the ball and planned an evasive maneuver with very low latency.
The experiment reported in Figure D.11, as well as other indoor experiments, are shown
in the Movie S1.

Outdoor Experiments

After evaluating the performance of our framework in an indoor setup, we performed
outdoor experiments using the quadrotor platform described in Sec. D.3.3, equipped
with two Insightness SEEM1 cameras in a stereo setup. We executed two types of
experiments, namely in a static scenario, where the vehicle hovers at a desired position,
and in a dynamic scenario, where the robot flies towards a target location. In both
cases, we threw different kind of objects towards the quadrotor, which only relied on
the two event cameras to detect them and avoid them.

We tested the performance of our algorithm in static scenarios with different kind of

120

D.2. Results

(a) t = 0 s (b) t = 0.075 s

(c) t = 0.15 s (d) t = 0.225 s

Figure D.11: A sequence from one of the indoor experiments. A ball is thrown towards the
vehicle, equipped with a monocular event camera, which is used to detect and evade the
obstacle. The ball is thrown at time t = 0 s, and reaches the position where the quadrotor
is hovering approximately at time t = 0.225 s. The robot successfully detects the incoming
obstacle and moves to the side to avoid it.

121

Appendix D. Event-Based Avoidance

(a) t = 0 s (b) t = 0.015 s

(c) t = 0.30 s (d) t = 0.45 s

Figure D.12: A sequence from our outdoor experiments. The quadrotor is flying towards a
reference goal position, when an obstacle is thrown towards it. The obstacle is successfully
detected using a stereo pair of event cameras, and is avoided by moving upwards.

objects, with multiple obstacles moving towards it at the same time, as well as throwing
them consecutively one after the other to benchmark the restiveness out the overall
approach. The vehicle successfully manage to detect them and avoid them most of
the time, although in some cases the detection was not successful and led a collision
between the robot and the obstacles. In Sec. D.3.4 we discuss the major failure causes
of our algorithm; nevertheless, the in outdoor experiments the algorithm successfully
detected and avoid the obstacles thrown towards it more than 90% of the time. Movie
S2 shows the result of our outdoor experiments in a static scenario.

Figure D.12 shows four snapshots captured from a sequence recorded in a dynamic
scenario. The robot moves towards a target position, from left to right in the pictures,
at a linear speed of 1.5 m s−1. While reaching its destination, the robot detect the yellow
ball thrown towards it, and reported on the right side of Fig. D.12a. The vehicle decides
to execute an evasive maneuver upwards, while keeping its travel speed towards the
desired position constant. This results in a maneuver that simultaneously allows the
vehicle to proceed along its task and avoid a collision. Additional experiments in a
dynamic situation are shown in the Movie S3.

122

D.3. Materials and Methods

D.3 Materials and Methods

D.3.1 Obstacle Detection

This section describes how our event-based algorithm to detect moving obstacles works.
An additional explanation of the working principle of this algorithm is provided in
Movie S4.

Ego-Motion Compensation of the Events

An event camera generates events when intensity changes occur in the image. This can
happen because of either moving objects or the ego-motion of the sensor. As we are
only interested in avoiding moving objects, the first step is to remove all data generated
by the quadrotor’s ego-motion.

One way of removing ego-motion from an event stream is described by [119]. This
approach does, however, utilize an optimization routine to estimate the ego-motion,
which is computationally demanding and, therefore, introduces latency in the per-
ception system. In this work we replace the optimization step with a more simple
and computationally efficient ego-motion compensation algorithm. To do this, we
use the IMU’s angular velocity average over the time window where the events were
accumulated in order to estimate the ego-rotation, and use this rotation to warp the
events in the image. Our approach does not consider the translational motion of the
camera, but rather assumes that the events are generated mostly by rotational motion.
In order to compensate for the translational motion, it would be necessary to estimate
the depth of the points generating each event, which would increase the computational
complexity too much to be practical. As long as the distance to stationary objects is
large enough, our system is not significantly affected by this assumption. This choice
allows our pipeline to be fast enough to guarantee real-time performance, but comes at
the cost of a potentially higher amount of non-compensated events. To cope with this,
we tune the parameters of our algorithm, whose working principle is described below,
so that it is able to filter out most of the events generated by the static part of the scene.

The first step of our algorithm requires the collection of a batch of events and IMU
data over a specified time δt. Next, we average the IMU’s angular velocity over δt
as ω̄ = ∑δt ωt. We then apply the Rodrigues rotation algorithm to build the rotation
matrix from ω̄δt [107]. Each event ei of the batch is then warped in the image plane by
ω̄(ti− t0), where t0 is the time-stamp of the first event of the batch and ti the time-stamp
of event ei. This warping is described by a field φ : IR3 → IR3 that warps the events’ 2D
displacement as φ(x, y, t− t0) : (x, y, t)→ (x′, t′, t). These motion compensated events
are denoted by:

C′ = Π{φ(C)} = Π{φ(x, y, t− t0)} = {x′, y′, 0} ∀{x, y, t} ∈ C. (D.1)

123

Appendix D. Event-Based Avoidance

The original event position (x, y) is part of a discretized image plane in N2, while
(x′, y′) are part of IR2. From the warped events we construct the event-count image I,
where the pixel value records the total number of events mapped to it by the event
trajectory:

ξij = {{x′, y′, t} : {x′, y, , 0} ∈ C′, i = x′, j = y′}. (D.2)

Here (i, j) ∈ N2 denotes the integer pixel coordinates of the discretization bin for
(x′, y′) ∈ IR2. From this we construct the event-count pixel Iij as Iij = |ξij|, with |A|
being the cardinality of the set A. Next we construct the time-image T, which is also
in the discretized plane N2. Here each pixel contains the average time-stamp of the
warped events as:

Tij =
1
Iij

∑ t : t ∈ ξij. (D.3)

In order to determine which pixels belong to a moving object or the background they
are each given a score ρ(i, j) ∈ [−1, 1] for {i, j} ∈ T as:

ρ(i, j) =
T(i, j)−mean(T)

δt
. (D.4)

These scores produce the so called normalized mean time-stamp image ρ. Now, if
ρ(i, j) ≥ τthreshold, with τthreshold being a specified threshold, the pixel belongs to a
moving object, otherwise to the background.

While the original approach [119] uses a fixed threshold to distinguish between ego-
motion generated events and those generated by a moving object, we instead use a
linear function that depends on the angular velocity’s magnitude, i.e. τthreshold(ω) =

a · ||ω|| + b. Here a and b are design parameters, where b regulates the threshold
while the camera is static and a increases it with an increase of the angular velocity’s
magnitude. This has the advantage that it is easier to detect moving objects while
the quadrotor is static, while still reducing the increased noise generated by faster
rotational velocities. After thresholding, it can happen that some events belonging to
the static part of the scene are not filtered out, generating some salt and pepper noise
that we remove using morphological operations.

Figure D.4 shows our algorithm in action. All the events generated in the last time
window (Fig. D.4b) are motion-compensated using the IMU and, for each pixel, we
compute the normalized mean timestamp (Fig. D.4d), which is then thresholded
(Fig. D.4e) to obtain a frame containing only events belonging to moving obstacles
(Fig. D.4f).

The same algorithm running across different consecutive time windows is shown in

124

D.3. Materials and Methods

(a) Frame at time t0. (b) Frame at time t1. (c) Frame at time t2. (d) Frame at time t3.

(e) Events at time t0. (f) Events at time t1. (g) Events at time t2. (h) Events at time t3.

(i) Events belonging
to moving obstacles
at time t0.

(j) Events belonging
to moving obstacles
at time t1.

(k) Events belonging
to moving obstacles
at time t2.

(l) Events belonging
to moving obstacles
at time t3.

Figure D.13: A sequence captured during one of our experiments, where the quadrotor is
hovering indoors and an object is thrown towards it with the purpose of evaluating the sensing
pipeline. Each column represents a different time, more specifically: t0 = 0 s (first column),
t1 = 0.05 s (second column), t2 = 0.10 s (third column), t3 = 0.15 s (fourth column). The first
row reports the frame captured by the on-board camera. The second row shows the events,
generated by both the motion of the vehicle and the moving obstacle, collected within the last
time window of size δt = 10 ms, where blue represents positive events and red represents
negative events. The third row shows the ego-motion compensated events belonging only to
the dynamic part of the scene, obtained applying the algorithm described in Sec. D.3.1.

Fig. D.13. Each column corresponds to a different time, with the first row reporting
the frame captured by the on-board camera, the second row the events collected in the
window, and the third row the same events after the ego-motion compensation and
thresholding of the normalized mean timestamp.

Obstacle Segmentation

After performing the ego-motion compensation of the events that fired in the last
time window, we obtain a frame containing the location of the events belonging to
the dynamic part of the scene (Fig. D.4f). It is important to note that at this point
our algorithm already discarded all the static parts of the scene, with very little

125

Appendix D. Event-Based Avoidance

computational cost. To do so with a standard camera, one has to receive at least two
frames in order to be able to distinguish between static and dynamic objects, and each
frame needs to be entirely processed. The output of an event camera, instead, is much
more sparse, allowing us to only process the pixels where at least one event fired.

In the remainder of this section, we describe how we use a frame like the one in
Fig. D.4f in order to cluster together the pixels belonging to the same object.

Clustering

The thresholded image created by the ego-motion compensation described in Sec-
tion D.3.1 can include multiple moving obstacles, as well as noise. Therefore, the next
step is to separate the image points of the individual objects, as well as the noise.

The goal for the system is to be capable of handling an arbitrary number of obstacles,
as well as being robust towards noise. Additionally, due to the low latency requirement,
the clustering has to be performed in the shortest time possible. With these requirements
we evaluated different algorithms, in order to decide on the best fitting one for our
system. One well known and fast clustering algorithm is the K-Means [55]. It scales well
with data and has a low computational complexity of O(kn), where k is the number
of clusters and n the number of samples [4]. Even though the fast computation and
scalability is desirable, the requirement to know the number of clusters k beforehand
is a problem. Additionally, noise is included into the clusters. If noise would not be
considered, one could run the K-Means for a range of k and choose the best fitting one.
This would increase the computation time linearly with the increased range of k. As
noise is, however, considered, the range of k would have to be large, which would limit
the efficiency, or the resulting clusters accuracy is degraded drastically. These issues
make this algorithm unsuitable for our approach.

Similarly to K-Means clustering, the Expectation-Maximization clustering using Gaus-
sian Mixture Models [149] requires the knowledge of the number of clusters beforehand
and, therefore, suffers some of the same drawbacks, making it unsuitable.

Next, we considered the Mean-Shift clustering algorithm [26]. Its advantage over the
previously mentioned algorithms is that the number of clusters is detected automatically.
The algorithm is based on finding the maxima of a density function given the discrete
data samples and is an iterative approach. It can handle arbitrary feature spaces and
does not depend on a predefined cluster shape. With the right kernel function it
produces accurate results, but due to its time complexity of O(n2) and the iterative
solution search the computation time exceeds the available time limit significantly.

Similarly to Mean-Shift, the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) algorithm detects clusters without previous knowledge about their

126

D.3. Materials and Methods

shape or their amount [40]. Additionally, it can handle noise by combining it into a sep-
arate category. It has an average time complexity of O(n log(n)) and a maximum one of
O(n2), but without the need for an iterative solution, which makes it comparatively fast.
Another advantage is that its cost function can be arbitrarily chosen and, therefore, be
optimized for our system. Besides the cost function, it only has two design parameters:
the minimum number of data points within a cluster and the maximum cost ε for
choosing whether a data point belongs to a given cluster. A detailed description of it is
found in [40].

Optical Flow

The density of image points and their distance in the image plane depends on the objects
velocity, distance to the sensor, as well as their overall size. Having only the mean time-
stamp information and image position resulting from the ego-motion compensation,
as described in Sec. D.3.1, makes it impossible to effectively cluster the image points
of objects with different velocities and distances from the DVS. Therefore, we require
additional features. One available possibility is to calculate the image points optical-
flow and, therefore, get an estimate of their image-plane velocity. An added advantage
is that two objects that generate image-point clusters in close proximity to each other,
but move in different directions, are easier to distinguish. Ideally one would directly
calculate the optical-flow from the event data, but existing algorithms for this either
only produce the velocities magnitude or direction, or are extremely computationally
expensive, while having a low accuracy as evaluated in [156]. Instead, we decided to
use a conventional optical-flow algorithm on the unthresholded normalized mean time-
stamp image produced by the ego-motion compensation. The high temporal resolution
of the DVS and high update frequency of our system allows us to assume that the
displacements between two frames is small and approximately constant in a region
around an image point. Therefore, we use the Lucas-Kanade algorithm [7], which
has the advantage that it is less sensitive to noise compared to point-wise methods
and by combining the information of several nearby points it is better at handling the
ambiguity of the optical-flow equations. To increase the robustness of the optical-flow
we apply an averaging filter both to the input images, as well as the resulting velocity
field.

Combined Clustering Algorithm

To maximize the accuracy of the clustering, we utilize all the available data information:
the image position p, the normalized mean time-stamp value ρ and the, through
optical-flow estimated, velocity v. With these quantities we constructed the DBSCAN’s

127

Appendix D. Event-Based Avoidance

cost function as:

Ci,j(p, v, ρ) = wp||pi − pj||+ wv||vi − vj||+ wρ|ρi − ρj|. (D.5)

Here w = [wp, wv, wρ]T is a weight vector for the influence of the individual parts.

Even though the DBSCAN algorithm is quiet efficient with a maximum data size scaling
of O(n2) the computation time increases with the data size. Especially for fast moving
objects, or ones which move close to the sensor, the density of the generated events
and, therefore, the overall data size to be clustered increases. This leads to a far greater
computation time. To combat this we perform a pre-clustering step of the image points
using an eight way connected components clustering algorithm. For this we assume
that two image points that are located directly next to each other in the image plane
always belong to the same object. We then calculate the mean velocity of the image
points belonging to the cluster, as well as the mean normalized mean time-stamp and
fit a rotated rectangle around the points. The DBSCAN’s cost function is adapted to
the new features. Instead of using the individual point’s velocity and normalized mean
time-stamp, we use their corresponding mean values, while the difference in position
is substituted by the minimal distance of the corresponding rectangles as:

Ci,j = wp distmin(ri, rj) + wv||vmean,i − vmean,j||+ wρ|ρmean,i − ρmean,j|. (D.6)

If two corresponding rectangles should overlap, their distance is set to zero. Instead
of using rectangles, ellipses could have been used, but finding the minimal distance
between two ellipses requires the root calculation of a fourth order polynomial, re-
quiring an iterative solution, which takes drastically more time. As the connected
components algorithm has a time complexity of O(n) and reduces the DBSCAN’s data
size by orders of magnitude, the overall clustering computation time was decreased on
average by a factor of 1000.

3D-Position Estimation

After receiving a set of cluster points, we first fit a rotated rectangle around them to
reduce the data dimensionality. From this we get the four corner points, as well as the
center position in the image-plane.

For the next step, the estimation of the obstacle’s depth towards the image plane, we
have to distinguish between the Monocolur and Stereo Case.

Monocular Case. As we are not able to calculate the depth of an image point from a
single monocular image, we instead limit our system to objects of known size. With
the added size information we can then estimate the depth of an object in the camera’s

128

D.3. Materials and Methods

frame of reference as:

C ẑ =
f ωreal

ω̂
, (D.7)

where f is the focal length, ωreal the width of the object and ω̂ the measured side length
of the fitted rectangle.

Stereo Case. For the stereo case we use the disparity between two corresponding
clusters of the stereo image pair for the depth estimation. This allows the algorithm
to function with objects of unknown size. To determine cluster correspondences we
utilize a matching scheme minimizing the cost:

C = wp
∣∣xc,top − xc,bottom

∣∣+wa max
(

Atop

Abottom
,

Abottom

Atop

)
+wn max

(
ntop

nbottom
,

nbottom

ntop

)
− 2,

(D.8)

with w = (wp, wa, wn) being weights, xc the cluster’s center’s position in the image
plane, A the fitted rectangle’s area and n the number of cluster points. Next we use the
cluster’s disparity to calculate the depth as described in [60]. To increase the robustness
we use the cluster’s centers to estimate the depth instead of directly projecting the
corner points into 3D space. Having estimated the obstacle’s depth we approximate its
size using the rearranged formulation as in the monocular case as:

ωest =
C ẑω̂

f
. (D.9)

Image to World Projection

With the obtained obstacle’s depth and size we now project the cluster’s corner and
center points into 3D space using:

λi

ui

vi

1

 = KCXi, (D.10)

with K being the intrinsic camera matrix. The points CXi are then transformed into the
world’s frame of reference by applying:[

WXi

1

]
= TWBTBC

[
CXi

1

]
. (D.11)

129

Appendix D. Event-Based Avoidance

Here the center-point’s depth is both increased and decreased by the obstacle’s esti-
mated size as:

C ẑc,± = C ẑ±ωest. (D.12)

This gives us a total of six points WX1:6 representing the obstacle.

Obstacle Correspondence

In order to estimate an obstacle’s velocity, we first have to determine if a newly detected
obstacle corresponds to a previous one and, if this is the case, to which. This is done by
finding the best match between the new obstacle’s center and the predicted position of
the saved obstacles’ centers. This is done by finding the closest position match withing
a sphere around the newly detected obstacle.

Obstacle Velocity Estimation

Once the 3D position of an obstacle has been estimated, our algorithm requires some
further processing in order to provide valuable information to the planning stage, for
a twofold reason: (i) the event-based detections are sometimes noisy, especially at
large distances; (ii) it is necessary to estimate the obstacle’s velocity, which is used to
determine the avoidance direction, as well as a scaling factor for the repulsive potential
field (Sec. D.3.2). To do so, we use a Kalman filter [80], with the obstacle’s position
estimate as the input for the measurement update. This does introduce more latency, as
the Kalman filter behaves as a low-pass-filter, but the increased accuracy is in this case
preferable. For this we assume a constant velocity model having as state the obstacle’s
position and velocity:

Since ∆t is not constant, as it cannot be guaranteed that the obstacle is detected and
matched in every consecutive ego-motion compensated frame, we cannot use the
steady-state Kalman filter, but through its solution, obtained by solving the discrete
Algebraic Riccati Equation, we can get a good initial value for P0.

D.3.2 Obstacle Avoidance

The primary objective of our avoidance framework is to guarantee low latency between
sensing and actuation. The low latency on the perception side is guaranteed by the
previously described event-based obstacle detection pipeline relying. For the overall
system to be effective, however, it is necessary to reduce the latency of the decision
making system responsible for driving the robot away from the detected obstacles.
Based on this consideration, it is intuitive to understand that any optimization-based
avoidance technique is not suited for our purpose, since numerical optimization would

130

D.3. Materials and Methods

introduce latency due to the non-negligible computation times. Rapid methods to
compute motion primitives for aerial vehicles exist in the literature [130]. However, they
present a number of drawbacks. First, it is necessary to sample both space and time to
find a safe position for the robot and a suitable duration of the trajectory. Additionally,
continuity in the control inputs is not always guaranteed. Finally, including this kind
of methods within existing motion generation frameworks is not always trivial due to
multiple reasons: it is necessary to continuously switch between the main navigation
algorithm, driving the robot towards its goal, and the avoidance algorithm, steering
it away from obstacles; it is not always trivial to obtain a behaviour that allows the
robot to keep executing its mission (e.g., reach its goal) while simultaneously avoiding
moving obstacles.

The artificial potential fields method is a natural and simple solution to all the afore-
mentioned issues. Given a closed-form expression of the attractive and repulsive fields,
it is particularly simple to compute their gradients within negligible computation
time in order to generate the resulting force responsible for letting the robot move.
Considering an obstacle as the source of a repulsive field also allows us to not require
any sampling in space and time, since the resulting potential decides in which direction
the robot should move at each moment in time. Finally, the resulting potential can
be used at different levels of abstraction in order to integrate the command derived
from its gradient into existing motion generation algorithms, for example as velocity or
acceleration commands.

Using potential fields for path finding and obstacle avoidance has been extensively
researched. This approach is, however, mostly used in 2D scenarios, whereas our
system functions in 3D space. The typical approach is to build a discretized map,
where each element represents the potential combined from the attractive and repulsive
parts. This map building approach is feasible in 2D, but its size and the required
computational power to build and analyze it increase drastically when doing so in
3D, as it increases from O(n2) to O(n3). Instead of building a map, we represent the
obstacles as a struct of features, resulting in a sparse and minimal data representation.
The obstacles are represented as ellipsoids, with a potential that is decaying over
time. We use the estimated obstacles’ position and velocity to calculate their repulsive
forces at each time step. Additionally, given a reference target position, we compute
the attractive force towards it. With the combined force we then produce a velocity
command which is sent to the controller. Additionally, the system’s behavior, when no
obstacles are present, is similar to the one generated by a high-level trajectory planner
driving the robot towards the desired goal location.

131

Appendix D. Event-Based Avoidance

Figure D.14: Construction of the obstacle’s ellipsoid in the world’s frame of reference from the
clustered data in the image plane. A minimal volume ellipsoid is fitted around the six projected
points using an iterative approach.

Obstacles Representation

We chose to represent the obstacles as ellipsoids, as they are a good representation of
the expected Gaussian error of both the position and size. Additionally, they allow us
to generate a continuous repulsive force when an obstacle is detected. Using the six
coordinate points W X̂1:6 in Eq. D.12, we fit a minimal volume ellipsoid around them
using the approach described in [123] and illustrated in Fig. D.14.

Repulsive Potential Field

Each obstacle produces a potential field Ur,i, from which we get the repulsive force Fr,i

by calculating its gradient as Fr,i = −∇Ur,i. One way of formulating the potential field
was proposed by [86], which in turn is a modification of the original artificial potential
field definition by [85], as:

Ur,i(ηi) =

kr,i

(
η0−ηi

η0

)γ
, if 0 ≤ ηi ≤ η0

0, if ηi > η0

, (D.13)

with a resulting force:

Fr,i = −∇Ur,i =

kr,iγ
η0

(
η0−ηi

η0

)γ−1
∇ηi, if 0 ≤ ηi ≤ η0

0, if ηi > η0

, (D.14)

132

D.3. Materials and Methods

0
0

0

k
r,i

/
0

(a) Repulsive force as described by [86].

0
0

0

k
r,i

(b) Our proposed repulsive force.

Figure D.15: Plots illustrating the two different types of repulsive forces described in this work.

where kr, γ and η0 are design parameters and ηi is the distance to the obstacle i. This
kind of field does, however, produce a gradient whose magnitude increases slowly as
the distance to the obstacle decreases, as shown in Figure D.15a. This has the effect
that the repulsive force acting on the quadrotor only reaches significant values when
the obstacle is close, or a high repulsive gain kr has to be chosen, which might lead to
an unstable, aggressive behavior.

Therefore, we propose a new formulation of the repulsive force as:

||Fr,i|| =

kr,i

(
1− 1− eγηi

1− eγη0

)
, if 0 ≤ ηi ≤ η0

0, if ηi > η0

, (D.15)

as shown in Figure D.15b. Here ηi is the minimal distance to the ellipsoid’s surface of
obstacle i. Through this formulation the force’s magnitude is limited to a specified value
kr and increases much faster. This is desirable when evading fast moving obstacles, as
compared to static ones, for which the fields described in other works were developed,
as the quadrotor’s dynamics require it to start evading before an obstacle comes too
close, as discussed in [126].

Conventionally, the gradient of the distance towards the obstacle ∇ηi is responsible for
the direction of the repulsive force Fr,i. It points in the direction of the steepest decent
of the obstacle’s distance, which is the opposite direction between the quadrotor’s
center and the closest point on the obstacle’s ellipsoid’s surface. This means that
an obstacle pushes the quadrotor away from it. We do, however, want to apply a
different avoidance strategy. Instead, we use the obstacle’s predicted velocity ẋi and

133

Appendix D. Event-Based Avoidance

the distance’s gradient ∇ηi and calculate the normalized cross product as:

θi =
∇ηi × ẋi

||∇ηi × ẋi||
. (D.16)

Next, we project this vector into the plane orthogonal to the quadrotor’s heading
θquadrotor as:

θi,n = θi− < θi, θquadrotor > θquadrotor. (D.17)

With the new avoidance direction θi,n the repulsive force Fr,i becomes:

Fr,i = −∇Ur,i =

kr,i

(
1− 1− eγηi

1− eγη0

)
θi,n, if 0 ≤ ηi ≤ η0

0, if ηi > η0

. (D.18)

This formulation of the potential field yields to a behaviour such that, if the quadrotor
is moving towards the goal location, it flies around any detected obstacle if the goal
position is behind it, while if it is in hover conditions it moves in a direction orthogonal
to the obstacle’s velocity. Finally, we include the magnitude of the obstacle’s estimated
velocity ||ẋi||, into the repulsive force Fr,i as:

Fr,i = −∇Ur,i =

||ẋi||kr,i

(
1− 1− eγηi

1− eγη0

)
θi,n, if 0 ≤ ηi ≤ η0

0 if ηi > η0

. (D.19)

By doing so, faster obstacles produce a larger repulsive force and the quadrotor will
therefore perform a more aggressive avoidance maneuver. This is desirable since the
faster an obstacle, the lower the avoidance time, which therefore implies the necessity
for a quicker evasive maneuver.

Additionally, we ensure that the z-component of the repulsive force is always positive,
namely Fr,i,z = |Fr,i,z|, as quadrotors with sufficiently large thrust-to-weight ratios are
typically capable of producing larger accelerations upwards than downwards.

The repulsive constant kr,i is in our case dynamic and decays with time as:

kr,i(t) = kr,0 e−λdecay(t−tdetection,i), (D.20)

where kr,0 is the initial repulsive constant, λdecay a factor regulating the decay rate, t
the current time and tdetection,i the last time the specific obstacle was detected. Through
this decay, obstacles are kept in case of a temporary occlusion or when they leave the
camera’s field of view. Their effect on the quadrotor, however, decreases as the time
to their last detection increases. If kr,i falls below a given threshold kr,τ, the obstacle is
removed.

134

D.3. Materials and Methods

Finally, the parameter ηi represents the minimal distance between the quadrotor’s center
to the obstacle’s ellipsoid’s surface minus the quadrotor’s radius. The computation of
the minimal distance between a point and an ellipsoid’s surface is described in [37].

The total repulsive force is then the sum over all individual obstacles as:

Fr,total = ∑
i

Fr,i. (D.21)

Attractive Potential Field

The goal of the attractive potential field is to allow the vehicle to reach a desired target
position and hover there until the user provides a new reference. In this work, we
provide a simple formulation for the attractive potential that assumes that no static
obstacles are present in the scene, i.e. the straight-line path between the robot and
the obstacle is collision-free. However, one can easily replace this component of our
avoidance scheme with more sophisticated methods to generate commands that drive
the vehicle towards its goal. These can be based, for example, on potential field-based
techniques dealing with static obstacles and local minima, which is out of the scope
of this work, or completely different methods able to generate velocity or acceleration
commands (as for example [24]).

For the attractive potential, we want the system to produce the same velocity towards a
goal as a high-level planner would produce, if no obstacle is present, but also produce
stable dynamics close to the goal. Therefore, we chose the hybrid approach of a conical
and polynomial potential field [172] as:

Ua =

ka

(γa+1)eγa
0
||e||γa+1, if ||e|| < e0

ka||e||, if ||e|| ≥ e0

. (D.22)

This function is differentiable at e0, i.e. the crossover distance between the two different
potential fields, with e being the error between the goal’s and quadrotor’s positions, ka

the attractive constant and γa a design parameter. By taking its gradient we get the
attractive force as:

Fa = −∇Ua =

ka
e
||e||

(
||e||
e0

)γa
, if ||e|| < e0

ka
e
||e|| , if ||e|| ≥ e0

, (D.23)

which is continuous in e. The constant ka regulates the output velocity ẋ, see Sec-
tion D.3.2, and by setting it to ka = ||vdes|| the quadrotor’s velocity’s magnitude is
||ẋ|| = ||vdes||, while ||e|| ≥ e0 and no obstacles are present.

If we would instead solely rely on the conical potential field, the quadrotor would

135

Appendix D. Event-Based Avoidance

0 e
0

0

k
a

Figure D.16: Illustration of the attractive force for different values of γa.

start to oscillate around its goal position, as the resulting force’s magnitude would be
ka, regardless of the error. The attractive force’s magnitude is shown in Figure D.16.
If γa = 0 then ||Fa|| is identical to that of the conical part, producing a constant
magnitude of the attractive force, while for γa = 1 the magnitude goes linearly to 0.
With increasing γa the magnitude drops faster with an increasingly large area around
||e|| = 0, where it is close to 0.

Output Velocity

The velocity is the output of our system and is given to the controller to derive the
required total thrust and body-rates. From the total repulsive force Fr,total and attractive
force Fa we get the total virtual force acting on the quadrotor as Ftotal = Fr,total + Fa.
With this force, we now have three possible design choices to calculate the quadrotor’s
desired velocity ẋ:

ẍ =
Ftotal

m
(D.24)

ẍ = Ftotal (D.25)

ẋ = Ftotal , (D.26)

where m denotes the quadrotor’s mass.

Both (D.24) and (D.25) produce a first order dynamic, while (D.26) directly produces
the velocity output. Introducing further dynamics into the system results in additional
delays, which is undesirable since we want our system to be as responsive as possible.

136

D.3. Materials and Methods

We, therefore, chose (D.26) as it produces the fastest response.

D.3.3 Experimental Platform

Hardware

To validate our approach with real-world experiments, we designed a custom quadrotor
platform. The main frame is a 6” Lumenier QAV-RXL, and at the end of each arm
we mounted a Cobra CM2208-2000 brushless motor equipped with 6”, three-bladed
propeller. The vehicle is equipped with two on-board computers: (i) a Qualcomm Snap-
dragon Flight, used for monocular, vision-based state estimation using the provided
Machine Vision SDK; (ii) a NVIDIA Jetson TX2, accompanied by an AUVIDEA J90
carrier board, running all the rest of our software stack. In this regard, the output of
our framework are low-level control commands comprising the desired collective thrust
and angular rates the vehicle should achieve in order to fly. These commands are sent
to a Lumenier F4 AIO Flight Controller, which then produces single-rotor commands
that are fed to DYS Aria 35a motor controllers.

The quadcopter is equipped with two front-facing Insighteness SEEM1 cameras, in a
vertical stereo setup, connected via USB to the Jetson TX2. The SEEM1 sensor provides
both frame and events, and has a QVGA resolution (320× 240 pxl). In order to have a
sufficiently high angular resolution, each camera has a lens providing an horizontal
field of view of approximately 80°. Such small field of view is particularly low for tasks
such as obstacle avoidance, where a large field of view is preferable to increase the area
that the robot can sense. The choice of adopting a vertical stereo setup rather than a
more common horizontal setup was driven by the necessity of maximizing the overlap
between the field of view of the two cameras, while guaranteeing a sufficiently large
baseline (in our case, 15 cm).

In addition to the previous sensing suite, we mounted a Teraranger EVO 60m distance
sensor looking downwards. The goal of this additional sensor is to constantly monitor
the height of the vehicle in order to detect whether there is any drift in the state estimate
provided by the Visual-Inertial Odometry (VIO) pipeline running on the Snapdragon
Flight. Whenever we detect a discrepancy beyond a manually defined threshold, the
quadrotor automatically executes an emergency landing maneuver to prevent worst
consequences due to the drift of the state estimate.

Software

We developed the software stack running on our quadrotor in C++ using ROS for
communication among different modules. To reduce latency, we implemented the
obstacle detection and avoidance algorithms within the same ROS module, so that no

137

Appendix D. Event-Based Avoidance

Figure D.17: The quadrotor platform we used in our outdoor experiments. The following
components are highlighted in the picture: (1) the Nvidia Jetson TX2, running the obstacle
detection and avoidance algorithm, as well as the high-level controller; (2) the Lumenier F4
AIO Flight Controller; (3) the two Insightness SEEM1 cameras, in a vertical stereo setup; (4) the
Qualcomm Snapdragon Flight board, used for state estimation.

138

D.3. Materials and Methods

message exchange is necessary between the camera drivers and the code responsible
for detecting moving obstacles, as well as between the latter and the planning stage.
The output of this module is a velocity command, which is then fed to the position
controller proposed in [44] and available as opensource 10. The low level controller,
responsible for tracking desired body rates and collective thrust, is the default one
provided by the Lumenier F4 AIO Flight Controller, which then communicates with
the ESCs to generate the single rotor thrusts.

In our outdoor experiments, the state of the vehicle is estimated using the Visual-Inertial
Odometry pipeline provided by the Qualcomm Machine Vision SDK 11, which however
only provides new estimates at camera rate (up to 30 Hz. This is not sufficient to control
our vehicle with low latency, and would represent a bottleneck in the entire pipeline.
In order to obtain a higher-rate state estimate, we feed the output of the VIO into an
Extended Kalman Filter [103], together with IMU measurements, to obtain information
about the position, orientation and velocity of the vehicle at 250 Hz.

D.3.4 Major Failure Causes, Lessons Learnt and Disadvantages of Event
Cameras

As we have previously shown, event cameras allow fast, low-latency detection of
moving obstacles. We discussed in Sec. D.1.2 the advantages of these novel bio-inspired
neuromorphic sensors against standard camera. However, as of today, they are mostly
a research-oriented sensor, and thus still require a significant engineering effort in order
to solve the main issues they present.

One of the problems with current event cameras is their weight. Most of the event
cameras available nowadays are larger and heavier than state-of-the-art standard
cameras for robotic applications, which are typically below 50 g. The Insighteness
SEEM1 is, to the best of our knowledge, the smallest event camera that also provides
frames (which is particularly convenient to easily calibrate the intrinsic and extrinsic
parameters of the sensor) and can be easily mounted on a quadrotor (its size is
3.5× 3.5 cm and it weighs 15 g). However, its resolution (320× 240 pxl, QVGA) is
particularly low compared to standard cameras. This imposes the necessity to find
the right trade-off between field of view and angular resolution: the larger the first,
the smallest the second, which reduces the sensing range at which it is possible to
reliably detect objects [47]. A small field of view, however, has a negative impact on the
detection of obstacles entering the sensing range of the vehicle from the side, as for
example in our outdoor dynamic experiments: the larger the field of view, the earlier
the vehicle can detect and avoid obstacles moving towards it from the sides.

10http://rpg.ifi.uzh.ch/rpg_quadrotor_control.html
11https://developer.qualcomm.com/software/machine-vision-sdk

139

Appendix D. Event-Based Avoidance

Another problem characterizing these novel sensors is their noise characteristics. Indeed,
these sensors show higher noise than standard cameras, which often has a negative
impact on the performance of event-based vision algorithms. In our approach, for
example, in order to obtain reliable detections and to eliminate false positives caused
by the sensor noise we had to significantly increase the threshold used to separate
events generated by the static part of the scene from those caused by moving objects.
This resulted in an obstacle detection algorithm less reactive to small relative motion,
especially at large distances. For this reason, we discard all the detections reporting
distances between the camera and the obstacle beyond 1.5 m.

The aforementioned reasons represent the main failure causes of our approach. In most
of the cases, when our quadrotor was not able to avoid an object thrown towards it,
this was due to the fact that it was detected too late, either because it entered the field
of view of the camera at a distance that was too short (and therefore the vehicle could
not complete the evasive maneuver in time), or because the motion of the obstacle did
not generate sufficient events to allow our algorithm to detect it.

D.4 Conclusions

We presented a framework to let a quadrotor dodge fast-moving obstacles using only
onboard sensing and computing. Different from state of the art, our approach relies
on event cameras, novel neuromorphic sensors with reaction times of microseconds.
Each pixel of an event camera reacts to changes in intensity, making this sensor a
perfect fit for detecting and avoiding dynamic obstacles. Event cameras can overcome
the physical limitations of standard cameras in terms of latency, but require novel
algorithms to process the asynchronous stream of events they generate.

We investigated the exploitation of the temporal statistics of the event stream in order
to tell apart the dynamic part of a scene, showing that it is possible to detect moving
objects with a perception latency of 3.5 ms. We showed that our algorithm is capable of
accurately and reliably detecting multiple simultaneous objects with different shapes
and size. We combined our event-based detection algorithm with a fast strategy to
generate commands that allow the vehicle to dodge incoming objects. We validated
our approach with extensive experiments on a real quadrotor platform, both indoors
and outdoors, demonstrating the effectiveness of the method at relative speeds up to
10 m s−1.

140

E The Foldable Drone

©2019 IEEE. Reprinted, with permission, from:

D. Falanga, K. Kleber, S. Mintchev, D. Floreano, and D. Scaramuzza. “The Foldable
Drone: A Morphing Quadrotor that can Squeeze and Fly”. In: IEEE Robot. Autom. Lett.
4.2 (Apr. 2019), pp. 209–216. issn: 2377-3766. doi: 10.1109/LRA.2018.2885575

141

https://doi.org/10.1109/LRA.2018.2885575

Appendix E. The Foldable Drone

The Foldable Drone: A Morphing
Quadrotor that can Squeeze and Fly

Davide Falanga, Kevin Kleber, Stefano Mintchev, Dario Floreano, and Davide

Scaramuzza

Abstract — The recent advances in state estimation, perception, and
navigation algorithms have significantly contributed to the ubiqui-
tous use of quadrotors for inspection, mapping, and aerial imaging.
To further increase the versatility of quadrotors, recent works in-
vestigated the use of an adaptive morphology, which consists of
modifying the shape of the vehicle during flight to suit a specific task
or environment. However, these works either increase the complexity
of the platform or decrease its controllability. In this paper, we pro-
pose a novel, simpler, yet effective morphing design for quadrotors
consisting of a frame with four independently rotating arms that
fold around the main frame. To guarantee stable flight at all times,
we exploit an optimal control strategy that adapts on the fly to the
drone morphology. We demonstrate the versatility of the proposed
adaptive morphology in different tasks, such as negotiation of nar-
row gaps, close inspection of vertical surfaces, and object grasping
and transportation. The experiments are performed on an actual,
fully autonomous quadrotor relying solely on onboard visual-inertial
sensors and compute. No external motion tracking systems and com-
puters are used. This is the first work showing stable flight without
requiring any symmetry of the morphology.

Supplementary material

All the videos of the experiments are available at:
http://youtu.be/jmKXCdEbF_E

142

http://youtu.be/jmKXCdEbF_E

E.1. Introduction

E.1 Introduction

Quadrotors are disrupting industries ranging from agriculture to transport, security,
infrastructure, entertainment, and search and rescue [52]. Their maneuverability and
hovering capabilities allow them to navigate through complex structures, inspect
damaged buildings, and even explore underground tunnels and caves. Yet, current
quadrotors still lack the ability to adapt to different flight conditions and tasks, which
is commonly observed in birds [115]. This would provide useful in complex scenarios,
such as rescue and rescue missions or inspection of complex structures. For example,
pigeons [143] and swifts [94] adapt their wing surface by folding in order to optimize
gliding efficiency over a broad range of speeds. Pigeons have also been shown to
choose different morphologies of their wings to negotiate gaps of different sizes: they
fold the wings upward to negotiate relatively large vertical gaps, and fold them tight
and close to their body in order to traverse narrower gaps [192]. In a similar way, a
large drone could fold only when it has to fly in very cluttered environments [153]. In
this way negotiation of narrow gaps can be achieved without miniaturizing the drone
with consequent trade-offs in terms of flight time and payload. However, morphing
quadrotors where the relative position or orientation of propellers can be modified
during flight in order to extend the flight envelope remains a largely unexplored topic.
The optimization of the relative orientation of the propellers [17] or the use of tiltable
rotors have been investigated to increase the controllability of hovering platforms [82,
158, 157]. Although these approaches facilitate the execution of complex trajectories
and manipulation tasks, they do not entail significant shape change of the frame.
Quadrotors with frames that morph during flight have been investigated by Zhao et
al. [195, 196], Desbiez et al. [35], Riviere et al. [153] and Zhao et al. [197] in order to
negotiate narrow gaps or grasp objects, each with their own advantages and trade-offs
(cf. Fig. E.2). For example, the robots in [153] and [35] can only fold into a narrow and
elongated configuration (Fig. E.2a), which allows flying through narrow vertical gaps,
but hampers the negotiation of tight horizontal gaps. Once folded, the quadrotor is not
able to guarantee a continuous stable flight and resorts to a ballistic motion to traverse
the gaps. Therefore the drone needs a significant speed at the moment it negotiates the
aperture, requiring a large space before and after the gap, which might not be available
in cluttered environments. Another example is the morphing aerial vehicle composed
of four serially connected links equipped with propellers proposed in [195]: this robot
(Fig. E.2b) is specifically conceived to wrap around objects and grasp them without
the need of additional gripping device. In [196] the authors improved the morphing
versatility of the drone to achieve 3D folding by departing from the standard quadrotor
structure in favor of a multilink platform (Fig. E.2c). In that work a basic assumption is
that each joint is actuated very slowly. The aerial transformation is time consuming,
hence hampering the prompt execution of complex maneuvers. Also, the mechanical
design adopted by the authors requires a large number of components (i.e., four servo
motors and two rotors for each actuation unit), increasing the complexity and weight

143

Appendix E. The Foldable Drone

(a) H morphology. (b) O morphology. (c) T morphology.

(d) Traverse of a narrow gap to enter a collapsed building.

Figure E.1: Quadrotor with morphofunctional folding capabilities. The drone can transition
from the standard X configuration to task-specific morphologies: (a) H configuration to fly
through narrow vertical gaps; (b) O configuration, where the drone is fully folded to fly through
horizontal gaps; (c) T configuration for proximity inspection of vertical surfaces. (d) Traverse of
a gap narrower than the vehicle size using the H morphology. From right to left: the quadrotor
approaches the gap with the X configuration; the vehicle initiates the folding maneuver to reach
the H configuration; the gap is traversed using an elongated morphology to avoid collisions.

144

E.1. Introduction

(a) Riviere et al. [153]. (b) Zhao et al. [195]. (c) Zhao et al. [196].

Figure E.2: Examples of other morphing aerial vehicles.

of the robot. In [189] a quadrotor able to rotate and shrink its arms was presented.
However, the approach proposed in that work is not able to handle non-symmetrical
configurations, and only simulation results are presented. Finally, in [148] a control
strategy for a flying robot with multiple degrees of freedom was proposed, and its
application to a flying humanoid robot was shown.

E.1.1 Contributions

In this manuscript, we show how adaptive morphology can address the challenge
of increasing quadrotors’ versatility by tailoring their shape to different tasks, while
limiting trade-offs such as degradation of flight time and maneuverability. The mor-
phing approach consists of two elements working in synergy: a frame with four
independently rotating arms that fold around the main frame (Fig. E.3 and E.1) and
a control scheme able to take into account the current morphology of the vehicle to
guarantee stable flight at all times. Each arm is connected to the main body through
a servo motor and, to prevent the propellers from colliding with each other, adjacent
motors have a vertical offset. This simple morphing technique allows our vehicle to
preserve the structural simplicity of quadrotors without requiring complex folding
mechanisms [196] or tailoring it to specific applications [195].

Differently from [153], our quadrotor is able to guarantee stable flight independently of
the morphology. The key challenge to do so is the need for an adaptive control scheme
able to cope in real-time with the dynamic morphology of the vehicle. Any time a
new morphology is adopted, our adaptive control strategy is updated in real-time to
take into account the new geometry of the robot by (i) computing the inertia matrix of
the platform and (ii) solving online an Algebraic Riccati Equation (ARE) to optimize
the gains of a Linear Quadratic Regulator (LQR) responsible for controlling the body
rates. Also, a morphology-dependent control allocation scheme is used to compute the
required propellers speeds.

We validate the effectiveness of our approach on a small-scale, autonomous, vision-
based quadrotor. We show that our adaptive control strategy is able to guarantee
stable in-flight morphology transition during hovering and dynamic trajectories (up

145

Appendix E. The Foldable Drone

to 2 m s−1), without requiring any symmetry of the robot geometry. We demonstrate
that the proposed morphing strategy allows a quadrotor to adapt to different tasks:
(i) negotiation of narrow vertical gaps (Fig. E.1a and E.1d), (ii) negotiation of narrow
horizontal gaps (Fig. E.1b), and (iii) close proximity inspection structures (Fig. E.1c).
Finally, we show that the variable geometry of our quadrotor allows it to grasp and
transport an object by wrapping the arms around it. Because our control and perception
algorithms run directly onboard and do not need external tracking systems, we could
demonstrate our drone outdoor to traverse a narrow gap and enter a partially collapsed
building (see Fig. E.1d).

E.1.2 Structure of the Paper

The remainder of this paper is organized as follows. In Sec. E.2 we present our foldable
quadrotor. In Sec. E.3 we introduce the adaptive control scheme used to guarantee
stable flight with any morphology. In Sec. E.4 we validate our approach on a real
platform and show real-world experiments. In Sec. E.5 we draw the conclusions.

E.2 Mechanical Design

Morphing systems require compromising between design complexity and shape shifting
versatility. For instance, while 3D morphing frames can transition between varied and
different shapes, the associated mechanical complexity could lead to cumbersome
and heavy drones with limited flight time and payload [196]. 2D morphing strategies
based on rotating links proved to be a reasonable compromise between feasibility and
versatility [195, 153]. Avoiding singularities during morphing is another important
aspect to consider in the selection of the morphing strategy to prevent complete control
losses during flight [153]. We therefore decided to adopt the simple yet robust and
versatile planar folding strategy composed of four folding arms as illustrated in Fig. E.3.

The mechanical design of our foldable quadrotor is composed of two main parts: (i) a
central rigid body hosting the battery and the perception and control systems required
for flight, and (ii) four foldable arms with rotors. Each arm has an adjustable angle
θi, i = 1, ..., 4, around the body zb axis, which is controlled by a servomotor hosted
in the central body of the drone (see Fig. E.4). The quadrotor can transition during
flight form a standard X configuration (Fig. E.4, θi = π/4, i = 1, ..., 4) to task-specific
morphologies while trading-off flight time and maneuverability. Once the task is
concluded, the quadrotor re-assumes the X configuration recovering nominal flight
efficiency and maneuverability. For example, by folding the front and rear arms
forward and backward respectively, the quadrotor assumes a narrow H-configuration
suited to fly through narrow vertical gaps (Fig. E.1a, θ1 = θ3 = 0, θ2 = θ4 = π/2).
However, this configuration has lower maneuverability along the roll axis than the

146

E.2. Mechanical Design

xb

yb zb

1

2

3

4

1′
2′

3′
4′

θ1
θ2

θ3

θ4

b

l

Figure E.3: Schematics of our quadrotor, able to change its morphology while flying. Each
propeller is connected to the main body through an arm, which can rotate with respect to
the body thanks to a servo-motor. Each arm moves independently of the others, allowing
asymmetric configurations.

147

Appendix E. The Foldable Drone

standard X morphology. By folding all the four arms around the central body, the
quadrotor undergoes a significant size reduction along both the x and y axis (Fig. E.1b,
θi = π, i = 1, ..., 4). This fully folded morphology (O configuration) enables to fly
through narrow horizontal gaps at the expense of major efficiency and maneuverability
reductions. By folding all the arms backward, the quadrotor assumes a T configuration
with the frontal part of the drone clear from propellers (Fig. E.1c, θ1 = θ3 = π/2,
θ2 = θ4 = 0). This configuration exposes the sensorized central body of the drone, for
example for the inspections of vertical surfaces.

E.3 Control

The morphology of a quadrotor has a strong impact on its mechanical properties.
Specifically, the folding of the arms has a direct impact on (i) the location of the Center
of Gravity (CoG) of the vehicle, (ii) the inertia tensor of the platform, and (iii) the
mapping between the single rotor thrusts produced by the propellers and the forces
and torques acting on the body. Therefore, a control strategy able to take into account
these structural variations of the system to guarantee stable flight with any morphology
is necessary.

E.3.1 Center of Gravity and Inertia

In standard quadrotors, the Center of Gravity is either considered to be located at
the geometric center of the body or its offset with respect to this is estimated [93].
However, this assumption does not hold for our foldable quadrotor, as the arm angles
θi, i = 1, ..., 4, can be changed individually. The CoG, therefore, has to be recomputed
when the configuration is adjusted. Similarly, the inertia matrix of the vehicle is
morphology-dependent. Let θi, i = 1, ..., 4, be the four angles of the servo motors
actuating the arms. The offset rCoG ∈ R3 between the CoG and the geometric center of
the vehicle is:

rCoG =
mbodyrbody+∑4

i=1(marmrarm,i+mmotrmot,i+mrotrrot,i)

mbody+∑4
i=1(marm,i+mmot,i+mrot,i)

, (E.1)

where the position vectors r on the right-hand side of (E.1) are those of the correspond-
ing part’s own CoG. To simplify the computations, we refer the inertia tensor J of
our foldable quadrotor with respect to the MAV’s CoG. Specifically, J consists of the
inertia tensors of the individual parts, which can be combined using the parallel axis
theorem. We model the motors and rotors as cylinders. The arms are approximated
as rectangular cuboids of length b, width warm and height harm. Finally, we model the

148

E.3. Control

central body as a box having length and width l, and height hbody, resulting in:

Jbody =
mbody

12
diag

(
h2

body+l2, h2
body+l2, l2+l2

)
,

Jarm =
marm

12
diag

(
w2

arm+h2
arm, h2

arm+b2, w2
arm+b2) ,

Jmot =
mmot

12
diag

(
3r2

mot+h2
mot, 3r2

mot+h2
mot, 6r2

mot
)

,

Jrot =
mrot

12
diag

(
3r2

rot+h2
rot, 3r2

rot+h2
rot, 6r2

rot
)

.

As the arms, motors, and rotors are rotated around z with respect to the body frame
Ob, their inertia tensors must be rotated as well. Since the inertia tensor of a cylinder
does not change when rotated around its z-axis, this rotation can be neglected for the
motors’ and rotors’ inertia tensors. The inertia tensor of the body does not have to be
rotated, as the bodies’ frame of reference is fixed to Ob. Accordingly, the inertia tensors
for the arms can be represented as follows:

Jarm,i = Rz(θi) JarmRz(θi)
T i ∈ (1, 2, 3, 4), (E.2)

where Rz is the rotation matrix around z depending on θi. With these, we derived J as:

J = Jbody −mbody[rbody − rCoG]
2+

4

∑
i=1

(Jarm,i −marm[rarm,i − rCoG]
2+

Jmot −mmot[rmot,i − rCoG]
2+

Jrot −mrot[rrot,i − rCoG]
2),

(E.3)

with [r] being the skew-symmetric matrix of the vector r.

E.3.2 Morphology-dependent Control

Once the center of gravity and the inertia matrix for the current configuration are
computed, it is necessary to adapt the control scheme. The morphology-dependent
controller presented in the following assumes the rotational speed of the arms around
the main body to be negligible (i.e., θ̇i ≈ 0 ∀i). This assumption does not represent an
issue thanks to the fact that our adaptive controller continuously updates its parameters
in order to cope with changes in the robot morphology. Whenever an arm is required
to reach a new position, the rotation necessary to obtain it is divided into small steps
and, for each step, the controller is adapted.

Since the arms can only rotate around axes parallel to the body zb axis, the direction of
the thrust produced by each propeller does not depend on the morphology. Therefore,

149

Appendix E. The Foldable Drone

position control, providing the desired collective thrust tdes, can be achieved following
the standard model derived for fixed-geometry quadrotors [106] by using state-of-the-
art nonlinear controllers [44]. On the contrary, attitude control, providing the desired
body torques ødes, requires a morphology-dependent and adaptive approach, since the
configuration has an impact on the rotational dynamics.

The body rate controller used in this work is inspired by [45]. The dynamics of the
quadrotor’s body rates ω are:

ω̇ = J−1 (τ −ω× J ω) . (E.4)

We model the rotor thrusts fi as first order systems:

ḟi =
1
α
(fdes,i − fi) i ∈ (1, 2, 3, 4). (E.5)

Assuming the coefficient relating the drag torque and the thrust of a single propeller k
to be constant, for slowly changing geometry (E.5) leads to a first-order dynamics for
the body torques:

τ̇ =
1
α
(τdes − τ) . (E.6)

Combining (E.4) and (E.6), we can estabilish a dynamic system with state s = [ωT τT]T

and input u = τdes, which we linearize around ω = 0 and τ = 0 obtaining:[
ω̇

τ̇

]
=

[
0 J−1

0 − 1
α I3

]
︸ ︷︷ ︸

A

[
ω

τ

]
+

[
0

1
α I3

]
︸ ︷︷ ︸

B

τdes. (E.7)

We designed a continuous-time infinite-horizon linear-quadratic regulator (LQR) con-
trol law u = u0 + KLQR

(
s− sre f

)
based on (E.7) in order to minimize the cost function:

L(s, u) =
∫

s̃TQs̃ + ũTRũ dt, (E.8)

where s̃ = s− sre f , ũ = u− ure f , and Q and R are diagonal weight matrices. Further-
more, we added two terms to the resulting control law: (i) a feedback-linearizing term
ω̂× J ω̂, which compensates the coupling terms in the bodyrates dynamics (E.6); (ii) a
feed-forward term J ω̇des to guarantee that ωdes is reached with ω̇ = ω̇des. This results
in the following control policy:

τdes = KLQR

[
ωdes − ω̂

τre f − τ̂

]
+ ω̂× J ω̂ + J ω̇des, (E.9)

150

E.3. Control

where ω̂ and τ̂ are the estimates of ω and τ.

Since a stable controller is needed for changing system dynamics, we recompute the
LQR gains online whenever the momentary configurations deviates significantly from
the linearization point. This guarantees that the system can be stabilized in all possible
configurations as long as this is feasible within the motor saturation limits. These
solutions could also be precomputed and applied from a lookup-table (LUT), but
our online computation has three main advantages: (i) it can adapt to the systems
exact momentary state without quantization error as in a LUT; (ii) it does not require
extensive re-computation on cost adjustment or other tuning; (iii) it can handle online
cost changes, which might be needed to adapt to many different task scenarios.

To minimize (E.8), the following Algebraic Riccati Equation must be solved:

ATP + PA− PBR−1BTP + Q = 0, (E.10)

Leading to the optimal gain matrix KLQR = −R−1BTP. Since the arm configuration of
the MAV substantially changes the inertial tensor, it has a significant influence on the
body dynamics and therefore in the resulting LQR gain matrix KLQR. To guarantee
stable flight, the LQR gains must be adapted in real-time. This can be achieved using
value iteration known from dynamic programming. Specifically, we use the approach
presented in [1] for the case of a linear system resulting in an iterative algorithm to
solve the discrete Algebraic Riccati Equation. The iteration process can be summarized
as an iteration over the matrix P as Pi+1 = ATPi + Q− ATPiB

(
R− BTPiB

)−1 BTPi A.
Termination is done upon reaching a threshold in the relative norm of the matrix P
between consecutive iterations. Further details are available in [1]. To solve the problem
fast enough to guarantee real-time performances, we can start from the last known
value for P and therefore initialize the iterative algorithm already close to the new
solution. To ensure a robust control strategy over all execute configurations, we update
the dynamic model, linearization and LQR gains online based on the work in [54].

E.3.3 Control Allocation

Given the desired collective thrust tdes and torques ødes, it is necessary to convert those
into the thrust each propeller has to produce. Since our folding scheme does not
modify the direction of the thrust produced by each propeller, the collective thrust t
and the torque around the body zb axis do not depend on the configuration, and their
expression follows the standard quadrotor control allocation scheme [106].

The roll and pitch torques, τx and τy respectively, can be calculated as the first two
components of the cross product η between the individual rotor’s distance to the CoG

151

Appendix E. The Foldable Drone

and the rotor’s thrust vector as:

η =
4

∑
i=1

(rrotor,i − rCoG)× fi ez. (E.11)

This results in the following mapping between the rotor thrusts f and the roll and pitch
torques:[

τx

τy

]
= Mx,y f , (E.12)

where f =
[

f1 f2 f3 f4

]T
and:

Mx,y =

l+b sin(θ1)-rCoG,y -l-b cos(θ1)+rCoG,x

-l-b cos(θ2)-rCoG,y -l-b sin(θ2)+rCoG,x

-l-b sin(θ3)-rCoG,y l+b cos(θ3)+rCoG,x

l+b cos(θ4)-rCoG,y l+b sin(θ4)+rCoG,x

T

.

Replacing (E.12) in the control allocation matrix for a fixed-morphology quadrotor [106],
we can compute the full thrust mapping equation and, by solving it with respect to f ,
we can compute the desired single rotor thrusts.

E.4 Experiments

The supplementary video attached to this paper provides a summary of the experi-
ments reported in the following. For an extended version of the videos reporting the
experimental results we refer the reader to the project webpage:
http://rpg.ifi.uzh.ch/foldable_drone

E.4.1 Experimental Platform

Our quadrotor is made from a 3D-printed frame accommodating the electronics nec-
essary to guarantee autonomous flight, and the servomotors to fold the arms (cf.
Fig. E.4). At the end of each arm a 3 blades, 5 inch propeller is mounted on top of a
Gemfan M1806L 2300KV brushless motor. The motors are controlled by a Qualcomm
Snapdragon Flight Electronic Speed Controller, which receives the desired rotor speed
commands from a Qualcomm Snapdragon Flight board having a quad-core 2.26 GHz
ARM processor and 2GB of RAM. The Snapdragon Flight board also provides two
cameras, one looking forward (used in our experiments to detect the vertical gap) and
one looking down, tilted at 45° (used for state estimation and to detect the horizontal
gap), and an Inertial Measurement Unit (IMU). The vehicle has a take-off weight of

152

http://rpg.ifi.uzh.ch/foldable_drone

E.4. Experiments

Figure E.4: A close-up picture of our foldable drone reporting the main component used.
(1) The Qualcomm Snapdragon Flight onboard computer, provided with a quad-core ARM
processor, 2 GB of RAM, an IMU and two cameras. (2) The Qualcomm Snapdragon Flight ESCs.
(3) The Arduino Nano microcontroller. (4) The servo motors used to fold the arms.

580 g and a tip-to-tip diagonal of 47 cm.

The folding mechanism is based on the use of a servomotor directly connected to
each arm. We used HiTech HS-5070MH servo motors, which provide a range of about
170°. The servomotors are commanded through an Arduino Nano micro-controller,
which generates the PWM signal based on the desired angle command received by
the flight controller over a USB connection. The mechanics and electronics required
for morphing have an overall weight of 65g, which correspond to approximately 11%
of the total weight of the platform. The combination of planar folding technique and
non-backdrivable servomotors confers structural stiffness to the drone as proven by the
lack of deformations and oscillations of the arms during flight. However, the current
design is not crash resilient. Collisions force the arms to fold producing a torque
overload on the servomotors. This limitation can be overcome with the integration
of lightweight dual-stiffness mechanisms [114, 117] to decouple the arms from the
servomotors during collisions.

All the computations necessary for autonomous flight are performed onboard. The
state of the quadrotor (i.e., its position, orientation, linear and angular velocities) is

153

Appendix E. The Foldable Drone

estimated using the Visual-Inertial Odometry pipeline provided by the Qualcomm
mvSDK. Such state estimate is fed to the flight stack described in Sec. E.3, which runs
onboard using ROS.

E.4.2 Morphing Trade-Offs

For each configuration presented in this work (X, T, H, O) we run in-flight experiments
and performed offline evaluations in order to assess their respective advantages and
trade-offs. More specifically, we are interested in:

• Flight time: the time the quadrotor can fly, which is affected by the arm configura-
tion due to the overlap between different propellers, as well as between propellers
and the main body, and due to an asymmetric usage of the motors leading to
over power consumption, for example in the T configuration;

• Maximum angular acceleration as controllability index: defined as the maximum
angular acceleration the robot can produce in hover around the body xb-yb axes;

• Size: defined as the propeller tip-to-tip distance, for both the xb and the yb axes.

Fig. E.5 provides a comparison among the different morphologies in terms of the
aforementioned parameters, which are explained in the following. It is important to
notice that the values reported in Fig. E.5 are normalized by those obtained in the X
configuration. In other words, for each parameter pi in a configuration i, Fig. E.5 reports
the ratio pi

pX
(or its inverse, as for the size), where pX is the same parameter evaluated

in the X configuration. This is due to the fact that such a configuration is the most
commonly used morphology for quadrotors, and, therefore, we took it as the reference
model to evaluate advantages and disadvantages of the other configurations. Also,
normalizing each value by the one obtained in the X configuration has the additional
advantage of providing results that are less dependent on the specific hardware used
to build our platform and allow a more fair and general comparison among different
morphologies.

Flight Time

The first parameter we are interested in is the flight time each configuration is capable
of providing. Since flight in dynamic conditions is highly influenced by the kind of
trajectory the vehicle flies, we performed our tests in hover conditions. In this regard,
we let the vehicle autonomously hover while logging the battery voltage. We performed
10 trials for each configuration using a fully charged, 3-cells, Li-Po battery. It is well
known that the discharge curve for LiPo batteries is linear only within a certain region
[186]; therefore, we only considered such a region to compute the flight time. As

154

E.4. Experiments

0.00

0.40

0.80

1.20

1.60

2.00
x-Size

y-Size

Flight
Time

Roll
Acc.

Pitch
Acc. X

T

H

O

Figure E.5: Radar chart summarizing the comparison among the morphologies. We normalized
each parameter to the one obtained for the X configuration, in order to provide an immediate
overview about the advantages and disadvantages of each configuration compared to the
classical X morphology.

expected, the X configuration is able to provide the best results and allows the vehicle
to hover on average for 253 s. Changing the morphology of the drone causes a drop
in the hover time of around 17%, 23%, and 63% for the H, T and O configurations,
respectively. In the H configuration, this loss of endurance is partially due to the
overlap between propellers. As shown in [135], when two propellers overlap, the thrust
produced by the lower one depends on the vertical offset with respect to the upper one
and the percentage of overlap. Our foldable quadrotor has a vertical offset between
propellers of 2 cm. In the T and H configurations, the overlap is around 30% of the
propeller radius, resulting in a loss of thrust for the lower propeller of around 5% [135].
The reduced flight time of the T configuration does not depend on propeller overlap,
but rather on the robot geometry. In hover, rotors 1 and 2 need to rotate faster than
rotors 3 and 4 due to their smaller distance to the CoG along the xb axis (see Fig. E.3).
This leads to a higher power consumption in hover with the T configuration, since in
near-hover conditions the power required by each motor scales with the cube of its
rotational speed [8]. Finally, in the O configuration, the flight time is reduced even more
because each propeller has a 30% overlap with the main frame. Our results confirm the
intuition that morphologies different from the X are less efficient, which is especially
emphasized with the O configuration where the vehicle is fully folded.

155

Appendix E. The Foldable Drone

Angular Acceleration

The second parameter we used to compare the different morphologies is the maximum
angular acceleration the vehicle can produce around its body xb (roll) and yb (pitch)
axes when hovering. This parameter is related to the agility and maneuverability of the
platform, since it is an indicator of how fast the robot can rotate to accelerate laterally
or forward. To calculate such acceleration, we first computed the maximum torque the
vehicle can produce around each axis while simultaneously guaranteeing the hover
thrust and satisfying the single motor thrust saturations. Then, we divided such torque
by the inertia around the same rotation axis, obtaining the maximum instantaneous
angular acceleration the quadrotor can produce. It is important to notice that the
morphology of the robot plays a key role for this parameter and its contribution is
twofold. On the one hand, folding or unfolding each arm around the main body
changes the arm of the force produced by each propeller. This means that, for a
propeller producing the same thrust, it can generate different torques depending on its
position with respect to the fixed body. On the other hand, the inertia of the platform
depends on how the arms are distributed around the main body and, the farther each
propeller is with respect to the geometric center of the vehicle along one axis, the more
it contributes to the inertia around the other two.

Size

Finally, we considered as last parameter of our analysis the size of the vehicle. More
specifically, for each configuration we computed the tip-to-tip distance along the body’s
xb and yb. Fig. E.5 reports the results of this analysis. It is important to note that, only
for the size, we considered the inverse of the ratio pi

pX
to guarantee consistency with the

other parameters, whose normalized values larger than one indicate an improvement
with respect to the X morphology.

Conclusions

The ability of switching morphology allows a quadrotor to change its shape to optimize
the execution of tasks that are difficult or impossible with the X configuration, such as
passing through narrow gaps, as shown in the next section. However, this comes at a
cost: the standard X morphology is the most efficient and therefore should be used as
long as a different morphology is not strictly required by the task at hand. Additionally,
as shown by the results in Fig. E.5, reducing the size a drone by morphing does not
always increase its agility. The T and H configurations, for example, are capable of
providing higher angular accelerations around one of the body axes, but sacrifice their
agility around the other axis. The O configuration, despite the significant size reduction,
does not bring any advantage in terms of agility since the overall mass of the vehicle
does not change.

156

E.4. Experiments

E.4.3 Flight Performance

Our foldable quadrotor is able to change its morphology while flying, as shown in the
attached video, where the quadrotor transitions across the four morphologies previ-
ously reported in hover conditions. Our folding scheme is able to provide stable hover
flight in all such configurations, as shown in Tab. E.1, where the mean µ and standard
deviation σ of the position error are shown for a flight of 60 s with each configuration.
The position error does not show significant dependence on the configuration, except
for the O morphology, where the overlap between the propellers and the mainframe
causes a significant loss in the thrust produced by each rotor. Additionally, we per-
formed experiments to show that, independently of the morphology, our quadrotor is
able to reject external disturbances and return to the reference hover position when
perturbed, as demonstrated by the results reported in the supplementary video. Finally,
to show that our control scheme does not require any kind of geometric property of
the morphology of the vehicle (e.g., symmetries), we performed an experiment where
each servo motor is commanded to reach a randomly generated value within its range
of motion.

Morphology
µ [m] σ [m]

x y z x y z

X 0.022 0.014 0.024 0.009 0.008 0.006

T 0.029 0.026 0.031 0.011 0.023 0.007

H 0.035 0.022 0.029 0.008 0.015 0.024

O 0.084 0.127 0.119 0.022 0.012 0.014

Table E.1: Flight performance. Statistics for the position error in hover for the four morphologies.
Mean µ and standard deviation σ for the absolute value of position error for 60 s of hovering
flight for each configuration, expressed in meters. Data recorded from an OptiTrack motion-
capture system.

Our foldable drone is capable of changing its morphology not only in hover, but also
in dynamic conditions. To this regard, the supplementary material shows experiments
where the vehicle is commanded to fly a circular trajectory at a given height while
changing the configuration from X to T, H, and O. We chose a circular trajectory since
this requires the quadrotor to rotate both around its xb and yb body axes. The robot
flies at a speed of 2 m s−1 on a circle of radius 1.5 m, at a height of 1.5 m, and is able
to guarantee stable flight in all such configurations despite the large accelerations it is
subject to.

157

Appendix E. The Foldable Drone

Figure E.6: Traversal of an horizontal gap using the O morphology. Left: the quadrotor
approaches the gap with the X configuration (time t = 0 s). Center: the quadrotor starts the
folding maneuver to adapt its morphology to the shape of the gap (t = 1 s). Right: the gap has
been traversed (t = 2 s).

E.4.4 Applications

Morphing allows adaptation to a broader range of tasks and, therefore, opens the door
to new applications as for example, but not limited to, flight through gaps smaller than
the vehicle’s silhouette, proximity inspection of surfaces and object transportation. In
this section we show how our foldable quadrotor can be exploited for these tasks.

Flight Through Narrow Gaps

Previous works addressing quadrotor flight through narrow gaps have shown that an
aggressive maneuver is required to align the vehicle with the gap’s orientation to avoid
collisions [46, 99]. Flight through arbitrarily shaped gaps using monocular vision has
also been shown in [163]. In all those works, the gap has to be large enough to let
the vehicle pass through. Gaps smaller than the vehicle silhouette cannot be traversed
due to the fixed morphology of the robot. This increases the risk of collisions with
the gap and requires a large space for the vehicle to execute and recover from this
maneuver, which might not be available in unknown environments. On the contrary,
an adaptive morphology enables the vehicle to pass through gaps smaller than its size
by folding the arms and flying at low speed to increase safety. This also allows the
robot to require a smaller free space around the gap, since no recovery maneuver is
necessary. An adaptive morphology to allow a drone to pass through narrow gap was
proposed in [153]. However, that vehicle can only change its morphology to one that
lets it pass through vertical gaps and requires recovery maneuvering due to loss of
controllability in the folded configuration.

An adaptive morphology, like the one we propose in this work, allows a quadrotor
to safely fly through narrow gaps that are smaller than its size in the X configuration.
For example, the H configuration lets our robot fly through vertical gaps as wide as

158

E.4. Experiments

2 (l + r), where l is the half-size of the central body and r the propeller radius. The O
configuration reduces both the width and length the robot, allowing passing through
small horizontal gaps with a square shape and as wide as 2 (l + r).

The results of our experiments are reported in the supplementary material for the cases
of a vertical and an horizontal gap (cf. Fig E.6). In both cases, the quadrotor would
collide with the frame of the gap if it would not fold the arms before traversing it. To
detect the gap using on-board vision, we used the algorithm proposed in [46]. The
vehicle approaches the gap with the standard X configuration, autonomously switches
to a configuration that lets it traverse the gap, and finally returns to the X configuration
to hover. The experiments reported in this work make use of the H configuration to
traverse the vertical gap, and the O configuration to traverse the horizontal gap. The
configuration to be used for each gap was decided in advance and set as a parameter
in the control pipeline. The dimensions of the vertical gap are 28× 26 cm, those of the
horizontal gap 32× 32 cm.

Additionally, we performed outdoor experiments to showcase the potential benefits
of a quadrotor able to reduce its size in search-and-rescue missions by entering and
exploring a collapsed building after traversing an aperture smaller than its size (cf.
Fig. E.1d). The video of the experiments demonstrates the feasibility of our approach
in a post-disaster scenario, but nevertheless this only represents a first step towards the
deployment of morphing quadrotors to the field.

Close Proximity Surface Inspection

The supplementary video shows the results of an experiment highlighting the benefits
of the T configuration against the X morphology for surface inspection. Indeed, the T
configuration allows the robot the position the onboard front-looking camera closer
than it can when the arms are placed around the main body in the X configuration (cf.
Fig. E.7). If the inspection target is larger than the space between two propellers in the
X morphology (i.e., the target cannot fit between two adjacent propellers), the shortest
distance d from such a target that the front-looking camera can reach depends on the
arm-length b and the propeller radius r, namely d =

√
2

2 (b + 2r). Conversely, when
the robot is able to fold its front arms to the side (i.e., θ1 = π, θ2 = 0), the camera can
potentially get as close to the target as the propeller radius r. As shown in the video,
the robot manages to bring the camera closer to the surface to inspect when it flies in
the T configuration.

Object Grasping and Transportation

The drone can close its arms around objects to grasp and transport them. Although this
strategy cannot replace a specialized end-effector, small and lightweight objects can

159

Appendix E. The Foldable Drone

Figure E.7: Inspection of a surface using the T configuration (left) and the X configuration
(right).

be transported without the need of additional mechanisms. The supplementary video
shows our foldable drone grasping an object from the hands of a human operator by
changing its morphology to the H configuration. Once the object has been grasped,
the vehicle flies to a delivery point, and drops the object by simply rearranging its
morphology to the X configuration.

E.5 Conclusion

In this work, we presented a simple, yet effective morphing system for quadrotors
that consists of four arms that can fold around the main body. Our approach does
not require symmetries in the morphology to guarantee stable flight. We showed
that simple morphing mechanisms combined with adaptive control strategies are a
viable solution to broaden the spectrum of applications of quadrotors. This could
lead to a paradigm shift in the research community towards novel morphing aerial
vehicles. However, there are still a number of unsolved research questions, such as
automatic morphology selection, exploitation of the morphology for improved flight at
high-speed, and novel, bio-inspired mechanical designs.

160

F Autonomous Landing on a Moving
Platform

©2017 IEEE. Reprinted, with permission, from:

D. Falanga, A. Zanchettin, A. Simovic, J. Delmerico, and D. Scaramuzza. “Vision-based
Autonomous Quadrotor Landing on a Moving Platform”. In: IEEE Int. Symp. Safety,
Security, and Rescue Robot. (SSRR). Oct. 2017. doi: 10.1109/SSRR.2017.8088164

161

https://doi.org/10.1109/SSRR.2017.8088164

Appendix F. Autonomous Landing on a Moving Platform

Vision-based Autonomous Quadrotor
Landing on a Moving Platform

Davide Falanga, Alessio Zanchettin, Alessandro Simovic, Jeffrey Delmerico,

and Davide Scaramuzza

Abstract — We present a quadrotor system capable of autonomously
landing on a moving platform using only onboard sensing and
computing. We rely on state-of-the-art computer vision algorithms,
multi-sensor fusion for localization of the robot, detection and motion
estimation of the moving platform, and path planning for fully
autonomous navigation. Our system does not require any external
infrastructure, such as motion-capture systems. No prior information
about the location of the moving landing target is needed. We
validate our system in both synthetic and real-world experiments
using low-cost and lightweight consumer hardware. To the best of
our knowledge, this is the first demonstration of a fully autonomous
quadrotor system capable of landing on a moving target, using only
onboard sensing and computing, without relying on any external
infrastructure.

Supplementary Material

Video of the experiments: https://youtu.be/Tz5ubwoAfNE

F.1 Introduction

Quadrotors are highly agile and versatile flying robots. Recent work has demonstrated
their capabilities in many different applications including but not limited to: search-
and-rescue, object transportation, inspection, surveillance and mapping [43, 108, 36].

162

https://youtu.be/Tz5ubwoAfNE

F.1. Introduction

Figure F.1: Our quadrotor during the landing on a moving platform.

The drawback of multirotors in general is a lower efficiency of the propulsion system
when compared to other aerial vehicles, such as fixed-wing aircrafts. This limits the
autonomy and utility of quadrotors as the time during which the vehicle can remain
airborne is relatively short. One possible solution is to have a quadrotor autonomously
land on a ground-station where its battery is charged or replaced.

Search and rescue robotics is a domain that could greatly benefit from aerial robots
capable of landing autonomously on moving platforms. One day, flying robots will
assist rescuers during their missions by providing an optimal platform for aerial
inspection and mapping of the surroundings. Allowing these vehicles to autonomously
land on predefined targets for battery charging/swapping or delivery of supplies would
drastically enhance their usefulness while requiring limited or no human intervention.
This would represent a major step forward in the use of autonomous robots in search-
and-rescue missions, whose duration is usually significantly longer then the typical
flight time of a drone.

This work focuses on the case where the ground-station moves inside a large mission
area of known size (cf. Fig. F.1). Our system relies on state-of-the-art algorithms for
state estimation, trajectory planning, quadrotor control and detection of the moving
target, all using only onboard sensing and computing. To the best of our knowledge,
this is the first demonstration of a fully autonomous quadrotor system capable of
landing on a moving target, using only onboard sensing and computing, without
relying on any external infrastructure.

163

Appendix F. Autonomous Landing on a Moving Platform

F.1.1 Related Work

Unmanned Aerial Vehicle (UAV) landing on a desired target has been an active research
field during the last decades. A large body of the literature focuses on landing a UAV
on a static target, such as a predefined tag or a runway. The state of the flying vehicle
is estimated using motion-capture systems [109], GPS [168, 91] or computer vision
[72]. Computer vision is the most common approach when it comes to detecting the
landing target [91, 168, 72, 183]. Nevertheless, solutions for detecting the target based
on motion-capture systems [109], or other sensors (e.g., GPS [164]) are available in the
literature. Although interesting results have been achieved, they are not necessarily
applicable to dynamically moving targets in an open outdoor environment. In regard
to moving targets, a number of works focused on collaboration between a flying and a
ground-based vehicle to coordinate the landing maneuver [31, 132, 64]. In this work,
we do not assume that the two platforms are able to communicate or coordinate a
landing.

In order to detect the landing platform, most state-of-the-art works exploit computer
vision from onboard cameras. Visual servoing is a valid option to some extent [92,
167]; nevertheless, it requires the landing platform to be visible throughout the entire
duration of the task, the reason being that the UAV is pulled towards the goal using
solely visual information from its camera. To deal with missing visual information,
model-based approaches have been proposed to predict the motion of the landing target
[188, 87]. Alternative solutions are realized with the use of additional sensors attached
to the moving target. Among many, these sensors include Inertial Measurement Units
(IMU), GPS receivers [132, 15] or infrared markers [191].

For the UAV to be truly autonomous, all of the computation necessary to achieve the
goal must be performed onboard. This is by no means standard in the literature, since
all the approaches mentioned before rely on external computation for state estimation,
trajectory planning or control [92, 188, 87]. Additionally, GPS [164, 150, 132, 87]
or motion-capture systems [92, 64] are often used for state estimation, either only
while patrolling or throughout the entire task. Conversely, we rely only on onboard
visual-inertial odometry for state estimation.

F.1.2 Contribution

In this paper, we present a quadrotor system capable of autonomously landing on
a moving target using only onboard sensing and computing. No prior knowledge
about the location of the moving landing target is needed. We exploit state-of-the-art
visual-inertial odometry to estimate the state of the quadrotor itself, complemented by
nonlinear control algorithms to drive the vehicle. Our system detects the landing target
using an onboard camera and deals with temporarily missing visual information by

164

F.2. System Overview

exploiting the the target’s dynamical model. Therefore, no external infrastructure such
as a motion-capture system is needed. We compute trajectories that take into account
the dynamical model of the quadrotor and are optimal with respect to a cost function
based on the energy necessary to execute it. We validate our approach in simulation as
well as in real-world experiments, using low-cost, lightweight consumer hardware.

The remainder of this paper is structured as follows: Sec. F.2 provides an overview
on the proposed framework and details the algorithms used to estimate the state of
the quadrotor, detect and track the moving platform, plan trajectories for the aerial
vehicle, and control it along these trajectories. Sec. F.3 describes the experimental
platform and the simulation tools used to validate our approach, and provides the
experimental results. In Sec. F.4, we discuss the proposed method and provide insights
on the experiments. Finally, we draw conclusions in Sec. F.5.

F.2 System Overview

Our system makes use of the following modules:

• quadrotor state estimation (Sec. F.2.1);

• moving target detection (Sec. F.2.2);

• moving target state estimation (Sec. F.2.3);

• trajectory planning (Sec. F.2.4);

• quadrotor control (Sec. F.2.5);

• state machine (Sec. F.2.6).

Fig. F.2 provides a visual overview of these components. The modular structure of our
framework allows us to easily modify or replace the algorithms inside each module
without requiring changes to the others. Therefore, the one proposed in this work is a
general purpose approach for landing a UAV on a moving target. It requires relatively
few changes to be adapted to different platforms (e.g., fixed wings), algorithms, or
scenarios.

F.2.1 Quadrotor State Estimation

We use monocular visual-inertial odometry to estimate the state of the quadrotor. More
specifically, we rely on our previous work [58] for pose estimation. Pose estimates are
computed at 40 Hz and fused with measurements coming from an Inertial Measurement
Unit (IMU) using an Extended Kalman Filter [104] at 200 Hz. Our state estimation

165

Appendix F. Autonomous Landing on a Moving Platform

SENSOR
FUSION

AUTOPILOT

VISUAL
ODOMETRY

CAMERA

CAMERA PLATFORM
DETECTION

KALMAN
FILTER

TRAJECTORY
PLANNING

HIGH-LEVEL
CONTROL

STATE
MACHINE

QUADROTOR

Quadrotor
Desired
State

(50 Hz)

Predicted Platform
State (50 Hz)

Platform Pose
Estimate (20 Hz)

Quadrotor Pose
Estimate (40 Hz)

Quadrotor State
Estimate(200 Hz)

Inertial Measurements (200Hz)

Single Rotor
Thrusts (200 Hz)

Desired Bodyrates
(50 Hz)

Image (40 Hz)

LOW-LEVEL
CONTROL

Desired Torques
(200 Hz)

Platform State
Estimate(200 Hz)

Desired Collective Thrust (50 Hz)

Image (40 Hz)

Figure F.2: A schematic representing our framework. Blue boxes represent software mod-
ules, green boxes are hardware components. The quadrotor platform is represented in red.
Communication between modules happens through ROS.

Figure F.3: The tag we used to detect the landing platform. Our framework does not strictly
depend on specifics of the tag, and thanks to its modularity can easily generalize to other
patterns.

pipeline provides an accurate estimate of the vehicle position, linear velocity and
orientation with respect to the world frame {W}. The complete pipeline runs entirely
on the onboard computer.

F.2.2 Vision-based Platform Detection

We employ onboard vision to estimate the position of the moving platform in a world
frame {W}. To simplify the detection task, our moving platform is equipped with a
visually distinctive tag. In this work, we leverage a tag like the one depicted in Fig. F.3.
The tag consists of a black cross surrounded by a black circle with a white backdrop.
Nevertheless, our framework can easily generalize to a variety of tags, as for example
April Tags [139], and to different detection algorithms. Our algorithm attempts to detect
the landing platform in each camera image and estimate its position in the quadrotor
body frame {B}. We first convert the image from the onboard camera into a binary
black-and-white image by thresholding. Next we search for the white quadrangle with
the largest area. In the case where no white quadrangle is visible, the landing platform
cannot be found and the detection algorithm is concluded. Conversely, if a white
quadrangle is found, we search for the pattern inside the quadrangle that composes

166

F.2. System Overview

our tag and extract its corners. More specifically, we first search for the circle and
approximate it with a polygon, whose corners are used to estimate the position of the
platform. If the circle is not entirely visible, we search for the four inner corners of
the cross. If neither cross nor circle are visible, we use the four corners of the white
quadrangle. To render our algorithm robust to outliers, we use RANSAC for geometric
verification. Assuming the metric size of the tag to be known allows us to use the
detected corners to solve a Perspective-n-Points (PnP) problem. In doing so, we obtain
an estimate of the landing platform’s position with respect to the quadrotor. Finally, we
exploit the knowledge of the quadrotor’s pose in world frame {W} to transform the
position of the ground platform from frame {B} to {W}. The algorithm used to detect
the platform is summarized in Alg. 1, and runs at 20 Hz on the onboard computer.

Algorithm 1 Moving landing platform detection

1: Input: Onboard camera image
2: Outputs: Landing platform position in {W}

3: binary_image← black_and_white(camera_image)
4: polygons← detect_polygons(binary_image)
5: landing_tag← largest_quadrangle(polygons)
6: if landing_tag found then
7: if circle← detect_circle_in(landing_tag) then
8: return circle.position()
9: else

10: if cross← detect_cross_in(landing_tag) then
11: return cross.position()
12: else
13: return landing_tag.position()
14: else
15: return 0

F.2.3 Platform State Estimation

The algorithm presented in Sec. F.2.2 provides an estimate of the position of the ground
vehicle in the world frame W. However, the landing platform is not guaranteed to be
visible at all times. To deal with missing visual detections, as well as to estimate the
full state of the platform (namely the position, velocity and orientation), we use an
Extended Kalman Filter [173]. We exploit a dynamic model of a ground vehicle based
on non-holonomic movement constraints for the prediction phase [171], and consider
tag detections from the onboard camera as measurements for the correction phase. For
brevity reasons, we report only the main equations of the filter and refer the reader to
[173] and [80] for further details.

167

Appendix F. Autonomous Landing on a Moving Platform

Time Update

In the prediction step, the filter provides a prediction of the state of the moving platform
based on the following non-linear equation:

ẋ(t) = f (x(t), u(t)) + w(t), (F.1)

where x(t), u(t) and w(t) are the state of the system, the input and the process
noise, respectively. We model the process noise as white Gaussian noise, namely
w(t) ∼ N (0, σ2

w). The function f (x, u) represents the dynamical model of the moving
platform:

ṗx = vt cos(θ) (F.2a)

ṗy = vt sin(θ) (F.2b)

ṗz = 0 (F.2c)

θ̇ = u1 (F.2d)

v̇t = u2 (F.2e)

In (F.2), px, py, pz are the 3D coordinates of the position of the platform in the world
frame {W}, θ is the angle between the x-axis of the vehicle’s body frame (i.e., its forward
direction) and the world x-axis, vt is the tangential velocity of the vehicle (see Fig.F.4),
and u1 and u2 represent the control input to the system. In our case, we assume the
velocity of the platform to be constant and therefore, that the inputs u1 and u2 are zero
all the time. If any prior information about the motion of the vehicle is available (e.g.,
the path along which it moves), this can be easily incorporated into the dynamical
model.

Measurement Update

The correction phase is performed each time a measurement zk (the 3D position of the
moving platform) is provided by the detection algorithm, according to the following
equations:

ˆ̇x(t) = f (x̂(t), u(t)) + K(t)(z(t)− h(x̂(t)), (F.3)

where the matrix K(t) represents the Kalman gain.

F.2.4 Trajectory Planning

We use the approach proposed in [129] to plan optimal, feasible trajectories that prevent
the vehicle from colliding with obstacles. The authors of that work propose a fast

168

F.2. System Overview

?

v t

p = (px,py,pz)

yp xp

zp
{P

}

yw

xwzw

{W}

Figure F.4: A schematics representing the dynamical model of the moving platform. The world
frame is indicated as {W}, while the platform body frame as {P}.

polynomial trajectory generation method that minimizes the third derivative of the
position (namely, the jerk). Such an approach solves the minimization problem in
closed form, therefore it is able to provide an optimal trajectory within a few micro-
seconds running entirely onboard. Furthermore, the same method provides tools to
verify whether the planned trajectory is feasible or not. More specifically, it allows the
system to quickly check that each candidate: (i) does not exceed the physical actuation
constraints of the platform, and (ii) does not collide with known obstacles (e.g., with
the ground).

Additionally, during the platform following stage, we exploit the speed of the trajectory
planning method [129] to provide the quadrotor with a set of feasible candidate
trajectories, and we select the one with the lowest cost. Such a cost is the integral of
the jerk along the trajectory, which the authors of [129] show to be an upper bound on
the product of the inputs to the vehicle, namely the collective thrust and the angular
velocities around the three body axes. Also, this allows us to quickly replan the desired
trajectory during the platform following phase (see Sec. F.2.6). At each control cycle, we
select n prediction times tk by uniformly sampling a fixed-duration prediction horizon.
For each time tk, we predict the future state x̂(tk) that the landing platform will reach,
starting from its last estimate available x̂(tc) at the current time tc. The prediction is
based on the dynamical model proposed in Sec. F.2.3. The future predicted state is
used as the final state for each candidate trajectory. Out of all candidate trajectories,
the one requiring a minimum amount of energy for execution is selected. We indicate
the duration of the selected candidate as ts.

169

Appendix F. Autonomous Landing on a Moving Platform

tc ts tn... ...t1t0

Figure F.5: An example of our planning strategy. The quadrotor plans n trajectories to reach
the moving platform. Each one starts from its current position and has the ground vehicle’s
predicted position and velocity as final state. The future state of the moving target is predicted
using its dynamical model, starting from the last estimate available from the Kalman Filter.
Trajectories requiring inputs outside the allowed bounds or colliding with obstacles (e.g., with
the ground), are rejected (dashed red lines in this image). We select the minimum-energy
trajectory (green solid line, duration ts) out of the set of all the feasible candidate trajectories
(blue dashed lines).

F.2.5 Quadrotor Control

We use state-of-the-art, nonlinear control to drive our quadrotor along the desired
trajectory. Broadly speaking, our controller is composed of a high-level controller for
position and attitude corrections, and a low-level controller for reaching the required
body rates. The high-level controller takes the difference between desired and estimated
position, velocity, acceleration and jerk as input and returns the desired collective thrust
and body rates. These body rates are passed as input to the low-level controller, which
computes the necessary torques to be applied to the rigid body. The desired torques
and the collective thrust are then converted to single motor thrusts. We refer the reader
to our previous works [41] and [45] for further details on the dynamical model and
the control algorithm used in this work.

F.2.6 State Machine

The state machine module governs the behavior of the quadrotor during the entire
mission. It has four states, namely: takeoff, exploration, platform tracking, landing. Fig. F.6
depicts the state machine with its states and the respective transitions triggered by
events. In the following few sections we describe each of states in more detail.

Takeoff

Our quadrotor launches from the ground and is commanded to reach a hover point
within a given amount of time. During the takeoff maneuver, we rely solely on the

170

F.3. Experiments

onboard IMU and a distance sensor. Once the vehicle is hovering, we initialize our
visual odometry pipeline (Sec. F.2.1) to acquire and maintain a full state estimate. At
this point, we switch the state machine to the exploration mode.

Exploration

The quadrotor explores an bounded area with known dimensions, flying at a given
height. The vehicle autonomously computes waypoints to inspect the area and generates
trajectories according to the strategy in Sec. F.2.4. This mode ends when the quadrotor
detects the landing platform for the first time.

Platform Tracking

In this phase, the quadrotor follows the moving platform and attempts to reach it and
fly above it. We initialize the Kalman Filter (Sec. F.2.3) after the first detection and use
its output to provide the trajectory planner with waypoints. At each control cycle, the
quadrotor plans a set of candidate trajectories as described in Sec. F.2.4. Once the best
candidate is selected, it is compared with the previous candidate and is executed only
if the final position of the two trajectories differ significantly. We consider the tracking
phase concluded when the quadrotor is above the ground platform and is moving at
the same velocity.

Landing

When the vehicle is close enough to the landing platform and has matched its velocity,
the state machine switches to the landing mode. In this phase, we command the vehicle
to start a descent at a given vertical speed, while continuing to match the speed of the
landing platform along the x and y axes. We use an onboard distance sensor to estimate
the relative vertical distance between the quadrotor and the ground platform. The
vehicle stops the motors when the distance to the platform is below a given threshold,
concluding the landing maneuver.

F.3 Experiments

F.3.1 Simulation Environment

We used RotorS [59] and Gazebo to validate our framework in simulation. We replaced
the default controller provided in the simulator with our own described in Sec. F.2.5.
State estimation is provided by a simulated odometry sensor and, to bring the simula-
tion closer to real experiments, we added white Gaussian noise to the estimated state of

171

Appendix F. Autonomous Landing on a Moving Platform

Take Off

Explore

Quadrotor
Hovering

Platform Tracking

Platform
Detected

Land

Aligned
with

Platform

Off

Quadrotor
on the

Platform

Quadrotor
Hovering

No

No No

No

Yes

Yes

Yes

Yes

Figure F.6: The flowchart of our state machine.

tftltd

tftltd

tftltd

tftltd

tftltd

tftltd

x-P
osi
tio
n [
m]

y-Position
[m
]

z-
P
os
it
io
n
[m

]

Time [s]

z-
V
el
oc
it
y
[m

/s
]

Time [s]

y-
V
el
oc
it
y
[m

/s
]

Time [s]

x-
V
el
oc
it
y
[m

/s
]

Time [s]

z-
P
os
it
io
n
[m

]

Time [s]

y-
P
os
it
io
n
[m

]

Time [s]

x-
P
os
it
io
n
[m

]

3D PositionVelocityPosition

−15

−10

−5

0

5

10

15

20

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

−60

−50

−40

−30

−20

−10

0

−1.5

−1

−0.5

0

0.5

−8

−6

−4

−2

0

2

−6

−5

−4

−3

−2

−1

0

1

0

0.5

1

1.5

2

2.5

3

3.5

−65

−60

−55

−50

−45

−40

−35

−30

−15

−10

−5

0

5

10

15

20

0.5

1

1.5

2

2.5

3

Figure F.7: The results of one of our simulations. We report data for position (left and right
columns) and velocity (center column). The quadrotor starts the exploration at t = 0 and detects
the moving platform for the first time at t = td. At this point, the tracking starts and the vehicle
starts the landing phase at t = tl . The maneuver is completed at t = t f . The platform moves at
a constant speed of 4.2 m s−1 along a figure-8 path.

the vehicle. Furthermore, we used an onboard simulated camera to detect the landing
platform. We used a Clearpath Husky UGV simulated model as ground vehicle, on top
of which we mounted the tag to be detected.

F.3.2 Simulation Results

We tested our framework using this simulation environment in a number of different
scenarios. More specifically, we run simulation experiments with the landing platform
moving along paths with different properties (i.e., straight line, circle, figure-8). The

172

F.3. Experiments

Figure F.8: The quadrotor used in our experiments. (1) The onboard computer running our
algorithms. (2) The downward-looking camera used to detect the platform. (3) The PX4
autopilot. (4) The TeraRanger distance sensor. (5) The 45° angled-down camera used for visual
odometry.

landing platform’s speed is varied between 1 m s−1 and 4.2 m s−1. In our experiments,
the quadrotor takes off from the ground and explores a pre-defined area. When the
landing platform is detected, the quadrotor starts following. Once it is close enough,
the quadrotor initiates the landing maneuver. The results of one of our simulated
experiments are visualized in Fig. F.7.

F.3.3 Experimental Platform

For validating our framework in the real world, we used a custom-made quadrotor
platform. The vehicle (cf. Fig. F.8) is constructed from both, off-the-shelf and custom
3d-printed components. We used a DJI F450 frame, equipped with RCTimer MT2830
and soft 8-inch propellers from Parrot for safety reasons. The motors are driven by
Afro Slim Electronic Speed Controllers (ESC). The ESCs are commanded by the PX4
autopilot, which also sports an Inertial Measurement Unit. Our quadrotor is equipped
with two MatrixVision mvBlueFOX-MLC200w cameras providing an image resolution
of 752× 480-pixel. One camera is looking forward and is tilted down by 45°, while
the second is facing towards the ground. We motivate this camera setup in Sec. F.4.2.
Furthermore, we mounted a TeraRanger One distance sensor to estimate the scale of the
vision-based pose estimation, as well as to help the quadrotor during the takeoff and
landing maneuvers. The software modules of our framework (i.e., trajectory planning,
quadrotor control, visual odometry and visual-inertial fusion, platform detection and
tracking) run in real time in ROS on one of the two onboard Odroid XU4 computers.
The two computers are interconnected through their Ethernet ports, providing a low

173

Appendix F. Autonomous Landing on a Moving Platform

latency connection. The overall weight of the platform is 1 kg, with a thrust-to-weight
ratio of 1.85.

F.3.4 Landing Platform

In our real-world experiments we use a Clearpath Jackal 1 as ground vehicle carrying
the landing platform and control it manually. In nominal conditions the platform
can reach a maximum speed of 2 m s−1. We installed a 150× 150 cm wooden landing
pad equipped with the tag on the top of the vehicle, reducing its maximum speed to
approximately 1.5 m s−1 due to the additional weight.

F.3.5 Real Experiments Results

We demonstrated our framework in a number of real experiments using the previously
describe quadrotor platform. Similarly to our simulations, we tested the effectiveness
of the proposed approach in different scenarios. More specifically, we had the landing
platform moving along different paths, at different speeds. Fig. F.9 reports the results for
one of the experiments we conducted, with the landing platform moving on a straight
line at 1.2 m s−1. The choice of such a speed is not due to limitations of our quadrotor
system, but rather to the maneuverability of the ground robot used as moving target.
The quadrotor starts the exploration at t = 0. The first platform detection happens
at t = td, when the quadrotor starts the following phase. At t = tl , the state machine
detects that the vehicle is above the platform and moves at approximately its speed,
entering the landing stage. Finally, the quadrotor reaches the platform at t = t f and the
maneuver is completed. For brevity reasons, we do not report any comparison between
the estimated state of the quadrotor and ground-truth. We refer the reader to [58] for
an extensive evaluation of the performance of our visual odometry pipeline.

F.4 Discussions

F.4.1 Generality of the Framework

With the modular architecture of our framework as presented in Sec. F.2 it is straight-
forward to adapt it for different scenarios: Depending on the severity, changes in
the hardware setup might require adjustments of the state estimation (Sec. F.2.1 and
quadrotor control (Sec. F.2.5) modules. In most cases, however, a re-tuning of the low-
and high-level controller’s parameters should suffice. Should it be required to equip
the landing platform with a different kind of tag or markers or even active beacons, all
necessary changes are confined to the target detection module (Sec. F.2.2). Likewise,

1https://www.clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/

174

F.4. Discussions

tftltd

tftltd

tftltd

tftltd

tftltd

tftltd

x-Position [m]

y-
P
os
it
io
n
[m

]

z-
P
os
it
io
n
[m

]

Time [s]

z-
V
el
oc
it
y
[m

/s
]

Time [s]

y-
V
el
oc
it
y
[m

/s
]

Time [s]

x-
V
el
oc
it
y
[m

/s
]

Time [s]

z-
P
os
it
io
n
[m

]

Time [s]

y-
P
os
it
io
n
[m

]

Time [s]

x-
P
os
it
io
n
[m

]

3D PositionVelocityPosition

123456
0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8−1.5

−1

−0.5

0

0.5

1

−0.2

0

0.2

0.4

0.6

−2

−1

0

1

2

3

−1

0

1

2

3

0

0.2

0.4

0.6

0.8

0

1

2

3

4

5

6

7

−0.5

0

0.5

1

1.5

2

2.5

Figure F.9: The results of one of real experiments. We report data for position (left and right
columns) and velocity (center column). The quadrotor starts the exploration at t = 0 and detects
the moving platform for the first time at t = td, starting the tracking stage begins. During
the landing stage, starting at t = tl , the platform exits the field of view of the camera and the
prediction of its motion is based solely on the dynamical model. The maneuver is completed at
t = t f . The platform moves at a constant speed of 1.2 m s−1 along a straight line.

the module for estimating the moving target’s state (Sec. F.2.3) can be modified in cases
where the landing platform exhibits drastically different dynamics than our model
described in Eq (F.2). By modifying the state machine (Sec. F.2.6), the nature of the task
can be altered. An example of such are autonomous reconnaissance missions where
the quadrotor takes off and lands on a larger mobile robot. Another use case might be
to have the quadrotor, or any kind of UAV for that matter, track a ground vehicle and
provide a bird’s view of it.

F.4.2 Motivation of the Vision Hardware Setup

Our experimental platform is equipped with two cameras, one forward-facing and is
tilted down by 45° for visual odometry, one downward-looking to detect the platform.
We chose this setup in order to have robust state estimation and to better detect the
platform. Indeed, when the quadrotor is close to the ground vehicle, the image from
the camera looking downwards contains mainly, if not only, the moving platform. Thus
our visual odometry pipeline would estimate only the relative motion with respect to
the platform instead of a static world frame. A forward-looking camera solves this
problem.

175

Appendix F. Autonomous Landing on a Moving Platform

Table F.1: Computation time statistics for our onboard, vision-based platform detection algo-
rithm.

Mean Standard Deviation

Image Thresholding 0.87 0.51 [ms]

Quadrangle Detection 4.35 1.89 [ms]

Circle Detection 0.06 0.03 [ms]

Cross Extraction 1.81 1.01 [ms]

Perspective-n-Points 4.95 2.31 [ms]

Total 12.04 5.75 [ms]

F.4.3 Computational Load

As mentioned in Sec. F.3.3, our quadrotor is equipped with two onboard computers
even though all algorithms composing our framework can be run off a single computer.
The second computer is used solely for data recording and rapid prototyping. Our
control and visual odometry pipelines have been demonstrated to run onboard the
quadrotor in our previous work [43] and we refer the reader to that for further details.
The trajectory planning algorithm we use in this work typically needs approximately
0.02 ms per trajectory. Since we replan our desired trajectory at 50 Hz, we can potentially
compute up to 1000 candidate trajectories per replanning-cycle. Nevertheless, we fix
the number of candidate trajectories to be computed at 20, which is usually sufficient
to find a feasible trajectory during the platform following phase.

The statistics of the time required by our vision-based platform detection algorithm are
reported in Table F.1. On average, it takes approximately 12 ms to detect the landing
platform in each image, leading to a potential maximum rate of approximately 80 Hz.
However, we found that a rate of 20 Hz is sufficient to obtain reliable and accurate
results in tracking the landing platform.

F.4.4 Trajectory Planning

In this work, we use trajectories that minimize the jerk to provide our controller with
reference states that drive the vehicle towards the accomplishment of the mission (cf.
Sec. F.2.4). Previous work has shown that trajectories that minimize the snap, namely
the fourth derivative of the position, lead to a smoother behavior for a quadrotor [111].
However, computing minimum snap trajectories typically requires longer then the
closed form solution for minimum jerk trajectories we exploit. Also, to the best of our
knowledge, no efficient feasibility verification method is available for minimum snap
trajectories. In our experiments, we observed a better overall behavior of the entire
pipeline when using minimum jerk trajectories. The reasons behind this are twofold: (i)

176

F.5. Conclusions

the very efficient computation of minimum jerk trajectories make it possible to re-plan
the desired trajectory at high frequency to deal with changes in the motion of the
moving target; (ii) the feasibility verification method lets us plan trajectories which
satisfy the physical limits of the platform, i.e. avoid motors saturation.

F.4.5 Dealing with Missing Platform Detection

We deal with temporarily missing detections of the moving platform during the
following and landing phases by using the Extended Kalman Filter described in
Sec. F.2.3. Despite the lack of prior information about the motion of the platform and
the constant velocity assumption, the dynamical model used for the prediction phase
provides reliable results in both simulation and real world experiments. Therefore, our
framework is capable of landing a quadrotor on a moving target even in the case when
the platform is not temporarily visible.

F.5 Conclusions

In this work, we presented a quadrotor system capable of autonomously landing on a
moving platform using only onboard sensing and computing. We relied on state-of-
the-art computer vision algorithms, multi-sensor fusion for localization of the UAV,
detection and motion estimation of the moving platform, and path planning for fully
autonomous navigation. No external infrastructure, such as motion-capture systems or
GPS, is needed. No prior information about the location of the moving landing target
is required to execute the mission. We validated our framework in simulation as well
as with real-world experiments using low-cost and lightweight consumer hardware.
To the best of our knowledge, this is the first demonstration of a fully autonomous
quadrotor system capable of landing on a moving target, using only onboard sensing
and computing, without relying on any external infrastructure.

177

Bibliography

[1] A. Al-Tamimi and F. Lewis. “Discrete-time nonlinear HJB solution using ap-
proximate dynamic programming: convergence proof”. In: IEEE Transactions on
Systems, Man, and Cybernetics. June 2008. doi: 10.1109/TSMCB.2008.926614.

[2] J. Aloimonos, I. Weiss, and A. Bandyopadhyay. “Active vision”. In: International
Journal of Computer Vision 1.4 (Jan. 1988), pp. 333–356. issn: 1573-1405. doi:
10.1007/BF00133571.

[3] H. Alvarez, L. M. Paz, and D. Cremers. “Collision Avoidance for Quadrotors
with a Monocular Camera”. In: Int. Symp. Experimental Robotics (ISER). 2016,
pp. 195–209. isbn: 978-3-319-23778-7. doi: 10.1007/978-3-319-23778-7_14.

[4] D. Arthur and S. Vassilvitskii. “How Slow is the K-means Method?” In: Proceed-
ings of the Twenty-second Annual Symposium on Computational Geometry. SCG ’06.
ACM, 2006, pp. 144–153. isbn: 1-59593-340-9. doi: 10.1145/1137856.1137880.

[5] T. Avant, U. Lee, B. Katona, and K. Morgansen. “Dynamics, Hover Configura-
tions, and Rotor Failure Restabilization of a Morphing Quadrotor”. In: 2018
Annual American Control Conference (ACC). IEEE. 2018, pp. 4855–4862.

[6] Y. Bai and S. Gururajan. “Evaluation of a Baseline Controller for Autonomous
“Figure-8” Flights of a Morphing Geometry Quadcopter: Flight Performance”.
In: Drones 3.3 (2019).

[7] S. Baker and I. Matthews. “Lucas-Kanade 20 Years On: A Unifying Framework”.
In: Int. J. Comput. Vis. 56.3 (2004), pp. 221–255.

[8] M. Bangura, M. Melega, R. Naldi, and R. Mahony. “Aerodynamics of rotor blades
for quadrotors”. In: arXiv e-prints (Dec. 2016). url: http://arxiv.org/abs/1601.
00733.

[9] M. Bangura and R. Mahony. “Real-time Model Predictive Control for Quadro-
tors”. In: IFAC World Congress (2014). doi: 10.3182/20140824-6-za-1003.00203.

[10] A. J. Barry, P. R. Florence, and R. Tedrake. “High-speed autonomous obstacle
avoidance with pushbroom stereo”. In: J. Field Robot. 35.1 (Jan. 2018), pp. 52–68.
issn: 1556-4967. doi: 10.1002/rob.21741.

[11] S. Behnke, A. Egorova, A. Gloye, R. Rojas, and M. Simon. “Predicting Away
Robot Control Latency”. In: RoboCup 2003: Robot Soccer World Cup VII. Springer
Berlin Heidelberg, 2004, pp. 712–719. isbn: 978-3-540-25940-4.

[12] D. Bertsekas. Dynamic Programming and Optimal Control, Vol. I. 2nd. Athena
Scientific, 2005.

179

https://doi.org/10.1109/TSMCB.2008.926614
https://doi.org/10.1007/BF00133571
https://doi.org/10.1007/978-3-319-23778-7_14
https://doi.org/10.1145/1137856.1137880
http://arxiv.org/abs/1601.00733
http://arxiv.org/abs/1601.00733
https://doi.org/10.3182/20140824-6-za-1003.00203
https://doi.org/10.1002/rob.21741

Bibliography

[13] H. Blum, A. Dietmüller, M. Milde, J. Conradt, G. Indiveri, and Y. Sandamirskaya.
“A neuromorphic controller for a robotic vehicle equipped with a dynamic
vision sensor”. In: Robotics: Science and Systems (RSS). 2017. doi: 10.15607/rss.
2017.xiii.035.

[14] F. J. Boria, R. J. Bachmann, P. G. Ifju, R. D. Quinn, R. Vaidyanathan, C. Perry,
and J. Wagener. “A sensor platform capable of aerial and terrestrial locomotion”.
In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). IEEE. 2005, pp. 3959–3964.

[15] A. Borowczyk, D. Nguyen, A. Phu-Van Nguyen, D. Q. Nguyen, D. Saussié,
and J. Le Ny. “Autonomous Landing of a Multirotor Micro Air Vehicle on a
High Velocity Ground Vehicle”. In: ArXiv abs/1611.07329 (2016). url: http:
//arxiv.org/abs/1611.07329.

[16] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck. “A 240x180 130dB
3us Latency Global Shutter Spatiotemporal Vision Sensor”. In: IEEE J. Solid-State
Circuits 49.10 (2014), pp. 2333–2341. issn: 0018-9200. doi: 10.1109/JSSC.2014.
2342715.

[17] D. Brescianini and R. D’Andrea. “Design, modeling and control of an omni-
directional aerial vehicle”. In: IEEE Int. Conf. Robot. Autom. (ICRA). May 2017.
doi: 10.1109/ICRA.2016.7487497.

[18] D. Brescianini, M. Hehn, and R. D’Andrea. “Quadrocopter Pole Acrobatics”.
In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2013. doi: 10.1109/IROS.2013.
6696851.

[19] N. Bucki and M. W. Mueller. “Design and Control of a Passively Morphing
Quadcopter”. In: IEEE Int. Conf. Robot. Autom. (ICRA). May 2019, pp. 9116–9122.
doi: 10.1109/ICRA.2019.8794373.

[20] M. Burri, H. Oleynikova, M. W. Achtelik, and R. Siegwart. “Real-time visual-
inertial mapping, re-localization and planning onboard MAVs in unknown
environments”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2015, pp. 1872–
1878. doi: 10.1109/IROS.2015.7353622.

[21] A. Censi. “Efficient neuromorphic optomotor heading regulation”. In: American
Control Conference (ACC). July 2015, pp. 3854–3861.

[22] A. Censi and D. Scaramuzza. “Low-Latency Event-Based Visual Odometry”. In:
IEEE Int. Conf. Robot. Autom. (ICRA). 2014. doi: 10.1109/IROS.2016.7758089.

[23] L. Chittka, P. Skorupski, and N. E. Raine. “Speed–accuracy tradeoffs in animal
decision making”. In: Trends in ecology & evolution 24.7 (2009), pp. 400–407.

[24] T. Cieslewski, E. Kaufmann, and D. Scaramuzza. “Rapid exploration with multi-
rotors: A frontier selection method for high speed flight”. In: IEEE/RSJ Int. Conf.
Intell. Robot. Syst. (IROS). 2017, pp. 2135–2142. doi: 10.1109/IROS.2017.8206030.

[25] X. Clady, C. Clercq, S.-H. Ieng, F. Houseini, M. Randazzo, L. Natale, C. Bar-
tolozzi, and R. Benosman. “Asynchronous visual event-based time-to-contact”.
In: Front. Neurosci. 8.9 (2014). doi: 10.3389/fnins.2014.00009.

[26] D. Comaniciu and P. Meer. “Mean shift: A robust approach toward feature space
analysis”. In: IEEE Transactions on Pattern Analysis & Machine Intelligence 5 (2002),
pp. 603–619.

180

https://doi.org/10.15607/rss.2017.xiii.035
https://doi.org/10.15607/rss.2017.xiii.035
http://arxiv.org/abs/1611.07329
http://arxiv.org/abs/1611.07329
https://doi.org/10.1109/JSSC.2014.2342715
https://doi.org/10.1109/JSSC.2014.2342715
https://doi.org/10.1109/ICRA.2016.7487497
https://doi.org/10.1109/IROS.2013.6696851
https://doi.org/10.1109/IROS.2013.6696851
https://doi.org/10.1109/ICRA.2019.8794373
https://doi.org/10.1109/IROS.2015.7353622
https://doi.org/10.1109/IROS.2016.7758089
https://doi.org/10.1109/IROS.2017.8206030
https://doi.org/10.3389/fnins.2014.00009

Bibliography

[27] J. Conradt, R. Berner, M. Cook, and T. Delbruck. “An Embedded AER Dynamic
Vision Sensor for Low-Latency Pole Balancing”. In: IEEE Workshop on Embedded
Computer Vision (ECV). 2009.

[28] G. Costante, J. Delmerico, M. Werlberger, P. Valigi, and D. Scaramuzza. “Ex-
ploiting Photometric Information for Planning under Uncertainty”. In: Robotics
Research: Volume 1 (2018), pp. 107–124. doi: 10.1007/978-3-319-51532-8_7.

[29] M. Cutler and J. How. “Analysis and Control of a Variable-Pitch Quadrotor for
Agile Flight”. In: ASME Journal of Dynamic Systems, Measurement and Control
137.10 (Oct. 2015).

[30] L. Daler, S. Mintchev, C. Stefanini, and D. Floreano. “A bioinspired multi-modal
flying and walking robot”. In: Bioinspiration & biomimetics 10.1 (2015), p. 016005.

[31] J. M. Daly, Y. Ma, and S. L. Waslander. “Coordinated landing of a quadrotor on
a skid-steered ground vehicle in the presence of time delays”. In: Auton. Robots
38.2 (2015), pp. 179–191. issn: 1573-7527.

[32] T. Delbruck and P. Lichtsteiner. “Fast Sensory Motor Control Based on Event-
Based Hybrid Neuromorphic-Procedural System”. In: IEEE Int. Symp. Circuits
Syst. (ISCAS). 2007, pp. 845–848. doi: 10.1109/ISCAS.2007.378038.

[33] T. Delbruck and M. Lang. “Robotic Goalie with 3ms Reaction Time at 4% CPU
Load Using Event-Based Dynamic Vision Sensor”. In: Front. Neurosci. 7 (2013),
p. 223. doi: 10.3389/fnins.2013.00223.

[34] J. Delmerico, S. Mintchev, A. Giusti, B. Gromov, K. Melo, T. Horvat, C. Cadena,
M. Hutter, A. Ijspeert, D. Floreano, L. M. Gambardella, R. Siegwart, and D.
Scaramuzza. “The current state and future outlook of rescue robotics”. In: J.
Field Robot. (2019). doi: 10.1002/rob.21887.

[35] A Desbiez, F Expert, M Boyron, J Diperi, S Viollet, and F Ruffier. “X-Morf: A
crash-separable quadrotor that morfs its X-geometry in flight”. In: 2017 Workshop
on Research, Education and Development of Unmanned Aerial Systems (RED-UAS).
2017, pp. 222–227. doi: 10.1109/RED-UAS.2017.8101670.

[36] L. Doitsidis, S. Weiss, A. Renzaglia, M. W. Achtelik, E. Kosmatopoulos, R.
Siegwart, and D. Scaramuzza. “Optimal surveillance coverage for teams of
micro aerial vehicles in GPS-denied environments using onboard vision”. In:
Auton. Robots 33.1 (2012), pp. 173–188. issn: 1573-7527.

[37] D. Eberly. “Distance from a point to an ellipse, an ellipsoid, or a hyperellipsoid”.
In: Geometric Tools, LLC (2011).

[38] O. Esrafilian and H. D. Taghirad. “Autonomous flight and obstacle avoidance
of a quadrotor by monocular SLAM”. In: International Conference on Robotics
and Mechatronics (ICROM). Oct. 2016, pp. 240–245. doi: 10.1109/ICRoM.2016.
7886853.

[39] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. “A Density-based Algorithm for
Discovering Clusters a Density-based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise”. In: Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining. KDD’96. 1996, pp. 226–231.

181

https://doi.org/10.1007/978-3-319-51532-8_7
https://doi.org/10.1109/ISCAS.2007.378038
https://doi.org/10.3389/fnins.2013.00223
https://doi.org/10.1002/rob.21887
https://doi.org/10.1109/RED-UAS.2017.8101670
https://doi.org/10.1109/ICRoM.2016.7886853
https://doi.org/10.1109/ICRoM.2016.7886853

Bibliography

[40] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. “A density-based algorithm for
discovering clusters in large spatial databases with noise.” In: Kdd. Vol. 96. 1996,
pp. 226–231.

[41] M. Faessler, F. Fontana, C. Forster, and D. Scaramuzza. “Automatic re-initialization
and failure recovery for aggressive flight with a monocular vision-based quadro-
tor”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2015, pp. 1722–1729.

[42] M. Faessler, F. Fontana, C. Forster, and D. Scaramuzza. “Automatic Re-Initialization
and Failure Recovery for Aggressive Flight with a Monocular Vision-Based
Quadrotor”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2015, pp. 1722–1729. doi:
10.1109/ICRA.2015.7139420.

[43] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and D. Scara-
muzza. “Autonomous, Vision-based Flight and Live Dense 3D Mapping with
a Quadrotor MAV”. In: J. Field Robot. 33.4 (2016), pp. 431–450. issn: 1556-4967.
doi: 10.1002/rob.21581.

[44] M. Faessler, A. Franchi, and D. Scaramuzza. “Differential Flatness of Quadrotor
Dynamics Subject to Rotor Drag for Accurate Tracking of High-Speed Trajecto-
ries”. In: IEEE Robot. Autom. Lett. 3.2 (Apr. 2018), pp. 620–626. issn: 2377-3766.
doi: 10.1109/LRA.2017.2776353.

[45] M. Faessler, D. Falanga, and D. Scaramuzza. “Thrust Mixing, Saturation, and
Body-Rate Control for Accurate Aggressive Quadrotor Flight”. In: IEEE Robot.
Autom. Lett. 2.2 (Apr. 2017), pp. 476–482. issn: 2377-3766. doi: 10.1109/LRA.
2016.2640362.

[46] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza. “Aggressive Quadro-
tor Flight through Narrow Gaps with Onboard Sensing and Computing”. In:
IEEE Int. Conf. Robot. Autom. (ICRA). 2017. doi: 10.1109/icra.2017.7989679.

[47] D. Falanga, S. Kim, and D. Scaramuzza. “How Fast is Too Fast? The Role of
Perception Latency in High-Speed Sense and Avoid”. In: IEEE Robot. Autom. Lett.
4.2 (Apr. 2019), pp. 1884–1891. issn: 2377-3766. doi: 10.1109/LRA.2019.2898117.

[48] D. Falanga, K. Kleber, and D. Scaramuzza. “Low Latency Avoidance of Dynamic
Obstacles for Quadrotors with Event Cameras”. In: AAAS Science Robotics, Under
Review (2019).

[49] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza. “PAMPC: Perception-Aware
Model Predictive Control for Quadrotors”. In: IEEE/RSJ Int. Conf. Intell. Robot.
Syst. (IROS). Oct. 2018. doi: 10.1109/IROS.2018.8593739.

[50] D. Falanga, K. Kleber, S. Mintchev, D. Floreano, and D. Scaramuzza. “The Fold-
able Drone: A Morphing Quadrotor that can Squeeze and Fly”. In: IEEE Robot.
Autom. Lett. 4.2 (Apr. 2019), pp. 209–216. issn: 2377-3766. doi: 10.1109/LRA.
2018.2885575.

[51] D. Falanga, A. Zanchettin, A. Simovic, J. Delmerico, and D. Scaramuzza. “Vision-
based Autonomous Quadrotor Landing on a Moving Platform”. In: IEEE Int.
Symp. Safety, Security, and Rescue Robot. (SSRR). Oct. 2017. doi: 10.1109/SSRR.
2017.8088164.

182

https://doi.org/10.1109/ICRA.2015.7139420
https://doi.org/10.1002/rob.21581
https://doi.org/10.1109/LRA.2017.2776353
https://doi.org/10.1109/LRA.2016.2640362
https://doi.org/10.1109/LRA.2016.2640362
https://doi.org/10.1109/icra.2017.7989679
https://doi.org/10.1109/LRA.2019.2898117
https://doi.org/10.1109/IROS.2018.8593739
https://doi.org/10.1109/LRA.2018.2885575
https://doi.org/10.1109/LRA.2018.2885575
https://doi.org/10.1109/SSRR.2017.8088164
https://doi.org/10.1109/SSRR.2017.8088164

Bibliography

[52] D. Floreano and R. J. Wood. “Science, technology and the future of small au-
tonomous drones”. In: Nature 521 (2015), pp. 460–466. doi: 10.1038/nature14542.

[53] P. Foehn, D. Falanga, N. Kuppuswamy, R. Tedrake, and D. Scaramuzza. “Fast Tra-
jectory Optimization for Agile Quadrotor Maneuvers with a Cable-Suspended
Payload”. In: Robotics: Science and Systems (RSS). June 2017. doi: 10.15607/RSS.
2017.XIII.030.

[54] P. Foehn and D. Scaramuzza. “Onboard state dependent LQR for agile quadro-
tors”. In: IEEE Int. Conf. Robot. Autom. (ICRA). May 2018.

[55] E. W. Forgy. “Cluster analysis of multivariate data: efficiency versus inter-
pretability of classifications”. In: biometrics 21 (1965), pp. 768–769.

[56] C. Forster, M. Pizzoli, and D. Scaramuzza. “SVO: Fast Semi-Direct Monocular
Visual Odometry”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2014, pp. 15–22. doi:
10.1109/ICRA.2014.6906584.

[57] C. Forster, M. Pizzoli, and D. Scaramuzza. “Appearance-based Active, Monocu-
lar, Dense Depth Estimation for Micro Aerial Vehicles”. In: Robotics: Science and
Systems (RSS). 2014. doi: 10.15607/RSS.2014.X.029.

[58] C. Forster, M. Pizzoli, and D. Scaramuzza. “SVO: Fast semi-direct monocular
visual odometry”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2014, pp. 15–22.

[59] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart. “Robot Operating System
(ROS): The Complete Reference (Volume 1)”. In: ed. by A. Koubaa. Springer In-
ternational Publishing, 2016. Chap. RotorS—A Modular Gazebo MAV Simulator
Framework, pp. 595–625. isbn: 978-3-319-26054-9.

[60] A. Fusiello. Elements of Geometric Computer Vision. 16.09.2012. University of Edin-
burgh - School of Informatics. url: http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_
COPIES/FUSIELLO4/tutorial.html#x1-130004.

[61] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi, S. Leuteneg-
ger, A. Davison, J. Conradt, K. Daniilidis, and D. Scaramuzza. “Event-based
Vision: A Survey”. In: arXiv e-prints (2019). url: http://arxiv.org/abs/1904.08405.

[62] D. Gallup, J.-M. Frahm, and M. Pollefeys. “Variable baseline/resolution stereo”.
In: IEEE Int. Conf. Comput. Vis. Pattern Recog. (CVPR). 2008. doi: 10.1109/CVPR.
2008.4587671.

[63] F. Galluppi, C. Denk, M. C. Meiner, T. C. Stewart, L. A. Plana, C. Eliasmith, S.
Furber, and J. Conradt. “Event-based neural computing on an autonomous mo-
bile platform”. In: 2014 IEEE International Conference on Robotics and Automation
(ICRA). May 2014, pp. 2862–2867. doi: 10.1109/ICRA.2014.6907270.

[64] K. A. Ghamry, Y. Dong, M. A. Kamel, and Y. Zhang. “Real-time autonomous
take-off, tracking and landing of UAV on a moving UGV platform”. In: Control
and Automation (MED), 2016 24th Mediterranean Conference on. 2016, pp. 1236–
1241.

[65] A. Glover and C. Bartolozzi. “Event-driven ball detection and gaze fixation in
clutter”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2016, pp. 2203–2208.
doi: 10.1109/IROS.2016.7759345.

183

https://doi.org/10.1038/nature14542
https://doi.org/10.15607/RSS.2017.XIII.030
https://doi.org/10.15607/RSS.2017.XIII.030
https://doi.org/10.1109/ICRA.2014.6906584
https://doi.org/10.15607/RSS.2014.X.029
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO4/tutorial.html#x1-130004
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO4/tutorial.html#x1-130004
http://arxiv.org/abs/1904.08405
https://doi.org/10.1109/CVPR.2008.4587671
https://doi.org/10.1109/CVPR.2008.4587671
https://doi.org/10.1109/ICRA.2014.6907270
https://doi.org/10.1109/IROS.2016.7759345

Bibliography

[66] A. Glover and C. Bartolozzi. “Robust visual tracking with a freely-moving event
camera”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2017, pp. 3769–3776.
doi: 10.1109/IROS.2017.8206226.

[67] C. Greatwood, L. Bose, T. Richardson, W. Mayol, J. Chen, S. Carey, and P.
Dudek. “Agile control of a UAV by tracking with a parallel visual processor”.
In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2017.

[68] M. Guo, J. Huang, and S. Chen. “Live demonstration: A 768x215; 640 pixels
200Meps dynamic vision sensor”. In: IEEE Int. Symp. Circuits Syst. (ISCAS). May
2017.

[69] A. Handa, R. Newcombe, A. Angeli, and A. Davison. “Real-Time Camera
Tracking: When is High Frame-Rate Best?” In: Eur. Conf. Comput. Vis. (ECCV).
2012. doi: 10.1007/978-3-642-33786-4_17.

[70] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Second
Edition. Cambridge University Press, 2003.

[71] M. A. Henson and D. E. Seborg, eds. Nonlinear Process Control. Prentice-Hall,
Inc., 1997. isbn: 0-13-625179-X.

[72] B. Herisse, F. Russotto, T. Hamel, and R. Mahony. “Hovering flight and vertical
landing control of a VTOL unmanned aerial vehicle using optical flow”. In:
IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2008, pp. 801–806.

[73] G. Hoffmann, D. G. Rajnarayan, S. L. Waslander, D. Dostal, J. S. Jang, and C. J.
Tomlin. “The Stanford testbed of autonomous rotorcraft for multi agent control
(STARMAC)”. In: The 23rd Digital Avionics Systems Conference (IEEE Cat. No.
04CH37576). Vol. 2. IEEE. 2004, 12–E.

[74] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin. “Quadrotor
helicopter flight dynamics and control: Theory and experiment”. In: AIAA
Guidance, Navigation, and Control Conference. Vol. 2. Aug. 2007, p. 4.

[75] B. Houska, H. Ferreau, and M. Diehl. “ACADO Toolkit – An Open Source
Framework for Automatic Control and Dynamic Optimization”. In: Optimal
Control Applications and Methods 32.3 (2011).

[76] B. Houska, H. Ferreau, and M. Diehl. “An Auto-Generated Real-Time Iteration
Algorithm for Nonlinear MPC in the Microsecond Range”. In: Automatica 47.10
(2011). doi: 10.1016/j.automatica.2011.08.020.

[77] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, and N.
Roy. “Visual Odometry and Mapping for Autonomous Flight Using an RGB-D
Camera”. In: Proc. Int. Symp. Robot. Research (ISRR). 2017, pp. 235–252. isbn:
978-3-319-29363-9. doi: 10.1007/978-3-319-29363-9_14.

[78] S. G. Johnson. “The NLopt nonlinear-optimization package”. In: (). url: http:
//ab-initio.mit.edu/nlopt.

[79] S. Jung, S. Cho, D. Lee, H. Lee, and D. H. Shim. “A direct visual servoing-based
framework for the 2016 IROS Autonomous Drone Racing Challenge”. In: J. Field
Robot. 35.1 (May 2017), pp. 146–166. issn: 1556-4967. doi: 10.1002/rob.21743.

184

https://doi.org/10.1109/IROS.2017.8206226
https://doi.org/10.1007/978-3-642-33786-4_17
https://doi.org/10.1016/j.automatica.2011.08.020
https://doi.org/10.1007/978-3-319-29363-9_14
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt
https://doi.org/10.1002/rob.21743

Bibliography

[80] R. E. Kalman. “A New Approach to Linear Filtering and Prediction Problems”.
In: Transactions of the ASME–Journal of Basic Engineering 82.Series D (1960), pp. 35–
45.

[81] M. Kamel, M. Burri, and R. Siegwart. “Linear vs Nonlinear MPC for Trajectory
Tracking Applied to Rotary Wing Micro Aerial Vehicles”. In: arXiv (2016). url:
http://arxiv.org/abs/1611.09240.

[82] M. Kamel, S. Verling, O. Elkhatib, C. Sprecher, P. Wulkop, Z. Taylor, R. Siegwart,
and I. Gilitschenski. “The Voliro Omnidirectional Hexacopter: An Agile and
Maneuverable Tiltable-Rotor Aerial Vehicle”. In: IEEE Robot. Autom. Mag. (Oct.
2018). doi: 10.1109/MRA.2018.2866758.

[83] S. Karaman and E. Frazzoli. “High-speed flight in an ergodic forest”. In: IEEE
Int. Conf. Robot. Autom. (ICRA). 2012. doi: 10.1109/ICRA.2012.6225235.

[84] E. Kaufmann, A. Loquercio, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scara-
muzza. “Deep Drone Racing:Learning Agile Flight in Dynamic Environments”.
In: arXiv e-prints (2018). url: http://arxiv.org/abs/1806.08548.

[85] O. Khatib. “Real-time obstacle avoidance for manipulators and mobile robots”.
In: Autonomous Robot Vehicles. Springer, 1986, pp. 396–404.

[86] P. Khosla and R. Volpe. “Superquadric artificial potentials for obstacle avoidance
and approach”. In: icra. 1988, pp. 1778–1784. doi: 10.1109/ROBOT.1988.12323.

[87] J. Kim, Y. Jung, D. Lee, and D. H. Shim. “Landing Control on a Mobile Platform
for Multi-copters using an Omnidirectional Image Sensor”. In: J. Intell. Robot.
Syst. (2016), pp. 1–13. issn: 1573-0409.

[88] S. Kim, D. Falanga, and D. Scaramuzza. “Computing the Forward Reachable
Set for a Multirotor Under First-Order Aerodynamic Effects”. In: IEEE Robot.
Autom. Lett. 3.4 (Oct. 2018), pp. 2934–2941. doi: 10.1109/LRA.2018.2848302.

[89] D. Kraft. A Software Package for Sequential Quadratic Programming. Deutsche
Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln: Forschungs-
bericht. Wiss. Berichtswesen d. DFVLR, 1988.

[90] V. Kumar and N. Michael. “Opportunities and challenges with autonomous
micro aerial vehicles”. In: J. Field Robot. 31.11 (Sept. 2012).

[91] S. Lange, N. Sünderhauf, and P. Protzel. “Autonomous landing for a multirotor
UAV using vision”. In: Int. Conf. on Simulation, Modeling, and Programming for
Auton. Robots (SIMPAR). 2008, pp. 482–491.

[92] D. Lee, T. Ryan, and H. J. Kim. “Autonomous landing of a VTOL UAV on a
moving platform using image-based visual servoing”. In: IEEE Int. Conf. Robot.
Autom. (ICRA). 2012, pp. 971–976.

[93] S. Lee, D. K. Giri, and H. Son. “Modeling and control of quadrotor UAV subject
to variations in center of gravity and mass”. In: Int. Conf. on Ubiquitous Robots
and Ambient Intelligence (URAI). 2017.

[94] D. Lentink, U. K. Mueller, E. J. Stamhuis, R. D. Kat, W. V. Gestel, L. L. M.
Veldhuis, P. Henningsson, A. Hedenstroem, J. J. Videler, and J. L. V. Leeuwen.
“How swifts control their glide performance with morphing wings”. In: Nature
446 (2007), pp. 1082–1085. doi: 10.1038/nature05733.

185

http://arxiv.org/abs/1611.09240
https://doi.org/10.1109/MRA.2018.2866758
https://doi.org/10.1109/ICRA.2012.6225235
http://arxiv.org/abs/1806.08548
https://doi.org/10.1109/ROBOT.1988.12323
https://doi.org/10.1109/LRA.2018.2848302
https://doi.org/10.1038/nature05733

Bibliography

[95] P. Lichtsteiner, C. Posch, and T. Delbruck. “A 128x128 120dB 30mW asyn-
chronous vision sensor that responds to relative intensity change”. In: IEEE Intl.
Solid-State Circuits Conf. (ISSCC). 2006, pp. 2060–2069. doi: 10.1109/ISSCC.2006.
1696265.

[96] P. Lichtsteiner, C. Posch, and T. Delbruck. “A 128×128 120 dB 15 µs latency
asynchronous temporal contrast vision sensor”. In: IEEE J. Solid-State Circuits
43.2 (2008), pp. 566–576. doi: 10.1109/JSSC.2007.914337.

[97] Y. Lin, F. Gao, T. Qin, W. Gao, T. Liu, W. Wu, Z. Yang, and S. Shen. “Autonomous
aerial navigation using monocular visual-inertial fusion”. In: J. Field Robot. 35.1
(2018), pp. 23–51. doi: 10.1002/rob.21732.

[98] S. Liu, M. Watterson, S. Tang, and V. Kumar. “High speed navigation for
quadrotors with limited onboard sensing”. In: IEEE Int. Conf. Robot. Autom.
(ICRA). 2016, pp. 1484–1491. doi: 10.1109/ICRA.2016.7487284.

[99] G. Loianno, C. Brunner, G. McGrath, and V. Kumar. “Estimation, Control,
and Planning for Aggressive Flight With a Small Quadrotor With a Single
Camera and IMU”. In: IEEE Robot. Autom. Lett. 2.2 (Apr. 2017), pp. 404–411. doi:
10.1109/lra.2016.2633290.

[100] B. T. Lopez and J. P. How. “Aggressive 3-D collision avoidance for high-speed
navigation”. In: IEEE Int. Conf. Robot. Autom. (ICRA). May 2017. doi: 10.1109/icra.
2017.7989677.

[101] R. Lozano, J. Guerrero, and N. Chopra. “Quadrotor Flight Formation Control
Via Positive Realness Multivehicle Systems”. In: (2012). doi: 10.3182/20121003-
3-SF-4024.00004.

[102] B. D. Lucas and T. Kanade. “An Iterative Image Registration Technique with
an Application to Stereo Vision”. In: Int. Joint Conf. Artificial Intell. (IJCAI). 1981,
pp. 674–679.

[103] S. Lynen, M. Achtelik, S. Weiss, M. Chli, and R. Siegwart. “A Robust and
Modular Multi-Sensor Fusion Approach Applied to MAV Navigation”. In:
IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). Nov. 2013.

[104] S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart. “A robust and
modular multi-sensor fusion approach applied to mav navigation”. In: IEEE/RSJ
Int. Conf. Intell. Robot. Syst. (IROS). 2013, pp. 3923–3929.

[105] E. Lyu, Y. Lin, W. Liu, and M. Q. H. Meng. “Vision based autonomous gap-flying-
through using the micro unmanned aerial vehicle”. In: Electrical and Computer
Engineering, IEEE Canadian Conference on. May 2015, pp. 744–749.

[106] R. Mahony, V. Kumar, and P. Corke. “Multirotor Aerial Vehicles: Modeling,
Estimation, and Control of Quadrotor”. In: IEEE Robot. Autom. Mag. 19.3 (2012),
pp. 20–32. issn: 1070-9932. doi: 10.1109/MRA.2012.2206474.

[107] J. E. Mebius. “Derivation of the Euler-Rodrigues formula for three-dimensional
rotations from the general formula for four-dimensional rotations”. In: arXiv
e-prints (2007). url: http://arxiv.org/abs/math/0701759.

186

https://doi.org/10.1109/ISSCC.2006.1696265
https://doi.org/10.1109/ISSCC.2006.1696265
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1002/rob.21732
https://doi.org/10.1109/ICRA.2016.7487284
https://doi.org/10.1109/lra.2016.2633290
https://doi.org/10.1109/icra.2017.7989677
https://doi.org/10.1109/icra.2017.7989677
https://doi.org/10.3182/20121003-3-SF-4024.00004
https://doi.org/10.3182/20121003-3-SF-4024.00004
https://doi.org/10.1109/MRA.2012.2206474
http://arxiv.org/abs/math/0701759

Bibliography

[108] D. Mellinger, M. Shomin, and V. Michael N. Kumar. “Cooperative Grasping
and Transport Using Multiple Quadrotors”. In: Distributed Autonomous Robotic
Systems: The 10th International Symposium. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 545–558. isbn: 978-3-642-32723-0.

[109] D. Mellinger, M. Shomin, and V. Kumar. “Control of quadrotors for robust
perching and landing”. In: (2010), pp. 205–225.

[110] D. Mellinger and V. Kumar. “Minimum snap trajectory generation and control
for quadrotors”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2011, pp. 2520–2525.
doi: 10.1109/ICRA.2011.5980409.

[111] D. Mellinger and V. Kumar. “Minimum snap trajectory generation and control
for quadrotors”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2011, pp. 2520–2525.

[112] D. Mellinger, N. Michael, and V. Kumar. “Trajectory Generation and Control
for Precise Aggressive Maneuvers with Quadrotors”. In: Int. Symp. Experimental
Robotics (ISER). Dec. 2010.

[113] M. B. Milde, O. J. N. Bertrand, H. Ramachandran, M. Egelhaaf, and E. Chicca.
“Spiking Elementary Motion Detector in Neuromorphic Systems”. In: Neural
Computation 30.9 (Sept. 2018), pp. 2384–2417. doi: 10.1162/neco_a_01112.

[114] S Mintchev, S de Rivaz, and D Floreano. “Insect-Inspired Mechanical Resilience
for Multicopters”. In: IEEE Robotics and Automation Letters 2.3 (2017), pp. 1248–
1255. doi: 10.1109/LRA.2017.2658946.

[115] S. Mintchev and D. Floreano. “Adaptive Morphology: A Design Principle for
Multimodal and Multifunctional Robots”. In: IEEE Robot. Autom. Mag. 23 (2016),
pp. 42–54. doi: 10.1109/MRA.2016.2580593.

[116] S. Mintchev, J. Shintake, and D. Floreano. “Bioinspired dual-stiffness origami”.
In: Science Robotics 3.20 (2018), eaau0275.

[117] S. Mintchev, J. Shintake, and D. Floreano. “Bioinspired dual-stiffness origami”.
In: Science Robotics 3.20 (July 2018). url: http://robotics.sciencemag.org/content/3/20/eaau0275.
abstract.

[118] S. Mintchev, S. de Rivaz, and D. Floreano. “Insect-inspired mechanical resilience
for multicopters”. In: IEEE Robotics and automation letters 2.3 (2017), pp. 1248–
1255.

[119] A. Mitrokhin, C. Fermuller, C. Parameshwara, and Y. Aloimonos. “Event-based
Moving Object Detection and Tracking”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst.
(IROS). 2018.

[120] K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni, K. Saulnier,
K. Sun, A. Zhu, J. Delmerico, K. Karydis, N. Atanasov, G. Loianno, D. Scara-
muzza, K. Daniilidis, C. J. Taylor, and V. Kumar. “Fast, autonomous flight in
GPS-denied and cluttered environments”. In: J. Field Robot. 35.1 (Apr. 2017),
pp. 101–120. issn: 1556-4967. doi: 10.1002/rob.21774.

187

https://doi.org/10.1109/ICRA.2011.5980409
https://doi.org/10.1162/neco_a_01112
https://doi.org/10.1109/LRA.2017.2658946
https://doi.org/10.1109/MRA.2016.2580593
http://robotics.sciencemag.org/content/3/20/eaau0275.abstract
http://robotics.sciencemag.org/content/3/20/eaau0275.abstract
https://doi.org/10.1002/rob.21774

Bibliography

[121] K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni, K. Saulnier,
K. Sun, A. Zhu, J. Delmerico, K. Karydis, N. Atanasov, G. Loianno, D. Scara-
muzza, K. Daniilidis, C. J. Taylor, and V. Kumar. “Fast, autonomous flight in
GPS-denied and cluttered environments”. In: J. Field Robot. 35.1 (2018), pp. 101–
120. doi: 10.1002/rob.21774.

[122] H. Moon, J. Martinez-Carranza, T. Cieslewski, M. Faessler, D. Falanga, A.
Simovic, D. Scaramuzza, S. Li, M. Ozo, C. De Wagter, G. de Croon, S. Hwang,
S. Jung, H. Shim, H. Kim, M. Park, T.-C. Au, and S. J. Kim. “Challenges and
implemented technologies used in autonomous drone racing”. In: Intelligent Ser-
vice Robotics 12.2 (Apr. 2019), pp. 137–148. issn: 1861-2784. doi: 10.1007/s11370-
018-00271-6.

[123] N. Moshtagh et al. “Minimum volume enclosing ellipsoid”. In: Convex optimiza-
tion 111 (2005), p. 112.

[124] A. I. Mourikis and S. I. Roumeliotis. “A Multi-State Constraint Kalman Filter
for Vision-aided Inertial Navigation”. In: IEEE Int. Conf. Robot. Autom. (ICRA).
Apr. 2007, pp. 3565–3572.

[125] E. Mueggler, C. Forster, N. Baumli, G. Gallego, and D. Scaramuzza. “Lifetime
Estimation of Events from Dynamic Vision Sensors”. In: IEEE Int. Conf. Robot.
Autom. (ICRA). 2015, pp. 4874–4881. doi: 10.1109/ICRA.2015.7139876.

[126] E. Mueggler, N. Baumli, F. Fontana, and D. Scaramuzza. “Towards Evasive
Maneuvers with Quadrotors using Dynamic Vision Sensors”. In: Eur. Conf.
Mobile Robots (ECMR). 2015, pp. 1–8. doi: 10.1109/ECMR.2015.7324048.

[127] E. Mueller, A. Censi, and E. Frazzoli. “Low-latency Heading Feedback Control
with Neuromorphic Vision Sensors using Efficient Approximated Incremental
Inference”. In: IEEE Conf. Decision Control (CDC). 2015. doi: 10.1109/CDC.2015.
7402002.

[128] M. Mueller, S. Lupashin, and R. D’Andrea. “Quadrocopter ball juggling”. In:
IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2011, pp. 4972–4978. doi: 10 .
1109/IROS.2012.6385963.

[129] M. W. Mueller, M. Hehn, and R. D’Andrea. “A computationally efficient motion
primitive for quadrocopter trajectory generation”. In: IEEE Trans. Robot. 31.6
(2015), pp. 1294–1310.

[130] M. W. Mueller, M. Hehn, and R. D’Andrea. “A Computationally Efficient Motion
Primitive for Quadrocopter Trajectory Generation”. In: IEEE Trans. Robot. 31.6
(2015), pp. 1294–1310.

[131] V. Murali, I. Spasojevic, W. Guerra, and S. Karaman. “Perception-aware trajec-
tory generation for aggressive quadrotor flight using differential flatness”. In:
American Control Conference (ACC). July 2019, pp. 3936–3943.

[132] T. Muskardin, G. Balmer, S. Wlach, K. Kondak, M. Laiacker, and A. Ollero.
“Landing of a fixed-wing UAV on a mobile ground vehicle”. In: IEEE Int. Conf.
Robot. Autom. (ICRA). May 2016, pp. 1237–1242.

188

https://doi.org/10.1002/rob.21774
https://doi.org/10.1007/s11370-018-00271-6
https://doi.org/10.1007/s11370-018-00271-6
https://doi.org/10.1109/ICRA.2015.7139876
https://doi.org/10.1109/ECMR.2015.7324048
https://doi.org/10.1109/CDC.2015.7402002
https://doi.org/10.1109/CDC.2015.7402002
https://doi.org/10.1109/IROS.2012.6385963
https://doi.org/10.1109/IROS.2012.6385963

Bibliography

[133] T. Nägeli, J. Alonso-Mora, A. Domahidi, D. Rus, and O. Hilliges. “Real-time
Motion Planning for Aerial Videography with Dynamic Obstacle Avoidance
and Viewpoint Optimization”. In: IEEE Robot. Autom. Lett. 2.3 (2017). doi: 10.
1109/LRA.2017.2665693.

[134] T. Nägeli, L. Meier, A. Domahidi, J. Alonso-Mora, and O. Hilliges. “Real-time
Planning for Automated Multi-View Drone Cinematography”. In: SIGGRAPH.
2017.

[135] G. Nandakumar, A. Srinivasan, and A. Thondiyath. “Theoretical and experi-
mental investigations on the effect of overlap and offset on the design of a novel
quadrotor configuration, VOOPS”. In: Journal of Intelligent & Robotic Systems
(2017). doi: 10.1007/s10846-017-0707-2.

[136] M. Neunert, C. de Crousaz, F. Furrer, M. Kamel, F. Farshidian, R. Siegwart,
and J. Buchli. “Fast nonlinear Model Predictive Control for unified trajectory
optimization and tracking”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2016. doi:
10.1109/icra.2016.7487274.

[137] B. Nisar, P. Foehn, D. Falanga, and D. Scaramuzza. ““VIMO: Simultaneous
Visual Inertial Model-based Odometry and Force Estimation”. In: IEEE Robot.
Autom. Lett. 4.3 (July 2019), pp. 2785–2792. doi: 10.1109/LRA.2019.2918689.

[138] H. Oleynikova, D. Honegger, and M. Pollefeys. “Reactive Avoidance Using
Embedded Stereo Vision for MAV Flight”. In: IEEE Int. Conf. Robot. Autom.
(ICRA). 2015, pp. 50–56.

[139] E. Olson. “AprilTag: A Robust and Flexible Visual Fiducial System”. In: IEEE
Int. Conf. Robot. Autom. (ICRA). May 2011.

[140] D. Palossi, A. Loquercio, F. Conti, F. Conti, E. Flamand, E. Flamand, D. Scara-
muzza, L. Benini, and L. Benini. “A 64mW DNN-based Visual Navigation
Engine for Autonomous Nano-Drones”. In: IEEE Internet of Things Journal (2019),
pp. 1–1. issn: 2327-4662. doi: 10.1109/JIOT.2019.2917066.

[141] B. Penin, R. Spica, P. Robuffo Giordano, and F. Chaumette. “Vision-Based
Minimum-Time Trajectory Generation for a Quadrotor UAV”. In: IEEE/RSJ Int.
Conf. Intell. Robot. Syst. (IROS). 2017.

[142] B. Penin, P. R. Giordano, and F. Chaumette. “Vision-Based Reactive Planning for
Aggressive Target Tracking While Avoiding Collisions and Occlusions”. In: IEEE
Robot. Autom. Lett. 3.4 (Oct. 2018), pp. 3725–3732. doi: 10.1109/LRA.2018.2856526.

[143] C. J. Pennycuick. “A wind-tunnel study of gliding flight in the pigeon Columba
livia”. In: Journal of Exp. Biology 49 (1968), pp. 509–526.

[144] M. Pizzoli, C. Forster, and D. Scaramuzza. “REMODE: Probabilistic, Monocular
Dense Reconstruction in Real Time”. In: IEEE Int. Conf. Robot. Autom. (ICRA).
2014, pp. 2609–2616. doi: 10.1109/ICRA.2014.6907233.

[145] C. Potena, D. Nardi, and A. Pretto. “Effective Target Aware Visual Navigation
for UAVs”. In: Eur. Conf. Mobile Robots (ECMR). 2017.

[146] C. Potena, D. Nardi, and A. Pretto. “Joint Vision-Based Navigation, Con-
trol and Obstacle Avoidance for UAVs in Dynamic Environments”. In: CoRR
abs/1905.01187 (2019). arXiv: 1905.01187. url: http://arxiv.org/abs/1905.01187.

189

https://doi.org/10.1109/LRA.2017.2665693
https://doi.org/10.1109/LRA.2017.2665693
https://doi.org/10.1007/s10846-017-0707-2
https://doi.org/10.1109/icra.2016.7487274
https://doi.org/10.1109/LRA.2019.2918689
https://doi.org/10.1109/JIOT.2019.2917066
https://doi.org/10.1109/LRA.2018.2856526
https://doi.org/10.1109/ICRA.2014.6907233
http://arxiv.org/abs/1905.01187
http://arxiv.org/abs/1905.01187

Bibliography

[147] P. Pounds, R. Mahony, and P. Corke. “Modelling and Control of a Quad-Rotor
Robot”. In: Australasian Conf. Robot. Autom. 2006.

[148] D. Pucci, S. Traversaro, and F. Nori. “Momentum Control of an Underactuated
Flying Humanoid Robot”. In: IEEE Robot. Autom. Lett. 3.1 (Jan. 2018). doi:
10.1109/LRA.2017.2734245.

[149] D. Reynolds. “Gaussian mixture models”. In: Encyclopedia of biometrics (2015),
pp. 827–832.

[150] T. S. Richardson, C. G. Jones, A. Likhoded, E. Sparks, A. Jordan, I. Cowling, and
S. Willcox. “Automated Vision-based Recovery of a Rotary Wing Unmanned
Aerial Vehicle onto a Moving Platform”. In: J. Field Robot. 30.5 (2013), pp. 667–684.
issn: 1556-4967.

[151] C. Richter, W. Vega-Brown, and N. Roy. “Bayesian Learning for Safe High-Speed
Navigation in Unknown Environments”. In: International Symposium of Robotics
Research, ISRR. 2015, pp. 325–341. doi: 10.1007/978-3-319-60916-4_19.

[152] C. Richter and N. Roy. “Safe Visual Navigation via Deep Learning and Novelty
Detection”. In: Robotics: Science and Systems (RSS). July 2017. doi: 10.15607/RSS.
2017.XIII.064.

[153] V. Riviere, A. Manecy, and S. Viollet. “Agile Robotic Fliers: A Morphing-Based
Approach”. In: Soft Robotics (2018). doi: 10.1089/soro.2017.0120.

[154] A. Rosinol Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza. “Ultimate
SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR
and High Speed Scenarios”. In: IEEE Robot. Autom. Lett. 3.2 (Apr. 2018), pp. 994–
1001. doi: 10.1109/LRA.2018.2793357.

[155] T. Rosinol Vidal, H. Rebecq, T. Horstschäfer, G. Gallego, and D. Scaramuzza.
“Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM
in HDR and High Speed Scenarios”. In: IEEE Robot. Autom. Lett. PP.99 (2018),
pp. 1–1. doi: 10.1109/LRA.2018.2793357.

[156] B. Rueckauer and T. Delbruck. “Evaluation of event-based algorithms for optical
flow with ground-truth from inertial measurement sensor”. In: Frontiers in
neuroscience 10 (2016), p. 176.

[157] M Ryll, H. H. Bülthoff, and P. R. Giordano. “A Novel Overactuated Quadrotor
Unmanned Aerial Vehicle: Modeling, Control, and Experimental Validation”.
In: IEEE Transactions on Control Systems Technology 23.2 (2015), pp. 540–556. issn:
1063-6536 VO - 23. doi: 10.1109/TCST.2014.2330999.

[158] M Ryll, H. H. Bülthoff, and P. R. Giordano. “Modeling and control of a quadrotor
UAV with tilting propellers”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2012,
pp. 4606–4613. doi: 10.1109/ICRA.2012.6225129.

[159] A. Sakaguchi, T. Takimoto, and T. Ushio. “A Novel Quadcopter with A Tilting
Frame using Parallel Link Mechanism”. In: 2019 International Conference on
Unmanned Aircraft Systems (ICUAS). IEEE. 2019, pp. 674–683.

[160] P. Salaris, M. Cognetti, R. Spica, and P. R. Giordano. “Online Optimal Perception-
Aware Trajectory Generation”. In: IEEE Trans. Robot. (2019), pp. 1–16. doi: 10.
1109/TRO.2019.2931137.

190

https://doi.org/10.1109/LRA.2017.2734245
https://doi.org/10.1007/978-3-319-60916-4_19
https://doi.org/10.15607/RSS.2017.XIII.064
https://doi.org/10.15607/RSS.2017.XIII.064
https://doi.org/10.1089/soro.2017.0120
https://doi.org/10.1109/LRA.2018.2793357
https://doi.org/10.1109/LRA.2018.2793357
https://doi.org/10.1109/TCST.2014.2330999
https://doi.org/10.1109/ICRA.2012.6225129
https://doi.org/10.1109/TRO.2019.2931137
https://doi.org/10.1109/TRO.2019.2931137

Bibliography

[161] L. Salt and D. Howard. “Self-Adaptive Differential Evolution for Bio-Inspired
Neuromorphic Collision Avoidance”. In: CoRR abs/1704.04853 (2017). url:
http://arxiv.org/abs/1704.04853.

[162] N. J. Sanket, C. M. Parameshwara, C. D. Singh, A. V. Kuruttukulam, C. Fermuller,
D. Scaramuzza, and Y. Aloimonos. “EVDodge: Embodied AI For High-Speed
Dodging On A Quadrotor Using Event Cameras”. In: arXiv e-prints (2019). url:
http://arxiv.org/abs/1906.02919.

[163] N. J. Sanket, C. D. Singh, K. Ganguly, C. Fermueller, and Y. Aloimonos. “GapFlyt:
Active Vision Based Minimalist Structure-less Gap Detection For Quadrotor
Flight”. In: IEEE Robot. Autom. Lett. 3.4 (June 2018). doi: 10.1109/LRA.2018.
2843445.

[164] S. Saripalli, J. F. Montgomery, and G. S. Sukhatme. “Vision-based autonomous
landing of an unmanned aerial vehicle”. In: IEEE Int. Conf. Robot. Autom. (ICRA).
Vol. 3. 2002, pp. 2799–2804.

[165] T. Sayre-McCord, W. Guerra, A. Antonini, J. Arneberg, A. Brown, G. Cavalheiro,
Y. Fang, A. Gorodetsky, D. McCoy, S. Quilter, F. Riether, E. Tal, Y. Terzioglu,
L. Carlone, and S. Karaman. “Visual-inertial navigation algorithm development
using photorealistic camera simulation in the loop”. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). 2018.

[166] P. Sermanet, R. Hadsell, J. Ben, A. Erkan, B. Flepp, U. Muller, and Y. LeCun.
“Speed-range dilemmas for vision-based navigation in unstructured terrain”. In:
6th IFAC Symposium on Intelligent Autonomous Vehicles. Vol. 6. 2007, pp. 300–305.
isbn: 9783902661654.

[167] P. Serra, R. Cunha, T. Hamel, D. Cabecinhas, and C. Silvestre. “Landing of
a Quadrotor on a Moving Target Using Dynamic Image-Based Visual Servo
Control”. In: IEEE Trans. Robot. 32.6 (Dec. 2016), pp. 1524–1535. issn: 1552-3098.

[168] C. S. Sharp, O. Shakernia, and S. Sastry. “A vision system for landing an
unmanned aerial vehicle”. In: IEEE Int. Conf. Robot. Autom. (ICRA). Vol. 2. 2001,
pp. 1720–1727.

[169] M. Sheckells, G. Garimella, and M. Kobilarov. “Optimal Visual Servoing for
differentially flat underactuated systems”. In: IEEE/RSJ Int. Conf. Intell. Robot.
Syst. (IROS). 2016.

[170] J. Shu and P. Chirarattananon. “A Quadrotor with an Origami-Inspired Pro-
tective Mechanism”. In: CoRR abs/1907.07056 (2019). arXiv: 1907.07056. url:
http://arxiv.org/abs/1907.07056.

[171] B. Siciliano, L. Sciavicco, and L. Villani. Robotics: modelling, planning and control.
Advanced Textbooks in Control and Signal Processing. London: Springer, 2009.
isbn: 1-8462-8641-7.

[172] B. Siciliano and O. Khatib. Springer Handbook of Robotics. 2nd. Springer Publishing
Company, Incorporated, 2016. isbn: 3319325507, 9783319325507.

[173] H. Sorenson. Kalman Filtering: Theory and Application. IEEE Press selected reprint
series. IEEE Press, 1985. isbn: 9780879421915.

191

http://arxiv.org/abs/1704.04853
http://arxiv.org/abs/1906.02919
https://doi.org/10.1109/LRA.2018.2843445
https://doi.org/10.1109/LRA.2018.2843445
http://arxiv.org/abs/1907.07056
http://arxiv.org/abs/1907.07056

Bibliography

[174] R. Spica, P. Robuffo Giordano, and F. Chaumette. “Coupling Active Depth
Estimation and Visual Servoing via a Large Projection Operator”. In: Int. J. Robot.
Research 36.11 (2017).

[175] R. Spica, D. Falanga, E. Cristofalo, E. Montijano, D. Scaramuzza, and M. Schwa-
ger. “A Game Theoretic Approach to Autonomous Two-Player Drone Racing”.
In: Robotics: Science and Systems (RSS). June 2018. doi: 10.15607/RSS.2018.XIV.040.

[176] M. W. Spong. “Partial feedback linearization of underactuated mechanical
systems”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). Vol. 1. Sept. 1994,
314–321 vol.1. doi: 10.1109/IROS.1994.407375.

[177] M. Stefano and F. Dario. “Adaptive morphology: A design principle for mul-
timodal and multifunctional robots”. In: IEEE Robot. Autom. Mag. 23.3 (2016),
pp. 42–54.

[178] T. Stoffregen, G. Gallego, T. Drummond, L. Kleeman, and D. Scaramuzza. “Event-
Based Motion Segmentation by Motion Compensation”. In: IEEE International
Conference on Computer Vision (ICCV). 2019.

[179] K. Su and S. Shen. “Catching a Flying Ball with a Vision-Based Quadrotor”. In:
Int. Symp. Experimental Robotics (ISER). 2016.

[180] S. Suzuki and K. Abe. “Topological structural analysis of digitized binary images
by border following”. In: Computer Vision, Graphics, and Image Processing 30.1
(1985), pp. 32–46. issn: 0734-189X. doi: 10.1016/0734-189X(85)90016-7.

[181] R. Szeliski. Computer Vision: Algorithms and Applications. 2010. isbn: 978-1-84882-
935-0.

[182] R. Tallamraju, E. Price, R. Ludwig, K. Karlapalem, H. H. Buelthoff, M. Black,
and A. Ahmad. “Active Perception based Formation Control for Multiple Aerial
Vehicles”. In: IEEE Robot. Autom. Lett. (2019). doi: 10.1109/LRA.2019.2932570.

[183] D. Tang, F. Li, N. Shen, and S. Guo. “UAV attitude and position estimation for
vision-based landing”. In: Electronic and Mechanical Engineering and Information
Technology (EMEIT), International Conference on. Vol. 9. 2011, pp. 4446–4450.

[184] S. Tang and V. Kumar. “Mixed integer Quadratic Program Trajectory Generation
for a Quadrotor With a Cable-Suspended Payload”. In: IEEE Int. Conf. Robot.
Autom. (ICRA). 2015, pp. 2216–2222. doi: 10.1109/ICRA.2015.7139492.

[185] A. M. Tonello and B. Salamat. “A Swash Mass Unmanned Aerial Vehicle: Design,
Modeling and Control”. In: arXiv preprint arXiv:1909.06154 (2019).

[186] L. W. Traub. “Calculation of constant power lithium battery discharge curves”.
In: Batteries 2.2 (2016). doi: 10.3390/batteries2020017.

[187] M. Vincze. “Dynamics and system performance of visual servoing”. In: IEEE
Int. Conf. Robot. Autom. (ICRA). Vol. 1. 2000, 644–649 vol.1. doi: 10.1109/ROBOT.
2000.844125.

[188] P. Vlantis, P. Marantos, C. P. Bechlioulis, and K. J. Kyriakopoulos. “Quadrotor
landing on an inclined platform of a moving ground vehicle”. In: IEEE Int. Conf.
Robot. Autom. (ICRA). 2015, pp. 2202–2207.

192

https://doi.org/10.15607/RSS.2018.XIV.040
https://doi.org/10.1109/IROS.1994.407375
https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1109/LRA.2019.2932570
https://doi.org/10.1109/ICRA.2015.7139492
https://doi.org/10.3390/batteries2020017
https://doi.org/10.1109/ROBOT.2000.844125
https://doi.org/10.1109/ROBOT.2000.844125

Bibliography

[189] D. Wallace. “Dynamics and Control of a Quadrotor with Active Geometric
Morphing”. MA thesis. University of Washington, 2016.

[190] M. Watterson, S. Liu, K. Sun, T. Smith, and V. Kumar. “Trajectory Optimization
On Manifolds with Applications to SO(3) and R3XS2”. In: Robotics: Science and
Systems (RSS). Pittsburgh, Pennsylvania, June 2018. doi: 10.15607/RSS.2018.XIV.
023.

[191] K. E. Wenzel, A. Masselli, and A. Zell. “Automatic take off, tracking and landing
of a miniature UAV on a moving carrier vehicle”. In: J. Intell. Robot. Syst. 61.1-4
(2011), pp. 221–238.

[192] C. D. Williams and A. A. Biewener. “Pigeons trade efficiency for stability in
response to level of challenge during confined flight”. In: Proc. Natl. Acad. Sci.
U.S.A. 2015. doi: 10.1073/pnas.1407298112.

[193] H. Xiong, J. Hu, and X. Diao. “Optimize Energy Efficiency of Quadrotors Via
Arm Rotation”. In: Journal of Dynamic Systems, Measurement, and Control 141.9
(2019), p. 091002. doi: 10.1115/1.4043227.

[194] Z. Zhang and D. Scaramuzza. “Perception-aware receding horizon navigation
for mavs”. In: IEEE Int. Conf. Robot. Autom. (ICRA). IEEE. 2018, pp. 2534–2541.

[195] M. Zhao, K. Kawasaki, X. Chen, S. Noda, K. Okada, and M. Inaba. “Whole-body
aerial manipulation by transformable multirotor with two-dimensional multi-
links”. In: IEEE Int. Conf. Robot. Autom. (ICRA). June 2017. doi: 10.1109/ICRA.
2017.7989606.

[196] M. Zhao, T. Anzai, F. Shi, X. Chen, K. Okada, and M. Inaba. “Design, Modeling,
and Control of an Aerial Robot DRAGON: A Dual-Rotor-Embedded Multilink
Robot With the Ability of Multi-Degree-of-Freedom Aerial Transformation”. In:
IEEE Robot. Autom. Lett. 3.2 (Apr. 2018). doi: 10.1109/LRA.2018.2793344.

[197] N. Zhao, Y. Luo, H. Deng, and Y. Shen. “The deformable quad-rotor: Design,
kinematics and dynamics characterization, and flight performance validation”.
In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2017. doi: 10.1109/IROS.2017.
8206052.

[198] A. Zhu, N. Atanasov, and K. Daniilidis. “Event-based Visual Inertial Odometry”.
In: IEEE Int. Conf. Comput. Vis. Pattern Recog. (CVPR). 2017. doi: 10.1109/CVPR.
2017.616.

193

https://doi.org/10.15607/RSS.2018.XIV.023
https://doi.org/10.15607/RSS.2018.XIV.023
https://doi.org/10.1073/pnas.1407298112
https://doi.org/10.1115/1.4043227
https://doi.org/10.1109/ICRA.2017.7989606
https://doi.org/10.1109/ICRA.2017.7989606
https://doi.org/10.1109/LRA.2018.2793344
https://doi.org/10.1109/IROS.2017.8206052
https://doi.org/10.1109/IROS.2017.8206052
https://doi.org/10.1109/CVPR.2017.616
https://doi.org/10.1109/CVPR.2017.616

Davide Falanga
PhD Student in Robotics
Robotics and Perception Group
University of Zurich Email: falanga@ifi.uzh.ch
Andreasstrasse 15, 8050 Zurich Web: http://dfalanga.me

Education

Ph.D. Robotics — University of Zurich, Zurich, Switzerland 2015 – present
Affiliated with the Robotics and Perception Group. Advisor: Prof. Davide Scaramuzza. Research
interests: coupled perception and action aimed at high-speed, agile flight with Vision-based Unmanned
Aerial Vehicles.

M.Sc. Automation Engineering — University of Naples “Federico II”, Naples, Italy 2012 – 2015
Specialization in Robotics, Systems and Control. Thesis: Control of a Free Disk on an Actuated Disk for
Nonprehensile Manipulation. Thesis advisors: Dr. Fabio Ruggiero, Prof. Vincenzo Lippiello. Summa
cum Laude.

B.Sc. Automation Engineering — University of Naples “Federico II”, Naples, Italy 2008 – 2012
Specialization in Dynamical Systems and Control. Thesis: Fault Detection in Discrete Event Systems using
Petri Nets. Thesis advisor: Prof. Gianmaria De Tommasi.

Experience

Robotics Intern — Swisslog,Buchs AG, Switzerland 11/2014– 03/2015
Design of the first prototype of an autonomous, vision-based item picking robot.

Freelance Web-journalist — GrouppoHTML.it, Rome, Italy 11/2007 - 03/2014
Published around 500 articles, reviews and how-to guides about technology, open-source, GNU/Linux.

Awards, Achievements and Scholarships

NASA Tech Briefs ”Create the Future” Design Contest 1st prize — The foldable drone (paper J4)
was nominated First Place Winner in the Aerospace & Defense Category in the 2019 NASA Tech Briefs
Create the Future Contest.

Drone Hero Europe Award — My work on the foldable drone (paper J4) was awarded the Drone
Hero Europe Award 2019 in the category Innovative Drone.

Winner of IROS 2018 Autonomous Drone Race — Ranked 1st with the RPG team (video, New York
Times coverage).

RSS 2017 Best Student Paper Finalist — The paper “Fast Trajectory Optimization for Agile Quadro-
tor Maneuvers with a Cable-Suspended Payload” was finalist for the Best Student Paper Award.

2nd Ranked at IROS 2017 Autonomous Drone Race — Ranked 2nd with the RPG team (video).

NCCR Exchange Program Scholarhip — In 2017 I won, but turned down, the NCCR Robotics
Exchange Scholarhsip to spent a period at Stanford University, hosted by Prof. Mac Schwager.

ADISU Scholarhip — I received the ADISU (Authority for the Right to the University Studies of
Campania) scholarship in 2008, 2009, 2012 and 2013.

195

Media Coverage — Some of my works received extensive coverage from several media. Selected
media include:

• Agile Drone Flight through Narrow Gaps with Onboard Sensing and Computing: MIT Technol-
ogy Review, IEEE Spectrum, Digital Trends, Robohub, DIYDrones.

• The Foldable Drone: A Morphing Quadrotor that can Squeeze and Fly: Reuters, BBC, TechCrunch,
CNBC, The Verge, IEEE Spectrum, World Economic Forum, SlashGear, CNET, Science Daily,
ZME Science, The Robot Report, Robohub, DroneLife, Popular Mechanics, The Economic Times,
TechXplore, Interesting Engineering, Yahoo Finance, BuzzFeed News, MSN, UAV.org, Tech Ex-
plorist, Technology.org.

• Rapid, Dynamic Obstacle Avoidance with an Event-based Camera: BBC, The Verge, Business
Insider, Fox News, PCMag, IEEE Spectrum, CNET, SFGate.

Activity

International Research Collaborations — I collaborated with several international laboratories, such
as the Laboratory of Intelligent Systems at EPFL, Switzerland, led by Prof. Dario Floreano; the Multi-
Robot Systems Lab at Stanford University, USA, led by Prof. Mac Schwager; the RIS Lab at LAAS-
CNRS, Tolouse, France, led by Dr. Antonio Franchi.

International Robotics Competitions — In March 2017, I was part of one of the finalist teams at the
Mohamed Bin Zayed International Robotics Challenge (MBZIRC). Also, I took part with the Robotics
and Perception Group in the IROS Autonomous Drone Race in September 2017 (ranked 2nd) and
October 2018 (ranked 1st).

Invited Talks — I had several chances of presenting my research activity, as well as the activity of
the lab I am currently affiliated with. A non-exhaustive list comprises:
• SBB Technology Information Day. Zurich, Switzerland. June 2016.
• Robotics and InteractionS Lab, LAAS-CNRS, Tolouse, France. March 2017.
• Workshop on Disaster Response Robots at ICRA 2017, Singapore. June 2017.
• Qualcomm Research, Philadelphia, USA. November 2017.
• Commercial UAV Expo, Amsterdam, Netherlands. April 2019.
• World Conference of Science Journalists, Zurich, Switzerland. July 2019.

Memberships — IEEE Student member. IEEE Robotics and Automation Society (RAS). Swiss Na-
tional Center of Competences in Research (NCCR) Robotics.

Public Exhibitions and Demos — I showcased our research results in several events and venues,
such as but not limited to:
• Scientifica in 2015 and 2017, 20.000 visitors in 3 days;
• NCCR Swiss Robotics Industry Day in 2015, 2016 and 2017, 500 visitors each year;
• IEEE International Symposium on Safety, Security and Rescue Robotics 2016, 200 visitors.

Reviewer for Conferences and Journals — I served as reviewer for conferences and journals: Jour-
nal of Field Robotics (JFR), Autonomous Robots (AURO), International Journal of Robotics Research
(IJRR), IEEE Transactions on Robotics (T-RO), IEEE Robotics and Automation Letters (RA-L), IEEE/RSJ
Conference on Intelligent Robots and Systems (IROS), IEEE International Conference on Robotics and
Automation (ICRA), International Symposium on Experimental Robotics (ISER).

Students Supervision — During my Ph.D., I directly supervised 12 students. It was my task to
recruit them, define their projects, discuss research progress during weekly meetings, introduce them
to our robotic testbed, and support them in writing reports and preparing presentations. Some of their
works eventually led to scienfific publications.

196

Publications

Peer-reviewed Journal Publications

J1 M. Faessler, D. Falanga, D. Scaramuzza, “Thrust Mixing, Saturation, and Body-Rate Control for
Accurate Aggressive Quadrotor Flight”, IEEE Robotics and Automation Letters (RA-L), 2017. [PDF]
[Video] [Code]

J2 S. Kim, D. Falanga, D. Scaramuzza, “Computing The Forward Reachable Set for a Multirotor Under
First-Order Aerodynamic Effects”, IEEE Robotics and Automation Letters (RA-L), 2018. [PDF]

J3 D. Falanga, K. Kleber, S. Mintchev, D. Floreano, D. Scaramuzza, “The Foldable Drone: A Morphing
Quadrotor that can Squeeze and Fly”, IEEE Robotics and Automation Letters (RA-L), 2018. [PDF]
[Video]

J4 H. Moon, J. Martinez-Carranza, T. Cieslewski, M. Faessler, D. Falanga, A. Simovic, D. Scara-
muzza, S. Li, M. Ozo, C. De Wagter, G. de Croon, S. Hwang, S. Jung, H. Shim, H. Kim, M.
Park, T. C. Au, S. J. Kim, “Challenges and implemented technologies used in autonomous drone racing”,
Springer: Intelligent Service Robotics Series, 2019. [PDF]

J5 D. Falanga, S. Kim, D. Scaramuzza, “How Fast is Too Fast? The Role of Perception Latency in High-
Speed Sense and Avoid”, IEEE Robotics and Automation Letters (RA-L), 2019. [PDF] [Video]

J6 B. Nisar, P. Foehn, D. Falanga, D. Scaramuzza, “VIMO: Simultaneous Visual Inertial Model-based
Odometry and Force Estimation”, IEEE Robotics and Automation Letters (RA-L), 2019. [PDF]

Peer-reviewed Conference Publications

C1 D. Falanga, E.Mueggler, M. Faessler, D. Scaramuzza, “Aggressive Quadrotor Flight through Narrow
Gaps with Onboard Sensing and Computing”, IEEE Int. Conf. on Robotics and Automation (ICRA),
2017. [PDF] [Video]

C2 M. Faessler, D. Falanga, D. Scaramuzza, “Thrust Mixing, Saturation, and Body-Rate Control for
Accurate Aggressive Quadrotor Flight”, IEEE Int. Conf. on Robotics and Automation (ICRA), 2017.
[PDF] [Video] [Code]

C3 P. Foehn, D. Falanga, N. Kuppuswamy, R. Tedrake, D. Scaramuzza, “Fast Trajectory Optimization
for Agile Quadrotor Maneuvers with a Cable-Suspended Payload”, Robotics: Science and Systems
(RSS), 2017. Best Student Paper Award Finalist. [PDF] [Video]

C4 D. Falanga, A. Zanchettin, A. Simovic, J. Delmerico, D. Scaramuzza, “Vision-based Autonomous
Quadrotor Landing on a Moving Platform”, IEEE/RSJ Int. Symp. on Safety, Security and Rescue
Robotics (SSRR), 2017. [PDF] [Video]

C5 R. Spica, D. Falanga, E. Cristofalo, E. Montijano, D. Scaramuzza, M. Schwager, “A Real-Time Game
Theoretic Planner for Autonomous Two-Player Drone Racing”, Robotics: Science and Systems (RSS),
2018. [PDF] [Video]

C6 D. Falanga, P. Foehn, P. Lu, D. Scaramuzza., “PAMPC: Perception-Aware Model Predictive Control
for Quadrotors”, IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), 2018. [PDF] [Video] [Code]

C7 S. Kim, D. Falanga, D. Scaramuzza, “Computing The Forward Reachable Set for a Multirotor Under
First-Order Aerodynamic Effects”, IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), 2018. [PDF]

C8 D. Falanga, K. Kleber, S. Mintchev, D. Floreano, D. Scaramuzza, “The Foldable Drone: A Morphing
Quadrotor that can Squeeze and Fly”, IEEE Int. Conf. on Robotics and Automation (ICRA), 2019.
[PDF] [Video]

C9 B. Nisar, P. Foehn, D. Falanga, D. Scaramuzza, “VIMO: Simultaneous Visual Inertial Model-based
Odometry and Force Estimation”, Robotics: Science and Systems (RSS), 2019. [PDF]

197

	Acknowledgements
	Abstract
	List of Contributions
	Introduction
	The Robotic Revolution: Current Status and Challenges
	Past, Present, and Future: History and Applications of Flying Robots
	History of Multirotors: from the First Concepts to Small-Scale, Unmanned Vehicles
	Applications of Quadrotors

	Research Objectives
	State of the Art
	Summary

	Contributions
	Tightly Coupled Perception and Action
	Paper A: Aggressive Flight through Narrow Gaps
	Paper B: Perception-Aware Model Predictive Control

	Low-Latency Perception to Action
	Paper C: The Role of Perception Latency in Obstacle Avoidance
	Paper D: Event-based avoidance

	Morphing Quadrotors
	Paper E: The Foldable Drone

	Applications of Vision-Based Quadrotors
	Paper F: Autonomous Landing on a Moving Platform

	Unrelated Contributions

	Future Directions
	Limitations of the Proposed Approaches
	Future Work

	Aggressive Flight through Narrow Gaps
	Introduction
	Related Work
	Contributions

	Trajectory Planning
	Traverse Trajectory
	Optimization of the Traverse Trajectory
	Approach Trajectory
	Yaw-Angle Planning
	Selection of the Approach Trajectory to Execute
	Recovery after the Gap

	State Estimation
	State Estimation from Gap Detection

	Experiments
	Experimental Setup
	Results

	Discussion
	Replanning
	Trajectory Computation Times
	Gap configuration
	Dealing with Missing Gap Detections

	Conclusion

	Perception-Aware Model Predictive Control
	Introduction
	Contributions
	Related Work
	Structure of the Paper

	Problem Formulation
	Methodology
	Nomenclature
	Quadrotor Dynamics
	Perception Objectives
	Action Objectives
	Challenges

	Model Predictive Control
	Experiments
	Experimental Setup
	Experiment Description and Results

	Discussion
	Choice of the optimizer
	Convexity of the problem
	Choice of point of interest
	PAMPC Parameters
	Computation Time
	Drawbacks of a Two-Step Approach

	Conclusions

	The Role of Perception Latency in Obstacle Avoidance
	Introduction
	Related Work
	Contributions
	Assumptions
	Structure of the Paper

	Problem Formulation
	Modelling
	Obstacle Avoidance

	Vision-Based Perception
	Frame-Based Cameras and Event Cameras
	Sensing Range of a Vision-Based Perception System
	Latency of a Vision-Based Perception System

	Case Study: Vision-Based Quadrotor Flight
	Sensing Range
	Latency
	Quadrotor Model
	Results

	Experiments
	Obstacle Detection with an Event Camera
	Expected and Measured Latency
	Results

	Conclusions
	Sensitivity Analysis
	Generalization to Multiple Obstacles
	Monocular Frame-Based Camera
	Sensing Range
	Latency

	Stereo Frame-Based Camera
	Sensing Range
	Latency

	Monocular Event Camera
	Sensing Range
	Latency

	Discussion
	Stereo Frame or Monocular Event?
	Dynamic Obstacles

	Experiments
	Experimental Platform
	Obstacle Detection with an Event Camera: Theoretical and Practical Latency
	Obstacle Detection with an Event Camera: Discrepancy Between Theory and Practice

	Event-Based Avoidance
	Introduction
	The Challenge
	Event Cameras
	Related Work
	Overview of the Approach and Contributions
	Time Statistics of Events to Detect Moving Obstacles

	Results
	Evaluation of the Event-Based Obstacle Detector
	Experiments

	Materials and Methods
	Obstacle Detection
	Obstacle Avoidance
	Experimental Platform
	Major Failure Causes, Lessons Learnt and Disadvantages of Event Cameras

	Conclusions

	The Foldable Drone
	Introduction
	Contributions
	Structure of the Paper

	Mechanical Design
	Control
	Center of Gravity and Inertia
	Morphology-dependent Control
	Control Allocation

	Experiments
	Experimental Platform
	Morphing Trade-Offs
	Flight Performance
	Applications

	Conclusion

	Autonomous Landing on a Moving Platform
	Introduction
	Related Work
	Contribution

	System Overview
	Quadrotor State Estimation
	Vision-based Platform Detection
	Platform State Estimation
	Trajectory Planning
	Quadrotor Control
	State Machine

	Experiments
	Simulation Environment
	Simulation Results
	Experimental Platform
	Landing Platform
	Real Experiments Results

	Discussions
	Generality of the Framework
	Motivation of the Vision Hardware Setup
	Computational Load
	Trajectory Planning
	Dealing with Missing Platform Detection

	Conclusions

	Bibliography
	Curriculum Vitae

