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Abstract

Using cameras for localization and mapping with mobile robots is appealing as these
sensors are small, inexpensive, and ubiquitous. However, since every camera image
provides hundred thousands of measurements, it poses a great challenge to infer
structure and motion from this wealth of data in real-time on computationally con-
strained robotic systems. Furthermore, robustness becomes an important factor when
applying computer vision algorithms to mobile robots that are moving in uncontrolled
environments. In this case, nuisances such as occlusions, illumination changes, or low
textured surfaces increase the difficulty to track visual cues, which is fundamental to
enable camera-based localization and mapping.

The first contribution of this thesis is an efficient, robust, and accurate visual odometry
algorithm that computes the motion of a single camera solely from its stream of images.
Therefore, the use of direct methods that operate directly on pixel level intensities is
investigated. The advantage of direct methods is that pixel correspondence between
images is given directly by the geometry of the problem and can be refined by using
the local intensity gradients. However, joint refinement of structure and motion
by pixel-wise minimization of intensity differences becomes intractable as the map
grows. Therefore, a novel semi-direct approach is proposed that establishes feature
correspondence using direct methods and subsequently relies on proven feature-based
methods for refinement. We further show how inertial measurements can seamlessly
be integrated in the optimization of structure and motion. Therefore, the second
contribution of this thesis is a preintegration theory that allows summarizing many
inertial measurements between two frames into single relative motion constraints.
We formally discuss the generative measurement model as well as the nature of the
rotation noise and derive the expression for the maximum a posteriori state estimator.
Experimental results confirm that our modeling efforts lead to accurate state estimation
in real-time, outperforming state-of-the-art approaches.

Tracking salient features in the image results in sparse point clouds; however, for
robotic tasks such as path planning, manipulation, or obstacle avoidance, a denser
surface representation is needed. Previous work on dense reconstruction from images
aim at providing high fidelity reconstructions. However, for robotic applications, the
accuracy of the reconstruction should be governed by the interaction task. Furthermore,

iii



it is crucial to have a measure of uncertainty in the reconstruction, which aids motion
planning and fusion with complementary sensors. This motivates the third contribution
of this thesis, which is an efficient algorithm for probabilistic dense depth estimation
from a single camera. Therefore, we combine a multi-view and per-pixel-based recursive
Bayesian depth estimation scheme with a fast smoothing method that takes into account
the estimated depth uncertainty.
While most computer vision approaches fuse depth-maps in a cost volume, care has
to be taken in terms of scalability and memory consumption for robotic applications.
Therefore, building upon the proposed dense depth estimation, the next contribution
of this thesis is a robot-centric elevation mapping system that suits a flying robot with
down-looking camera and can be applied on-board Micro Aerial Vehicles (MAVs) for
fully autonomous landing-spot detection and landing.
We further demonstrate the usefulness of dense depth-maps for localization of an MAV
with respect to a ground robot. Therefore, we address the problem of registering the
maps computed by two robots from distant vantage points, using different sensing
modalities: a dense 3D reconstruction from the MAV is aligned with the map computed
from the depth sensor on the ground robot.
The most exciting opportunity of computer vision for mobile robotics is that robots
can exhibit control on the data acquisition process. This motivated the investigation
of the following problem: given the image of a scene, what is the trajectory that an
MAV-mounted camera should follow to perform optimal dense depth estimation? The
last contribution of this thesis addresses this question and introduces a method to
compute the measurement uncertainty and, thus, the expected information gain, on the
basis of the scene structure and appearance. This results in the MAV to choose motion
trajectories that avoid perceptual ambiguities inferred by the texture in the scene.



Zusammenfassung

Kameras sind sehr nützliche Sensoren für mobile Roboter, da sie sehr klein, gün-
stig und allgegenwertig sind. Weil jedes einzelne Kamerabild aus hunderttausenden
Pixel-Messungen besteht, ist es eine grosse Herausforderung, aus dieser Datenflut
die Kamerabewegung und gleichzeitig die Umgebung dreidimensional zu rekonstru-
ieren. Noch schwieriger wird es, wenn dies in Echtzeit auf einer Recheneinheit mit
beschränkter Kapazität, wie sie in Robotern eingesetzt wird, geschehen soll. Ausserdem
wird die Robustheit des Systems ein sehr wichtiger Faktor, wenn der mobile Roboter
sich in einer unkontrollierten Umgebung bewegt. In diesem Fall treten Verdeckungen,
Beleuchtungsänderungen und wenig texturierte Oberflächen auf, was das Wiederer-
kennen von visuellen Merkmalen im Bild verhindert und deshalb die kamerabasierte
Bewegungsschätzung erschwert.

Der erste Beitrag dieser Dissertation ist ein effizienter, robuster und sehr genauer
Algorithmus für die visuelle Odometrie. Dieser Algorithmus schätzt die Bewegung einer
einzelnen Kamera ausschliesslich anhand der von der Kamera aufgenommenen Bildern.
Dazu wurden direkte Methoden, welche mit den Intensitätswerten der Pixel operieren,
untersucht. Der Vorteil von direkten Methoden ist, dass die Pixel-Korrespondenz von
Bild zu Bild durch die Geometrie des Problems gegeben ist und durch die Minimierung
von Pixel-Intensitätsunterschieden weiter optimiert werden kann. Die Optimierung
der Kamerapositionen und der 3D Geometrie der Umgebungsstruktur wird jedoch
sehr rechenintensiv, wenn die Karte wächst. Daher wird ein halb-direkter (semi-direct)
Algorithmus vorgeschlagen, der die Pixel-Korrespondenz mittels direkten Ansätzen
ermittelt und daraufhin auf bewährten merkmal-basierten Methoden aufbaut, um
die Geometrie des Problems zu optimieren. In einer Erweiterung wird gezeigt, wie
Inertialmessungen nahtlos in diese Optimierierung integriert werden können. Dies
stellt den zweiten Beitrag dieser Dissertation dar. Experimentelle Resultate zeigen,
dass das vorgeschlagene System sehr genaue Schätzungen in Echtzeit erzielt, wobei
insbesondere in Bezug auf die Rechenzeit signifikant bessere Resultate als im aktuellen
Stand der Technik erreicht werden.

Das Rekonstruieren von visuellen Merkmalen in Video-Bildern resultiert in dünn
besetzten Punktwolken. Ein Roboter hingegen braucht für die Manipulation, die Bewe-
gungsplanung oder für das Ausweichen von Hindernissen eine dichte Representation
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der Oberfläche. Das Ziel von früheren Arbeiten im Bereich der dichten Rekonstruk-
tion von Oberflächen mittels Bildern ist meistens das Erzielen von möglichst hoher
Genauigkeit. In der Robotik ist es hingegen sehr wichtig, dass man auch ein Mass
für die Unsicherheit der Rekonstruktion schätzt, was als Mass für das Risiko bei der
Bewegungsplanung oder für das optimale Fusionieren mit anderen Sensormodalitäten
benutzt werden kann. Aus diesen Überlegungen entstand der dritte Beitrag dieser
Dissertation: Ein Echtzeit Algorithmus für die probabilistische Rekonstruktion der
Umgebung mittels einer einzelnen Kamera.
Eine spannende Anwendung von Computervision in der Robotik ist die Tatsache, dass
der Roboter die Datenaufnahme beeinflussen kann. Daraus resultiert folgende Frage:
Gegeben ist ein Bild der Umgebung; was ist die optimale Trajektorie, welche eine
Kamera durchlaufen muss, um möglichst schnell die Tiefe jedes Pixels im Referenz-
bild zu schätzen? Diese Frage wird im letzten Beitrag dieser Dissertation untersucht.
Dazu wird eine Methode vorgeschlagen, um die Messungenauigkeit und dadurch
den Informationsgewinn jeder Kameraposition aufgrund der Struktur und Textur der
Umgebung zu berechnen. Dies führt in Experimenten dazu, dass Roboter Trajektorien
wählen, welche bildliche Doppeldeutigkeiten auflösen.
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1 Introduction

AI has by now succeeded in doing essentially everything
that requires ‘thinking’ but has failed to do most of what
people and animals do ‘without thinking.’

Donald Knuth [Nilsson, 2009, p.318]

This thesis presents computer vision algorithms for motion estimation and mapping
with autonomous mobile robots. While the algorithms presented in this thesis are
general and can be employed in a wide variety of applications, the robotic demonstrator
platforms used throughout this thesis are Micro Aerial Vehicles (MAVs). MAVs are
ideal platforms for a wide range of applications due to their small size and their
unique capability to move in an agile way in three dimensional space. However, their
small size limits the on-board processing capabilities and being unstable systems they
require continuous and low-latency tracking of position and attitude. Furthermore,
to autonomously perform useful applications they need to be fully aware of their
three dimensional surroundings. In this respect, they present a more interesting and
challenging application scenario than mobile robots that are constrained to move on a
2D surface.

The first part of this thesis investigates how MAVs can estimate their position and ori-
entation in 3D space using only their on-board sensors and processors. Specifically, the
focus lies on using only a single camera to achieve this goal and afterwards the fusion
of cameras with inertial sensors is studied. Given the pose of the camera, the second
part of the thesis investigates how a dense surface model can be efficiently obtained
from the on-board images, which will allow the MAV to interact with the environment.
This interaction is demonstrated in three application scenarios: autonomous landing,
collaboration with ground-robots, and active dense reconstruction.

This thesis is structured in the form of a collection of papers. An introductory section
that highlights the concepts and ideas behind the thesis is followed by seven self-
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contained publications in the appendix.

The next section introduces the general problem of vision-based robot perception
and Section 1.2 highlights relevant related work in the field of MAV state estimation.
Section 1.3 motivates and states the research objectives of this dissertation. Subsequently,
Chapter 2 summarizes the key contributions of the papers in the appendix and explains
the relationship among them. Finally, Chapter 3 suggests future research avenues of
this work.

Cameras for Robot Perception

It seems effortless how humans perceive and interact with the environment. The
ability and efficiency of the visual cortex to interpret the large amount of information
perceived by the eyes is astonishing. Promptly we can describe our motion in the
three dimensional space, characterize the size and structure of the room that we
are in, and not easily are we deceived by reflections, shadows, and occlusions in
the scene. Replicating human-scale understanding of space and motion in artificial
systems represents an enormous challenge for scientists and engineers; however, even
the smallest steps in this direction have the potential to unlock a myriad of exciting
applications such as autonomous cars, service robots, or assistive devices for the blind.
And indeed we have reasons to be optimistic: very rapid progress has been made in the
last decade and continues to be made, aided by steady improvements in computing and
sensing hardware. Today, computers are better than humans in detecting traffic signs in
images [Stallkamp et al., 2012] and Google’s autonomous car has autonomously driven
more than a million miles [Google, 2015].

For an autonomous mobile robot to move around and share the space with humans, it
needs to have a representation of the environment. The ideal representation depends
on the scope of the robot’s task. If the task of the robot is navigation, for instance to
deliver a package, a useful environment representation is a map of landmarks that
the robot is capable to detect with its on-board sensors. If this map is not existent
a priori, the robot has to incrementally create a consistent map of landmarks while
simultaneously determining its location within this map. This problem of simultaneous
localization and mapping (SLAM) has been a cornerstone in robotics research. With the
advent of probabilistic approaches in robotics, the problem could be formulated and
solved in various forms [Durrant-Whyte and Bailey, 2006]. Today, SLAM algorithms are
a standard module on mobile robots in research labs, which have been implemented
using different sensor modalities, such as laser range finders, sonars, depth-cameras, or
standard cameras.

Using cameras for localization and mapping is appealing as these sensors are small,
inexpensive, power efficient, and ubiquitous. Today, cameras are capable to record many
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(a) (b) (c)

Figure 1.1 – (a) Reconstruction of the Colosseum in Rome from a large and unorganized
collection of photographs taken from the internet using structure from motion [Agarwal et al.,
2011]. (b) The Stanford Cart in 1970 by Moravec was the first robot to use a camera to estimate
its ego-motion using visual odometry [Moravec, 1980]. (c) The Dyson 360 EyeTM robotic vacuum
cleaner is the first mass-market consumer product to use visual-SLAM technology. An omni-
directional camera mounted at the top of the robot allows the robot to localize and navigate in
homes.

times a second an image that consists of millions of individual pixel measurements.
Interpreting this wealth of data is hard since the image formation process is affected
by nuisance factors such as measurement noise, illumination changes, occlusions,
quantization, among others, which affect the measurements but are irrelevant to the
task at hand. The problem of reconstructing a 3D map of the environment from a set of
possibly unordered images is called structure from motion (SfM) in the computer vision
community. The origin of the approaches that address the structure and motion recovery
from two images date back to the mid 1980s [Longuet-Higgins, 1981, Huang and
Faugeras, 1987]. Today, it is possible to reconstruct large-scale models of buildings from
unorganized set of hundred thousand photographs collected from the internet [Frahm
et al., 2010, Agarwal et al., 2011] (see Fig. 1.1(a)). If the images appear in sequence,
e.g., from a camera mounted on a vehicle, we denote the incremental reconstruction
of structure and motion as visual odometry (VO). Pioneered by Moravec [1980] in the
1970s (see Fig. 1.1(b)), the initial work on VO was mainly driven by NASA’s Mars
exploration program, which eventually led to the successful deployment on the Spirit
and Opportunity rovers [Maimone et al., 2007]. In VO, the main goal is to minimize
the drift in the motion estimate of the moving camera. However, if the goal is to
recover a globally consistent map of the environment, e.g. by detecting previously
places and subsequent refinement of the trajectory (loop closures), we speak of visual
SLAM (although definitions may differ). The first systems that were capable to perform
visual SLAM in real-time used an Extended Kalman Filter (EKF) to estimate structure
and motion causally over time [Chiuso et al., 2002, Davison, 2003]. Today, the first
mass marked consumer products start to use visual SLAM technology. A prominent
example is the Dyson 360 EyeTM robotic vacuum cleaner, which is equipped with an
omni-directional camera that enables the robot to navigate and methodically clean
rooms (see Fig. 1.1(c)).
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(a) (b)

Figure 1.2 – Figure (a) depicts the recovered trajectory of a visual odometry (VO) algorithm.
The algorithm proposed by Scaramuzza [2011] uses only a single omni-directional camera
mounted on the roof of a car. The sparse point-cloud reconstruction of the static street-level
environment is a by-product of the estimation process. In contrast, Figure (b) shows the dense
reconstruction result by Pollefeys et al. [2008] that was computed in real-time from images
recorded from a moving car.

At the heart of visual SLAM lies the correspondence problem: In order to estimate
structure and motion from images, pixels that correspond to the same point in space
need to be associated in successive images. The standard approach to this 2D – 2D
image correspondence problem is to detect salient features in the images, compute a
descriptor for each feature, and then match the descriptors between images. Corners
are examples of salient features that can easily be identified as those pixels in the
image that have a non-zero gradient along two independent directions [Harris and
Stephens, 1988]. A descriptor such as the SIFT [Lowe, 2004] or BRISK [Leutenegger
et al., 2011] is formed by computing the statistics of image gradients at different scales
and locations in the feature neighborhood followed by various normalization and
quantization. The goal of this procedure is to compute a descriptor that is invariant to
illumination and view-point changes and thus can be reliably matched across images.
Once feature correspondence is established, one can profit from the fruits of decades
of geometric vision research that came up with minimal solutions to the inter-frame
relative camera pose problems [Faugeras, 1994, Hartley and Zisserman, 2004, Ma
et al., 2005]. Embedded in a recursive Bayesian estimation process, this allows us to
recover the camera trajectory and a 3D map of landmarks. Due to the sparse nature
of feature correspondence, the resulting map is also sparse (see Fig. 1.2(a)). Often
just a by-product of motion estimation, the sparse point-cloud of 3D landmarks is a
useful map representation to localize a robot. However, for more advanced robotic
tasks a sparse map representation falls short. For instance, any sort of robot motion
planning requires a dense surface representation to predict collisions and to enable true
interaction with objects. Apart from active sensors such as laser range finders, a dense
surface representation can also be computed from passive cameras using using dense
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methods that exploit the information residing in all pixels of the images. Pollefeys et al.
[1999, 2004] presented one of the earliest reconstruction pipelines that was capable
to compute a dense surface model from a single camera. While the early work was
running off-line on few images, later work in [Pollefeys et al., 2008] used a GPU to
produce the first real-time capable dense reconstruction pipeline that was used to
reconstruct street scenes from a car equipped with up to four non-overlapping cameras
(see Fig. 1.2(b)).

The Advent of Micro Aerial Vehicles

In the last three years, we have heard a lot of news about micro aerial vehicles (MAVs):
small flying robots less than a meter in size and typically equipped with four to
eight rotors. While today MAVs are predominantly used as consumer toys, they are
becoming more popular for personal photography and filming due to their unique
capability of providing easy access to aerial perspectives. In the future, an even larger
market will be the commercial use of MAVs for applications such as remote inspection
of bridges, power plants, oil rigs, power lines, etc. (see Fig. 1.3(a)), agriculture (e.g., for
crop analysis), infrastructure (e.g., management, surveillance), conservation, search and
rescue, delivery (see Fig. 1.3(b)), cinematography, or journalism.

Today, MAVs are operated under direct line of sight by a trained operator. Successfully
teleoperating an MAV is difficult and requires multiple days of training time. The
reason is that multi-copters (i.e., drones with multiple rotors) are inherently unstable
systems that require continuous regulation of attitude and position.

Integrated solutions for commercial applications will have to maximize safety and
minimize the risk of injury to humans. There will be the need for advanced autopilots
that assist operators in difficult terrains (e.g., close to buildings), out of line-of-sight
operation, or for completely autonomous flight. To date, most autopilots of commercial
MAVs rely on satellite-based global positioning systems (GPS). However, GPS is not
reliable in urban settings and is completely unavailable indoors. Furthermore, GPS
does not provide the situation awareness to allow obstacle avoidance, position lock,
or safe emergency landing. Therefore, large-scale Unmanned Aerial Vehicles (UAVs)
often use range sensors to detect hazards, avoid obstacles, or to land autonomously
[Johnson et al., 2002, Scherer et al., 2012]. However, these sensors are expensive, heavy
and quickly drain the battery when used on MAVs.

Thanks to advances in sensor and processor miniaturization for consumer electronics,
research on MAVs has progressed significantly in the last years. The key problem in
designing autopilots for MAV navigation is attitude and position control. By fusing
inertial sensors (i.e, gyroscopes and accelerometers), the roll and pitch axis of the MAV
can be reliably controlled while hovering. However, without any other exteroceptive
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(a) (b)

Figure 1.3 – (a) Sensefly’s eXom inspection MAV for industrial inspection. (b) Amazon’s
delivery drone.

sensory input (e.g., cameras, laser rangefinders), the MAV drifts quickly in position and
yaw direction. 2D laser range-finders have been largely explored for ground mobile
robots [Thrun et al., 2005] and similar strategies have been extended to MAVs [Achtelik
et al., 2009, Shen et al., 2012]. Although laser scanners are very reliable and robust,
today’s sensors are too heavy and consume too much power for lightweight MAVs.
Therefore, vision sensors are very appealing, their effective range is not limited as in
the case of time-of-flight or camera-projector systems allowing to both very far and very
close operation to the surface. However, being passive sensors, they require advanced
computer vision algorithms that interpret in real-time the vast amount of pixel data
provided by the cameras—which has become feasible for on-board computers only in
the last decade through the rapid improvements in smart-phone processors.

Early works on vision-based MAV navigation have used biologically-inspired control
algorithms, such as optical flow [Zufferey and Floreano, 2006, Zingg et al., 2010, Grabe
et al., 2013]. However, since optical flow only measures the relative velocity, drift in
the MAV position is still inevitable. Therefore, recent camera-based autopilots used
advanced computer vision algorithms relying on visual odometry (VO) technology to
perform autonomously basic maneuvers, such as take off, landing, and way-point–based
navigation [Scaramuzza et al., 2014, Faessler et al., 2015]. VO estimates the camera
trajectory and structure of the scene from images and relying on these algorithms
completely eliminates drift in hover condition.

Goal and Motivation of this Dissertation

In this section I describe the open challenges in vision-based motion estimation and
dense mapping with MAVs, which leads to a summarization of the proposed ap-
proaches in this thesis.
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(a) High speeds. (b) Illumination changes. (c) Difficult texture.

Figure 1.4 – The dominant challenges for the successful application of VO on-board MAVs is
robustness during agile and fast maneuvers, during illumination changes, and in scenes of
difficult texture such as high-frequency or repetitive texture.

Robust, Accurate, and Efficient Visual Odometry

The challenges for the successful adoption of VO in commercial autopilots of MAVs
are to increase robustness and to improve accuracy and efficiency.

Robustness For VO on-board MAVs it is crucial to guarantee robustness in case of
fast motions, illumination changes, motion blur, low textured environments, or in the
presence of dynamic obstacles as illustrated in Fig. 1.4. These nuisances increase the
difficulty to track visual cues, which is fundamental to enable vision-based motion
estimation. A VO system is most robust if selected pixels can be reliably tracked
from frame to frame and the motion is such that the 3D position of those pixels
may be triangulated accurately. The probability that many pixels are tracked reliably,
e.g., in scenes with little or high frequency texture (such as sand [Maimone et al.,
2007] or asphalt [Lovegrove et al., 2011]), is increased when the algorithm is not
restricted to use local point features (e.g., corners or blobs) but may track edges [Klein
and Murray, 2008] or more generally, all pixels with gradients in the image, such
as in dense [Newcombe et al., 2011b] or semi-dense approaches [Engel et al., 2014].
Dense or semi-dense algorithms that operate directly on pixel-level intensities are also
denoted as direct methods [Irani and Anandan, 1999]. Direct methods estimate structure
and motion directly by minimizing an error measure that is based on image’s pixel-
level intensities. The local intensity gradient magnitude and direction is used in the
optimization compared to feature-based methods that consider only the distance to a
feature-location. Pixel correspondence is given directly by the geometry of the problem,
eliminating the need for robust data association techniques. Direct methods also
benefit from the use of high frame-rate cameras [Handa et al., 2012]: the underlying
optimization problem converges faster and the capability to track weak gradients
is further improved. Furthermore, the use of dense direct methods improves the
robustness of the system against nuisances such as motion blur or camera defocus, as
shown exemplary in [Newcombe et al., 2011b].
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Accuracy In terms of accuracy, the optimal camera motion estimate is obtained
through joint optimization of structure (i.e., landmarks) and motion (i.e., camera poses).
For sparse feature correspondence, this is an established problem that is commonly
known as bundle adjustment [Triggs et al., 2000] and many solvers exist that address
the underlying non-linear least-squares problem efficiently [Dellaert and Kaess, 2006,
Agarwal et al., Kümmerle et al., 2011]. However, joint optimization of dense structure
and motion in real-time is still an open research problem. For this reason, the standard
approach for dense VO is to estimate the latest camera pose with respect to a previously
accumulated dense map and subsequently, given a set of estimated camera poses,
update the dense map [Newcombe et al., 2011b, Ondruska et al., 2015]. Clearly, this
separation of tracking and mapping is only optimal when the output of each stage
yields the optimal estimate. Other algorithms optimize a graph of poses but do not
allow a deformation of the structure once triangulated [Engel et al., 2014]. Contrarily,
some algorithms ignore the camera poses and instead allow non-rigid deformation
of the 3D structure [Whelan et al., 2014, 2015]. The obtained results are accurate and
visually impressive, however, the algorithms lack a thorough probabilistic treatment
when separating tracking and mapping or fixating and removing states. Therefore,
existing dense approaches cannot guarantee optimal and consistent [Huang et al., 2010]
fusion of visual and, if available, complementary measurements (e.g., inertial). An
estimator is said to be consistent if the estimation errors match the theoretical statistical
characteristics, i.e., they are zero mean (unbiased) and have a covariance as calculated
by the estimator [Bar-Shalom et al., 2001].

Efficiency The third requirement for the successful use of VO on-board MAVs is
efficiency. Differently from many state-of-the-art systems in computer vision, the
robotic application on-board MAVs puts hard constrains on the update rate of the
VO. Ideally, the use of very small MAVs is desired for safety reasons. However, the
small size comes with low inertia and thus higher agility. These fast dynamics of
the flying robot require a high update rate of the VO. Additionally, small MAVs are
typically equipped with computationally constrained processors and a limited power
budget. Since every camera image provides hundred thousands of measurements,
it poses a great challenge to infer motion from this wealth of data in real-time on
computationally constrained platforms. Not surprisingly, the primary performance
limitation for VO on the Mars rovers was the runtime of the image processing part. This
was identified by Maimone et al. [2007] as the overriding immediate priority for future
flight computers. Although meanwhile processors have significantly improved, more
efficient VO algorithms are still very desirable to minimize both the power consumption
and the required computational budget on-board MAVs.

The discussion on robustness, accuracy, and efficiency highlights that for increased
robustness, it is beneficial to use dense direct methods that exploit information from all
gradients in the image; conversely, for highest accuracy and fusion with complementary
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sensors, it is advantageous to rely on proven feature-based methods that are efficient
and guarantee optimality and consistency. Finally, for efficiency, both dense methods,
which process every pixel in an image, as well as feature-based methods, which require
expensive computation of features and descriptors for every image, are a disadvantage.

Therefore, in [Forster et al., 2014b], we proposed a VO pipeline that combines the
advantages of direct and feature-based methods: we rely on direct methods to robustly
establish feature correspondence and once matches are established, we use bundle
adjustment for refinement of the 3D structure and the camera poses. Consequently,
the system is called semi-direct visual odometry (SVO). The approach is very efficient
since feature extraction is not necessary for every frame and for direct alignment
only pixels in the feature neighborhood are considered. Our implementation is very
modular, which allowed us to extend it to multi-camera systems and wide field of
view lenses. Additionally, we proposed a method to use inertial measurements from
an inertial measurement unit (IMU) in the bundle adjustment problem. It has been
shown that adding inertial measurements to the bundle adjustment problem results
in highly accurate state estimation [Jung and Taylor, 2001, Sterlow and Singh, 2004,
Indelman et al., 2013b]. However, real-time optimization quickly becomes infeasible
as the trajectory grows over time; this problem is further emphasized by the fact that
inertial measurements come at high rate, hence leading to fast growth of the number of
variables in the optimization. This issue can be addressed by preintegrating inertial
measurements between selected keyframes into single relative motion constraints,
which was first proposed by Lupton and Sukkarieh [2012]. We build upon this work
and present a preintegration theory that properly addresses the manifold structure of
the rotation group SO(3). Compared with [Lupton and Sukkarieh, 2012], our theory
offers a more formal treatment of the rotation noise, and avoids singularities in the
representation of rotations.

Dense Reconstruction for Mobile Robots

The typical map representation that is recovered by a VO algorithm is a sparse point-
cloud of which every 3D point is triangulated from salient features tracked in the
video stream (e.g., see Figure 1.2(a)). However, for robotic tasks such as path planning,
manipulation, or obstacle avoidance, a dense reconstruction (e.g., see Figure 1.2(b)) is
needed to interact with the environment.

There exist a myriad of works on dense reconstruction from images in the computer
vision literature. I refer to well known benchmarks in [Seitz et al., 2006] and [Strecha
et al., 2008] for a representative lists. The input of these algorithms is a set of calibrated
images with known pose as it can be computed by an accurate visual SLAM algorithm.
The primary goal of these benchmarks is to create high fidelity reconstructions such
as in [Zach et al., 2007, Goldlücke et al., 2009, Furukawa and Ponce, 2010, Tola et al.,

9



Chapter 1. Introduction

2012, Fuhrmann and Goesele, 2014]. However, highest accuracy and resolution is not
necessarily the first priority when dense reconstruction is used in mobile robotics. In
this case, energy and processing time constraints apply and the level of reconstruction
detail should be governed by the interaction task of the robot. An MAV for instance
does not require a surface reconstruction with millimeter precision to select a suitable
landing spot. On the other hand, highest surface density may be required by a mobile
manipulator for grasping an object. Robotics further requires surface representations
that enable the robot to reason more efficiently about future actions. Therefore, a
measure of uncertainty in the 3D reconstruction is necessary. However, in many dense
reconstruction pipelines regularization techniques are used that hallucinate data for
instance by interpolating the surface in regions without texture. A robot must be aware
of the uncertainty of these estimates and take it into consideration for planning. A
probabilistic depth representation is further a prerequisite for optimal fusion with
different sensing modalities.

Probabilistic Dense Reconstruction with a Single Camera

Dense depth estimation from a single moving camera is an appealing sensing modality
for MAVs, where strict limitations on payload and power consumption apply. In this
case, the high agility turns the platform into a formidable depth sensor, able to deal
with a large depth range and capable of achieving arbitrarily high confidence in the
measurement.

Few relevant works have addressed real-time, dense reconstruction from a single mov-
ing camera and they shed light on some important aspects. If, on one hand, estimating
the depth independently for every pixel leads to efficient, parallel implementations,
on the other hand the authors of [Gallup et al., 2007, Stühmer et al., 2010, Newcombe
et al., 2011b] argued that, similar to other computer vision problems, such as image
de-noising [Rudin et al., 1992] and optical flow estimation [Werlberger et al., 2010], a
smoothing step is required in order to deal with noise and spurious measurements. In
[Stühmer et al., 2010], smoothness priors were enforced over the reconstructed scene
by minimizing a regularized energy functional based on aggregating a photometric
cost over different depth hypothesis and penalizing non-smooth surfaces. [Newcombe
et al., 2011b, Vogiatzis and Hernández, 2011] further showed that the integration of
many images leads to significantly higher robustness to noise. However, despite the
ground-breaking results, these approaches present some limitations when addressing
tasks in robot perception. Equally weighting measurements from small and large
baselines, in close and far scenes, causes the aggregated cost to frequently present
multiple or no minima. Depending on the depth range and sampling, these failures
are not always recoverable by the subsequent optimization step. Furthermore, an
inadequate number of images can lead to a poorly constrained initialization for the
optimization and erroneous measurements that are hard to detect. It is not clear how
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1.3. Goal and Motivation of this Dissertation

many images should be collected, depending on the motion of the camera and the
scene structure.

In our work [Pizzoli et al., 2014], we rely on the camera pose estimation of the SVO
odometry system [Forster et al., 2014b] and build upon the work of Vogiatzis and
Hernández [2011] for per-pixel recursive Bayesian depth estimation from a single
camera. This results in a probabilistic representation of the depth that reflects our
confidence in the reconstruction and allows the robot to reason about future motions
that minimize the uncertainty [Forster et al., 2014a]. We further propose an optimization
step to enforce spatial regularity over the recovered depth map. The novelty of
the regularization is that the estimated depth uncertainty from the per-pixel depth
estimation is used to weight the smoothing.

Dense Reconstruction applied to MAVs

While most computer vision approaches fuse depth-maps in a cost volume, care has
to be taken in terms of scalability and memory consumption for MAV applications.
Therefore, we propose a robot-centric elevation map of fixed size that suits a flying
robot with down-looking camera [Forster et al., 2015c]. The map representation is
memory efficient as it can be implemented with a two dimensional rolling buffer.
In experiments we have demonstrated that this map representation is effective for
emergency landing spot detection.

We further demonstrate the usefulness of dense depth-maps for localization of an MAV
with respect to a ground robot [Forster et al., 2013]. Therefore, we solve the problem
of registering the maps computed by the robots using different sensors: a dense 3D
reconstruction from the MAV is aligned with the map computed from the depth sensor
on the ground robot. Once aligned, the dense reconstruction from the MAV is used to
augment the map computed by the ground robot, by extending it with the information
conveyed by the aerial views.

Active Dense Reconstruction

The most exciting opportunity of computer vision for robotics is that robots can exhibit
control on the data acquisition process. Most related work in computer vision is
passive in a sense that algorithms process datasets that were recorded in a previous
time instant. In contrast, in robotic applications, we can develop algorithms that
are active by executing some authority on the choice of motion of the MAV or the
camera acquisition parameters (e.g., shutter speed, frame-rate). This motivated us to
investigate the following problem: given the image of a scene, what is the trajectory that
a robot-mounted camera should follow to perform optimal dense depth estimation?
State-of-the-art approaches to active mapping [Kriegel et al., 2011, Bourgault et al.,

11
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2002, Davison and Murray, 2002, Stachniss et al., 2005, Valencia et al., 2012, Sim and
Roy, 2005] retain only geometric information while discarding the scene appearance.
As a result, a robot trying to perceive the depth of a white wall, would generate
different camera trajectories in vain, eventually failing to reduce the uncertainty in
the depth measurement [Soatto, 2009]. By contrast, our proposed method computes
the measurement uncertainty and, thus, the expected information gain, on the basis
of scene structure and appearance (i.e., texture) [Forster et al., 2014a]. To the best of
our knowledge, this is the first work on active, monocular dense reconstruction, which
chooses motion trajectories that minimize perceptual ambiguities inferred by the texture
in the scene.

12



2 Contributions

This chapter summarizes the key contributions of the papers that are reprinted in the
appendix. It further highlights the connections between the individual results and
refers to related work and video contributions. In total, this research been published in
9 peer-reviewed conference publications and two journal publication. The work [Forster
et al., 2015b] on visual-inertial estimation was best paper award finalist at Robotics:
Science and Systems 2015. Two additional papers have been conditionally accepted for
publication in IEEE Transactions on Robotics.

Robust, Accurate, and Efficient Visual Odometry

Paper A: Feature-based Multi-Robot Visual SLAM

(P1) C. Forster, S. Lynen, L. Kneip, and D. Scaramuzza. Collaborative monocular SLAM with
multiple micro aerial vehicles. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), pages 3962–3970, 2013. URL http://dx.doi.org/10.1109/IROS.2013.6696923.

In this work a framework for collaborative visual SLAM with multiple MAVs is
presented. Each MAV estimates its motion individually using a monocular visual
odometry algorithm that runs on-board. The MAVs collectively act as distributed
preprocessors that stream only features and descriptors of selected keyframes and
relative-pose estimates to a centralized ground station. The ground station creates
an individual map for each MAV and merges them whenever overlaps are detected.
After map merging, the position of the MAVs can be expressed in a common, global
coordinate frame. The key to real-time performance is the design of data-structures and
processes that allow multiple threads to concurrently read and modify shared global
map. The presented framework is tested in both indoor and outdoor environments
with up to three MAVs. To the best of our knowledge, this is the first work on real-time
collaborative monocular SLAM, which has also been applied to MAVs.

Related Videos

(V1) C. Forster, S. Lynen, L. Kneip and D. Scaramuzza (2012): “Collaborative Monocular
SLAM with Multiple Micro Aerial Vehicles.” https://youtu.be/taD3XF2w7A0.
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Chapter 2. Contributions

Paper B: Semi-Direct Visual Odometry (SVO)

(P2) C. Forster, Z. Zhang, M. Gassner, M. Werlberger, D. Scaramuzza. Semi-Direct Visual
Odometry for Monocular and Multi-Camera Systems. IEEE Transactions on Robotics (TRO),
2016 (accepted).
PDF: rpg.ifi.uzh.ch/docs/TRO16_forster_SVO.pdf

The computation of features and descriptors for every frame in the previous work
proved computationally to be very intensive. Therefore, computation on-board MAVs
was limited to low frame-rates, which in turn limited the agility of the vehicle. This
motivated the development of a more robust and efficient VO system.

With “SVO”, we proposed a VO pipeline that combines the advantages of direct and
feature-based methods. Direct methods for VO that operate directly on pixel level
intensities [Irani and Anandan, 1999] have recently gained popularity due to their
capability to exploit information from all image gradients in the image. However,
low computational speed in large-scale problems as well as missing guarantees for
optimality and consistency are limiting factors of direct methods where established
feature-based methods instead succeed at. Based on these considerations, we proposed
a semi-direct approach that uses direct methods to track and triangulate features but
relies on proven feature-based methods (bundle-adjustment [Triggs et al., 2000]) for
refinement and fusion with additional sensors. The main novelty is the sparse-image-
alignment algorithm that tracks a set of features with known scene depth jointly from
frame to frame satisfying epipolar constrains. In conjunction with a direct and robust
depth estimation algorithm, this approach allows tracking of weak corner features
and edgelets in environments with little or high-frequency texture (see Fig. 2.1). The
proposed algorithm is very flexible and can easily be extended to multiple cameras, use
motion priors, and wide field of view lenses. Experimental evaluation on benchmark
datasets shows that the algorithm is significantly faster than the state of the art while
achieving highly competitive accuracy.

As a central component of the auto-pilot developed at the Robotics and Perception
Group (RPG), SVO has been used in the last years on a daily basis for experiments with
MAVs. Our MAV system was demonstrated over 300 times at the RPG lab, at multiple
trade fairs, at public events, and to search and rescue professionals. Our implementation
is further used for several commercial products such as for state-estimation on-board
MAVs and for tracking the pose of a smart-phone for reconstruction applications.
Furthermore, other research groups, such as the Autonomy and Robotics Center
at NASA Langley, are successfully using the open-source SVO algorithm for MAV
applications.

Related Publications

(R1) C. Forster, M. Pizzoli, and D. Scaramuzza. SVO: Fast semi-direct monocular visual
odometry. In IEEE Int. Conf. on Robotics and Automation (ICRA), pages 15–22, 2014. URL
http://dx.doi.org/10.1109/ICRA.2014.6906584.
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2.1. Robust, Accurate, and Efficient Visual Odometry

(a) Tracking performance of SVO on the ICL-
NUIM dataset [Handa et al., 2014]. SVO
uses both corner (green) and edgelet (ma-
genta) features.

(b) Estimated trajectory and point-
cloud on the Euroc dataset [Burri
et al., 2015], which was recorded
with an MAV in a machine hall.

Figure 2.1 – Results of the SVO algorithm.

(R2) M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and D. Scaramuzza. Au-
tonomous, vision-based flight and live dense 3D mapping with a quadrotor MAV. In
Journal of Field Robotics, pages 1556–4967, 2015. URL http://dx.doi.org/10.1002/rob.21581.

(R3) Z. Zhang, H. Rebecq, C. Forster, and D. Scaramuzza. Benefit of large field-of-view
cameras for visual odometry. In IEEE Int. Conf. on Robotics and Automation (ICRA), 2016.
URL http://dx.doi.org/10.1109/ICRA.2016.7487210.

(R4) M. Faessler, F. Fontana, C. Forster, and D. Scaramuzza. Automatic re-initialization
and failure recovery for aggressive flight with a monocular vision-based quadrotor.
In IEEE Int. Conf. on Robotics and Automation (ICRA), pages 1722–1729, 2015. URL
http://dx.doi.org/10.1109/ICRA.2015.7139420.

Related Demonstrations

(D1) C. Forster, M. Pizzoli, and D. Scaramuzza. SVO: Fast semi-direct monocular visual
odometry. Live demonstration at Eur. Conf. on Computer Vision (ECCV), Zurich, 2014.

Related Software

(S1) https://github.com/uzh-rpg/rpg_svo.

Related Videos

(V2) C. Forster, M. Pizzoli, and D. Scaramuzza (2014): “SVO: Fast Semi-Direct Monocular
Visual Odometry.” https://youtu.be/2YnIMfw6bJY.

(V3) M. Faessler, F. Fontana, C. Forster, and D. Scaramuzza (2015): “Automatic Re-Initialization
and Failure Recovery for Aggressive Flight with a Monocular Vision-Based Quadrotor.”
https://youtu.be/pGU1s6Y55JI.

(V4) C. Forster, Z. Zhang, M. Gassner, M. Werlberger, D. Scaramuzza (2015): “Semi-Direct Vi-
sual Odometry for Monocular and Multi-Camera Systems.” https://youtu.be/hR8uq1RTUfA.
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Chapter 2. Contributions

(a) (b)

Figure 2.2 – Comparison of the proposed visual-inertial odometry system in [Forster et al.,
2015b] against the Google Tango sensor. In (a) the Tango sensor accumulated 2.2m drift while
the proposed estimator achieved 1.0m error at the end of the trajectory. In (b) the proposed
approach exhibits 0.5m drift while the Tango sensor accumulated 1.4m at the end of the
trajectory.

Paper C: Visual-Inertial Odometry

(P3) C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza. On-Manifold Preintegration for
Real-Time Visual-Inertial Odometry. IEEE Transactions on Robotics (TRO), 2016. URL:
http://rpg.ifi.uzh.ch/docs/TRO16_forster_VIO.pdf.

The use of an inertial measurement unit (IMU) as a complementary sensor to the
camera promises increased robustness and accuracy for VO. While a single moving
camera is an exteroceptive sensor that allows us to measure appearance and geometry
of a three-dimensional scene, up to an unknown metric scale; an inertial measurement
unit (IMU) is a proprioceptive sensor that renders metric scale of monocular vision
and gravity observable [Martinelli, 2013] and provides robust and accurate inter-frame
motion estimates. This motivated the development of a visual-inertial odometry system.

Current approaches for visual-inertial odometry are able to attain highly accurate
state estimation via nonlinear optimization. However, real-time optimization quickly
becomes infeasible as the trajectory grows over time; this problem is further emphasized
by the fact that inertial measurements come at high rate, hence leading to fast growth
of the number of variables in the optimization. This issue can be addressed by
preintegrating inertial measurements between selected keyframes into single relative
motion constraints [Lupton and Sukkarieh, 2012]. We build upon this work and propose
a preintegration theory that properly addresses the manifold structure of the rotation
group. We formally discuss the generative measurement model as well as the nature of
the rotation noise, which leads to the derivation of the expressions for the maximum
a posteriori state estimator. This theoretical development enables the computation of
all necessary Jacobians for the optimization and a-posteriori bias correction in analytic
form. The second contribution is to show that the preintegrated IMU model can be
seamlessly integrated into a visual-inertial pipeline under the unifying framework of
factor graphs. This enables the application of incremental-smoothing algorithms and
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2.2. Dense Reconstruction

the use of a structureless model for visual measurements, which avoids optimizing
over the 3D points, further accelerating the computation. We perform an extensive
evaluation of our monocular visual-inertial pipeline on real and simulated datasets. The
results confirm that our modeling effort leads to accurate state estimation in real-time,
outperforming state-of-the-art approaches (see Fig. 2.2(b)).

Related Publications

(R5) C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza. IMU preintegration on manifold
for efficient visual-inertial maximum-a-posteriori estimation. In Robotics: Science and
Systems (RSS), 2015. URL https://dx.doi.org/10.15607/RSS.2015.XI.006.

(R6) C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza. Supplementary Material to: IMU
preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation.
Technical Report GT-IRIM-CP&R-2015-001, 2015. URL http://hdl.handle.net/1853/53653.

Related Software

(S2) https://bitbucket.org/gtborg/gtsam.

Related Videos

(V5) C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza (2015): “IMU preintegration on
manifold for efficient visual-inertial maximum-a-posteriori estimation.” https://youtu.
be/CsJkci5lfco.

Dense Reconstruction

Paper D: Probabilistic Depth-Map Estimation

(P4) M. Pizzoli, C. Forster, and D. Scaramuzza. REMODE: Probabilistic, monocular dense
reconstruction in real time. In IEEE Int. Conf. on Robotics and Automation (ICRA), pages
2609–2616, 2014. URL http://dx.doi.org/10.1109/ICRA.2014.6907233.

The map representation recovered by the VO algorithms presented in the previous
section is a sparse point-cloud of which every 3D point is triangulated from salient
features tracked in the video stream. However, for robotic tasks such as path planning,
manipulation, or obstacle avoidance, a dense reconstruction is needed to interact with
the environment (see Fig. 2.3(a)). This motivated the development of a real-time capable
vision-based dense reconstruction pipeline.

Our main contribution in this field is a novel approach to depth-map computation
that combines Bayesian estimation and recent developments in convex optimization for
image processing. We estimate the camera trajectory with the VO algorithm proposed
in [Forster et al., 2014b] and compute probabilistic depth maps with the recursive
Bayesian scheme from [Vogiatzis and Hernández, 2011]. Therefore, a per-pixel depth
estimation is carried out for selected reference frames. We further propose a fast

17

https://dx.doi.org/10.15607/RSS.2015.XI.006
http://hdl.handle.net/1853/53653
https://bitbucket.org/gtborg/gtsam
https://youtu.be/CsJkci5lfco
https://youtu.be/CsJkci5lfco
http://dx.doi.org/10.1109/ICRA.2014.6907233


Chapter 2. Contributions

(a) Reconstruction results [Pizzoli et al., 2014]
computed real-time but off-board.

(b) Elevation map [Forster et al., 2015c] com-
puted in real-time on-board the MAV.

Figure 2.3 – Dense reconstruction for MAVs.

smoothing method that takes into account the estimation uncertainty to provide spatial
regularity and mitigate the effect of noisy camera localization. We demonstrate that
our method outperforms the state-of-the-art in terms of accuracy, while exhibiting high
efficiency in memory usage and computing power.

Related Software

(S3) https://github.com/uzh-rpg/rpg_open_remode.

Related Videos

(V6) M. Pizzoli, C. Forster, and D. Scaramuzza (2014): “REMODE: Probabilistic, monocular
dense reconstruction in real time.” https://youtu.be/QTKd5UWCG0Q.

(V7) M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, D. Scaramuzza (2015):
“Autonomous, Flying 3D Scanner.” https://youtu.be/7-kPiWaFYAc.

Paper G: Autonomous Landing Using Dense Reconstruction

(P5) C. Forster, M. Faessler, F. Fontana, M. Werlberger, and D. Scaramuzza. Continuous
on-board monocular-vision-based aerial elevation mapping for quadrotor landing. In
IEEE Int. Conf. on Robotics and Automation (ICRA), pages 111–118, 2015. URL http:
//dx.doi.org/10.1109/ICRA.2015.7138988.

Our previous work in [Pizzoli et al., 2014] computes dense probabilistic depth maps in
real-time but off-board on a graphics processing unit (GPU). However, for increased
autonomy, the MAV cannot rely on a connection to a base station. This motivated the
development of a reconstruction pipeline that can run on-board the MAV and increases
the autonomy of the robot.
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2.2. Dense Reconstruction

(a) Collaboration of an aerial and ground
robot. The aerial robot augments the recon-
structions from the ground-robot with a dense
reconstruction obtained from aerial views.

(b) Information gain predicted for the next
measurement. A motion orthogonal to the
striped surface texture is optimal [Forster et al.,
2014a].

Figure 2.4 – Application of dense reconstruction for MAVs.

In this work, we propose a resource-efficient system for real-time 3D terrain recon-
struction and landing-spot detection for MAVs. The system runs on an on-board
smart-phone processor and requires only the input of a single down-looking camera
and an inertial measurement unit. We generate a two-dimensional elevation map that is
probabilistic, of fixed size, and robot-centric, thus, always covering the area immediately
underneath the robot (see Fig. 2.3(b)). The elevation map is continuously updated at a
rate of 1 Hz with depth maps that are triangulated from multiple views using recursive
Bayesian estimation. To highlight the usefulness of the proposed mapping framework
for autonomous navigation of MAVs, we successfully demonstrate fully autonomous
landing including landing-spot detection in real-world experiments.

Related Videos

(V8) C. Forster, M. Faessler, F. Fontana, M. Werlberger, and D. Scaramuzza (2015): “Continuous
on-board monocular-vision–based aerial elevation mapping for quadrotor landing.” https:
//youtu.be/phaBKFwfcJ4.

Paper F: Air-Ground Matching using Dense Reconstruction

(P6) C. Forster, M. Pizzoli, and D. Scaramuzza. Air-ground localization and map augmentation
using monocular dense reconstruction. In IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), pages 3971–3978, 2013. URL http://dx.doi.org/10.1109/IROS.2013.
6696924.

In this work, we demonstrate in another application the usefulness of on-board dense
reconstruction for MAVs. We address the problem of registering the 3D maps com-
puted by the robots using different sensors: a dense 3D reconstruction from the MAV
monocular camera is aligned with the map computed from the depth sensor on the
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Chapter 2. Contributions

ground robot. Once aligned, the dense reconstruction from the MAV is used to aug-
ment the map computed by the ground robot, by extending it with the information
conveyed by the aerial views. In spite of the radically different vantage points from
which the maps are acquired, the proposed approach achieves high accuracy whereas
appearance-based, state-of-the-art approaches fail. Experimental validation in indoor
and outdoor scenarios reported an accuracy in position estimation of 0.08 meters and
real time performance. This demonstrates that our new approach effectively overcomes
the limitations imposed by the difference in sensors and vantage points that negatively
affect previous techniques relying on matching visual features.

Related Videos

(V9) C. Forster, M. Pizzoli, and D. Scaramuzza (2013): “Air-ground localization and map
augmentation using monocular dense reconstruction.” https://youtu.be/IZJmZIbinGg.

Paper E: Active Dense Reconstruction

(P7) C. Forster, M. Pizzoli, and C. Scaramuzza. Appearance-based active, monocular, dense
depth estimation for micro aerial vehicles. In Robotics: Science and Systems (RSS), 2014.
URL https://dx.doi.org/10.15607/RSS.2014.X.029.

In this work, we investigate the following problem: given the image of a scene, what
is the trajectory that a robot-mounted camera should follow to allow optimal dense
depth estimation? The solution we propose is based on maximizing the information
gain over a set of candidate trajectories. State-of-the-art approaches to active mapping
[Kriegel et al., 2011, Bourgault et al., 2002, Davison and Murray, 2002, Stachniss et al.,
2005, Valencia et al., 2012, Sim and Roy, 2005] retain only geometric information while
discarding the scene appearance. As a result, a robot trying to perceive the depth of
a white wall, would generate different camera trajectories in vain, eventually failing
to reduce the uncertainty in the depth measurement [Soatto, 2009]. By contrast, we
proposed a method to compute the measurement uncertainty and, thus, the expected
information gain, on the basis of scene structure and appearance (i.e., texture). For
applications to dense reconstruction from MAVs, we provided a strategy to compute a
candidate sequence of viewpoints that lie on a feasible trajectory and that maximize the
expected information gain. We obtain both synthetic and experimental validation of the
proposed system in closed loop and compare against four different control strategies:
a random strategy, a circular motion, a greedy strategy and a Next-Best-View (NBV)
strategy that iteratively selects the globally optimal view points. To the best of our
knowledge, this is the first work on active, monocular dense reconstruction, which chooses
motion trajectories that minimize perceptual ambiguities inferred by the texture in the
scene (see Fig. 2.4(b)).

Related Publications

(R7) G. Costante, C. Forster, P. Valigi, D. Scaramuzza. Perception-aware Path Planning.
Submitted to IEEE Transactions on Robotics (TRO).
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2.2. Dense Reconstruction

Related Videos

(V10) C. Forster, M. Pizzoli, and C. Scaramuzza (2014): “Appearance-based active, monocular,
dense depth estimation for micro aerial vehicles.” https://youtu.be/uAc1pL_c-zY.
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3 Future Directions

Given the progress in visual odometry (VO) and dense reconstruction in recent years,
the technology has reached a level of maturity that allows its use in commercial robotic
systems. In consumer MAVs for instance, visual odometry will soon be used to support
teleoperated flight in GPS-denied environments and to increase the hover stability.
Vision-based dense reconstruction techniques will be used to detect obstacles and safe
landing spots. However, to enable fully autonomous MAVs in commercial applications,
robustness remains an issue. In particular, it will be difficult to certify robustness of
vision-based algorithms. Therefore, significant engineering efforts are still required,
which should become the task of the industry that is applying this technology. On the
other hand, the work in this thesis can be continued along several exciting research
avenues:

Novel Sensing Technologies There is a major discrepancy between the available
camera technology today and the sensors commonly used for VO research. While
high resolution and high frame-rate cameras are a commodity today, research on
VO is still focused on low resolution monochrome cameras. For instance, there is
a trade-off between using direct pixel tracking in high frame-rate cameras versus
computing robust descriptors for wide-baseline data association in low frame-rate
cameras. Moreover, there exist a variety of completely novel cameras such as event-
based neuromorophic vision sensors [Delbruck et al., 2010, Mueggler et al., 2015]. These
sensors output a low-latency stream of “events” that is generated when single pixels
perceive a brightness change, rather than a periodic stream of frames. Due to the
asynchronous and continuous nature of the data, established approaches cannot be
applied to event-based cameras. In fact, visual-SLAM with event-based cameras has
not been demonstrated and remains an open research problem. However, event-based
cameras have a great potential in terms of energy usage (if nothing changes in the
scene, the camera sends no data), dynamic range, and temporal resolution. It remains
an open question which sensor should be selected, how they should be mounted on
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Chapter 3. Future Directions

a robot, and which algorithms should be applied such that the robot can achieve a
certain task with the required reliance and energy usage, in a given environment. We
face a design problem that is a tuple of “functionality space”, “implementation space”,
and a “resource space”, which should be addressed in an optimization [Censi et al.,
2015, Censi, 2015].

Denser Visual-SLAM From an information-theoretic perspective, using every pixel
in an image for motion estimation must be optimal. Indeed, previous work on dense
tracking and mapping has for instance resulted in impressive performance in the
presence of motion blur [Newcombe et al., 2011b] or dynamic contents [Newcombe
et al., 2015]. However, optimal estimation of dense structure and motion with consistent
estimation of the uncertainties in the system is still an open research problem. Therefore,
novel map representations are required, which capture the correlations between the
uncertainties in the dense surface with the uncertainty in the camera poses, similar to
the sparse bundle adjustment problem.

Scene Understanding In terms of dense mapping, it is highly promising to tightly
couple scene understanding with reconstruction [Salas-Moreno et al., 2013]. Knowing
the object of interest allows us to use class-specific priors [Häne et al., 2013], while
having a 3D reconstruction improves object detection and classification.

Understanding the semantics of the environment is also very relevant for MAV ap-
plications. For instance, knowing the surface properties helps in selecting suitable
landing spots. On the other hand, detection, tracking, and activity classification of
humans is paramount to enable truly interactive behavior of MAVs with humans. This
is for example necessary for any “autonomous cinematography drone” that creates
professional videos and photos of people in scenic places or performing sport activities.
Such a drone must understand the scene to select the best view-points.

Scaling Visual SLAM Cars, cameras, and smart-phones of today are GPS enabled. In
the future, these kind of devices may well be visual SLAM enabled, meaning that they al-
ways estimate their precise location, both indoors and outdoors by using tiny integrated
cameras. To obtain local maps, these devices may be connected to a cloud back-end
that stores and continuously updates a map of the world. Realizing this vision will
require significant advancements in long-term visual mapping capabilities [Churchill
and Newman, 2013], map compression [Dymczyk et al., 2015], and distributed data
management [Cieslewski et al., 2015].
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Robotics for Vision Finally, a very promising research direction is the tight integra-
tion of vision and robot control [Soatto, 2009]. Humans for instance do not run at full
pace from bright sunlight into unknown dark terrain. Instead, we slow down, knowing
that our eyes need time to adjust to different illumination conditions. Equally, in the
rare case when our eyes are tricked by scene ambiguities, we change the vantage point
to resolve the uncertainties. This is a powerful capability that has a great potential to
increase the robustness of the overall robotic system. If a robot is aware that VO is
unreliable in areas with little texture, it will try to select a trajectory that avoids such
regions. Similarly, if an MAV has to perform an acrobatic maneuver, it should select its
orientation such that motion blur in the recorded images is minimized. Any of such
active behavior requires full knowledge of the uncertainties in the sensor measurements
and it is necessary to have a consistent estimate of the uncertainties in the state of the
system.
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A Collaborative Monocular SLAM

Reprinted with permission from IEEE ( c© 2013):

C. Forster, S. Lynen, L. Kneip, and D. Scaramuzza. Collaborative monocular SLAM with
multiple micro aerial vehicles. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), pages 3962–3970, 2013. URL http://dx.doi.org/10.1109/IROS.2013.6696923.
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Appendix A. Collaborative Monocular SLAM

Collaborative Monocular SLAM with
Multiple Micro Aerial Vehicles

Christian Forster, Simon Lynen, Laurent Kneip, Davide Scaramuzza

Abstract — This paper presents a framework for collaborative local-
ization and mapping with multiple Micro Aerial Vehicles (MAVs)
in unknown environments. Each MAV estimates its motion indi-
vidually using an onboard, monocular visual odometry algorithm.
The system of MAVs acts as a distributed preprocessor that streams
only features of selected keyframes and relative-pose estimates to a
centralized ground station. The ground station creates an individual
map for each MAV and merges them together whenever it detects
overlaps. This allows the MAVs to express their position in a com-
mon, global coordinate frame. The key to real-time performance
is the design of data-structures and processes that allow multiple
threads to concurrently read and modify the same map. The pre-
sented framework is tested in both indoor and outdoor environments
with up to three MAVs. To the best of our knowledge, this is the first
work on real-time collaborative monocular SLAM, which has also
been applied to MAVs.

Introduction

Motivation

Micro aerial vehicles will soon play a major role in missions, such as security surveil-
lance, search and rescue, and environment inspection. However, for such operations,
navigating based on GPS information only is not sufficient. Fully autonomous opera-
tion in urban environments and indoor spaces requires micro helicopters to rely on
alternative localization systems. However, weight restriction and battery autonomy
impose great limitations on the choice of the sensors. For small-sized and lightweight
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platforms (less than 40cm and less than 1kg), laser scanners are still too heavy and
consume too much power. Therefore, the only viable solution is to use a combination of
onboard cameras and IMU (Inertial Measurement Unit). Successful demonstrations of
a MAV performing autonomous basic maneuvers, using only a single onboard camera,
IMU, and an onboard Atom computer, have been done in our previous work [Bloesch
et al., 2010, Weiss et al., 2011b]. In this paper, we attempt to go one step forward, and
address the problem of collaborative localization and mapping with multiple MAVs in
unknown environments.

The application to multiple agents allows the use of redundant and parallel mechanisms
to achieve increased robustness and efficiency. Several tasks—such as the workload of
mapping an environment—can be shared among all the agents. As a practical result,
the shared map among the robots allows the computation of the relative configuration
of the agents, which forms a basis for multi-robot path planning and cooperative
behaviors. Despite these advantages, solving the Simultaneous-Localization-And-
Mapping (SLAM) problem with multiple robots generally increases the computational
and inter-robot communication load.

Related Work

Most works in multi-robot SLAM have been done using range sensors (e.g., laser,
sonars, and stereovision) and/or ground mobile robots moving in the same 2D plane
[Fox et al., 2000, Rocha et al., 2005, Howard, 2006, Trawny et al., 2009]. Very little work
has been done using bearing-only sensors (monocular vision) and for unconstrained
(6DoF) motion of the agents (e.g., wearable sensors, hand-held cameras, and flying
robots). This problem—known as multi-camera structure from motion or multi-camera
SLAM—can be approached differently depending on whether the cameras (i.e., the
robots) can “see” each other or not. If the former case, their relative configuration
can be inferred from the relative bearing-angle observations [Martinelli et al., 2005,
Cognetti et al., 2012]. In the latter case, this can be done starting from the common
scene observed by the cameras. The work described in this paper belongs to the second
category.

In [Sola et al., 2008], the authors use a single extended Kalman filter SLAM algorithm
with an extended state vector composed of each camera pose and the observed features.
Specifying the relative configuration at startup, they demonstrate results on two cameras
attached to two bicycles. In [Vidal-Calleja et al., 2011], the authors describe a system
for cooperative mapping using both aerial and ground robots equipped with stereo
cameras. Each robot creates local submaps using an extended Kalman filter and
maintains a global graph of submap positions. Rendezvous between robots, feature
correspondences, and absolute GPS localization measurements, trigger loop closures
which results in exchange of submap positions among the robots. In [Achtelik et al.,
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2011], the authors study the case of two MAVs which, equipped with monocular
cameras and IMU, form a flexible stereo rig. Using feature correspondence in the
overlapping field of view, the relative pose of the two robots can be estimated. In
[Danping and Ping, 2012], the authors process the video streams from multiple hand-
held cameras. The process is synchronized in that the images from all the cameras are
processed all at once at each time step. This makes their system impractical for robotic
applications, where the input of each camera should be computed asynchronously
in order to cope with missing data and delays. Additionally, it is assumed that all
cameras observe the same scene at start. In [McDonald et al., 2011], a system was
presented, where a single robot has to continuously localize within maps created
during previous mapping sessions by the same robot. Although this work was not
applied to multiple robots, it can, however, be seen as an instance of a multi-robot
mapping process where each map was created in previous sessions by the same robot.
Finally, in [Cunningham et al., 2013], a fully decentralized SLAM system is presented
where each robot maintains a consistent augmented local map that combines local and
neighbourhood information. The system has been validated in simulation.

Contributions and Outline

In the endeavor of enabling multi-robot navigation of MAVs with very-low onboard
computing power, our goal is to employ the MAV onboard computer for low-level
tasks—such as feature extraction, relative-motion estimation, and flight control—and
delegate a ground station to higher-level tasks—such as mapping, loop-closure detec-
tion and map merging. The decoupling of motion estimation and mapping is useful in
real-world scenarios, where the robots have to maintain some degree of autonomy in
case of intermittent communication with the ground station.

An overview of the proposed approach is depicted in Figure A.1(a). Each MAV esti-
mates its motion individually by running an onboard visual odometry (VO) algorithm
that is used to both track the robot motion and stabilize its 6DoF pose during flight.
The outputs of the VO—i.e. keyframe features and relative-pose estimates between
keyframes—are streamed to a central ground station where our Collaborative Structure
from Motion (CSfM) system is running. The CSfM system on the ground station cre-
ates an individual map for each MAV and merges them together whenever it detects
overlaps. The ground station processes the data asynchronously, as it arrives, which
accounts for situations where the robots do not start all at the same time or where some
data are missing due to a communication failure. To achieve real-time performance, we
design data-structures and processes that allow multiple threads (one for each MAV)
to concurrently read and modify the same map. Additionally, we devise a solution
to tackle the scale-difference between the onboard-estimated trajectories and those
estimated on the ground station.
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Figure A.1 – (a) The CSfM system—running on the ground station—creates a separate thread
for each MAV. Initially, each thread creates its own map. However, the maps are merged when
the Place Recognizer detects an overlap between the two maps. Both threads then read and
update the same map simultaneously. (b) Mapping pipeline executed inside the frame-handling
threads of the CSfM system.

The remainder of the paper is structured as follows. Section A.2 provides an overview
of the CSfM system. Section A.3 details the general mapping pipeline. Section A.4
explains how overlaps between maps are detected and how they are merged into a
single global map. Section A.5 describes the implementation design for concurrent
map access. Finally, Section A.6 provides the experimental results.

System Overview

Each MAV tracks its own position using a keyframe-based onboard monocular VO
algorithm. We chose to employ the VO presented in our previous work [Kneip et al.,
2011a]. It is boosted in terms of robustness and efficiency through the use of the
relative-rotation prior from the onboard IMU. However, our proposed CSfM system is
modular and, therefore, any alternative keyframe-based VO algorithm (such as [Klein
and Murray, 2007]) could be used.

Figure A.1(a) illustrates how the CSfM system is embedded in the multi-robot mapping
framework. For each MAV, the CSfM system (running on the ground station) creates
a new frame-handler thread that receives directly the keyframe messages from the
corresponding VO. The frame handler creates a new map for its MAV and processes
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the received keyframe messages in parallel and asynchronously to the other frame-
handler threads. A keyframe message only contains the extracted image features (i.e.,
image coordinates and descriptors) along with a relative transformation to the previous
keyframe.

A keyframe is only added to a map when it provides new information. Right after a
frame handler decides to add a keyframe to the map, it passes it on to its own overlap-
detection thread (see Figure A.1(b)). The overlap detectors in turn pass the keyframes
on to a place-recognition module. The place recognizer accumulates the visual information
(i.e., feature descriptors), from all keyframes in every map, and quickly detects whether
a place has been visited before. Meanwhile, the frame handlers triangulate new points
and perform local Bundle Adjustment (BA) in the current keyframe’s neighborhood. If
the overlap detector detects an overlap within the map of the same MAV, a loop-closure
optimization is initiated. Conversely, if the overlap occurs with the map of another
MAV, the affected frame handlers are temporarily suspended to allow merging of the
maps into a single one.

After map merging, the frame handlers operate on the merged map. Specially-designed
data structures and the use of C++ concurrency-control mechanisms allow multiple
frame-handler threads to safely access and update the common map, which is also the
key to real-time performance.

Mapping Pipeline

Figure A.1(b) illustrates the mapping pipeline as implemented in the frame handler.
The following sections detail the individual building blocks.

Keyframe Message

Each MAV tracks its own position (with respect to its own starting point) using a
keyframe-based onboard monocular VO algorithm. When the onboard VO selects a
new keyframe, a message to the ground station is sent containing the extracted features
along with the relative transformation (R̂k−1,k, p̂k−1,k) to the previous keyframe.

Handling the Keyframe Message by the Ground Station

When the ground station receives a keyframe message from a MAV, there are two
possibilities: (i) if this is the first message from that MAV, then the CSfM system
(running on the ground station) creates a new frame-handler thread and triangulates
the received features into map-points as soon as the next message arrives; (ii) if a
frame-handler for that MAV already exists, correspondences between the existing 3D
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map-points and the features in the new keyframe are identified. Additionally, the
frame-handler updates the absolute pose (pk, Rk) of the new keyframe in the map:

pk = pk−1 + Rk−1 p̂k−1,k, (A.1)

Rk = Rk−1 R̂k−1,k . (A.2)

Pose Optimization

The CSfM system optimizes the absolute 6DoF pose of the new keyframe within the
map by minimizing the reprojection error of all map-points visible by that keyframe
using a nonlinear least-squares solver [Kümmerle et al., 2011].1

Scale-Difference Estimation between VO and CSfM

MAV

Groundstation
CSFM

R, t

R, t

Figure A.2 – The VO on the MAV
maintains a map with a limited
number of keyframes (e.g., 5) for
processing-speed reasons. Therefore,
the scale of the onboard VO drifts
faster than on the ground-station. The
relative translation t̂ computed by the
MAV’s onboard VO needs to be cor-
rected with the scale factor λ for the
CSfM map.

Each MAV’s onboard monocular VO produces
motion and structure information only up to an
unknown scale factor. Furthermore, this scale
factor is not constant, but drifts over time. On
the ground-station side, the CSfM system also
exhibits a scale drift as long as no loop closures
occur. These two scale factors are not equal and
diverge at different rates (see Figure A.2). If the
scale difference is not corrected, scale jumps can
occur as it is depicted in Figure A.5 (refer to
Section A.6). A scale jump occurs if the MAV’s
VO’s scale drifts too much with respect to the
CSfM map such that in the reprojection step no
correspondences can be found and thus the pose
cannot be optimized anymore towards the right
position.

To correct this scale difference, we compare the
estimated relative translation p before and after
the pose optimization step:

λ̂k =
||pk−1,k after Optimization||
||p̂k−1,k before Optimization||

. (A.3)

1The reprojection error is the Euclidean distance e between the reprojected point and the corresponding
observed feature in the image plane.

33



Appendix A. Collaborative Monocular SLAM

Hence, we compute the new scale factor λk with the following update rule:

λk = λk−1 + κ · (λ̂k − λk−1), (A.4)

where κ represents the smoothing factor. Empirically, we found that κ = 0.05 is a good
choice.

Using the estimated scale-difference factor λk, the relative position received from the
MAV’s onboard VO is corrected by the corresponding frame-handler before a new
keyframe is used. The position computed by Equation (A.1) is then updated to:

pk = pk−1 + λkRk−1 p̂k−1,k. (A.5)

This step further justifies why the pose of keyframes that are later not inserted in the
map must also be optimized. It allows us to successfully track the robot’s pose with
respect to the map and to estimate the scale difference.

Keyframe Selection

While the use of more map-points improves the accuracy of the map, increasing the
number of keyframes has only minor effects once robustness is achieved [Strasdat et al.,
2010]. Therefore, similar to [Klein and Murray, 2007], new keyframes are only inserted
in the map if the distance to the closest keyframe is large enough.2 Depending on the
trajectory, the CSfM system rejects on average up to 85% of the received keyframes,
which saves processing time.

Selection of Core and Periphery Keyframes

The CSfM system follows the fundamental concept that no temporal ordering of
keyframes is retained. Keyframe neighbourhoods for optimization and triangulation
are selected based only on spatial adjacency. This means that also older keyframes—
regardless of the MAV they originate from—are taken into account for these operations,
leading to a reduction of redundant information inside the map. A set C of four
core keyframes is selected, which shares the largest number of common map-point
observations with the new keyframe. The set of periphery keyframes P is defined by all
keyframes that share at least one common map-point observation with C or with the
new keyframe but which are not in the set C.

2We set the threshold to 15% of the average scene depth.
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Triangulation

New map-points are triangulated when a new keyframe is selected to be inserted in the
map. For every unmatched feature in the new keyframe, we search matching features
along the epipolar lines in the core keyframes. If a matching descriptor is found, the
point is triangulated and projected into the remaining core and periphery keyframes to
increase the number of measurements. The creation of duplicate points is inhibited by
merging points in case a feature is already associated with an existing map-point. The
merging step is essential for obtaining sparse and well constrained maps.

Local Bundle Adjustment

Mouragnon et al. [2006] have shown the feasibility of creating an accurate 3D recon-
struction in real-time using incremental bundle adjustment. Therefore, the CSfM system
optimizes the set of core keyframes C together with the new keyframe and along with
the commonly observed map-points using the g2o framwork [Kümmerle et al., 2011].
The set of periphery keyframes P is added to the optimization window with a fixed
pose. The periphery keyframes are required to fix the scale of the structure and to
ensure that the optimization is optimal with respect to the boundary.

Map Overlap Detection and Processing

A fundamental characteristic of the CSfM system is its ability to detect if a MAV
reenters an environment that has already been visited, either by itself or by another
MAV which results in a loop-closure optimization or a map merging respectively. Such
overlaps are detected based on the keyframe appearance (i.e., feature descriptors) and
subsequently geometrically verified.

Appearance-based Overlap Detection

If a keyframe is accepted for inclusion in the map, a second overlap-detection thread is
started, which calls the place-recognizer module (see Figure A.1(b)). The external place
recognition module is the same for all frame handlers and relies on a bag-of-words [Sivic
and Zisserman, 2003] approach. The exact type of place recognizer in use depends on
the employed local invariant point descriptor. We initally tested OpenSURF features
[Evans, 2009], which allow the use of the OpenFABMAP place recognizer [Glover et al.,
2010]. However, for increased speed, we decided to use BRISK features [Leutenegger
et al., 2011]. Since binary features have special clustering properties, a dedicated
place-recognition module was implemented.3

3The BRISK-based place-recognizer goes beyond the scope of this paper and, therefore, it is not
described here.
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Geometric Verification

Each time the place recognizer returns an overlap-keyframe with similar appearance as
the current keyframe, the overlap detector geometrically verifies the result by applying
the Perspective-Three-Point (P3P) algorithm from our previous work [Kneip et al.,
2011b]. The P3P algorithm derives the camera pose from at least three 3D-to-2D feature
correspondences. These correspondences are established by identifying matching
descriptors between map-points—which the overlap-keyframe observes—and features
in the current keyframe. To remove outliers, we integrated the P3P into a RANSAC
[Fischler and Bolles, 1981] procedure. The output of RANSAC is then the rigid body
transformation between the two keyframes.

Map merging

If the detected overlap occurred between two different maps, the similarity transfor-
mation {R, t, s} returned by the geometric verification step is used to merge the two
maps into one. The factor s accounts for the different scale between the two maps
and can be found by comparing the relative distances between any combination of 3D
map-points which are common between the two maps. All frame handlers working on
either of the two maps are temporarily suspended, and the entire candidate map for
which an overlap was detected is subjected to the determined similarity transformation.
To improve the measurements of points and avoid redundant information in the map,
all map-points from each overlapping map region are reprojected into the keyframes
from the other map and corresponding map-points are merged. A last important detail
consists of applying the scale factor s to the scale difference factor (see Section A.3.4) of
all frame handlers that were operating on the transformed map. This is necessary to
ensure that the received relative position estimates from the VO are correctly scaled
with respect to the map. The frame-handler threads are finally resumed, and now oper-
ate in parallel on the same map. At this stage, it is important to design the algorithm
and data structures such that concurrent data access is possible (see Section A.5).

Note that the CSfM node creates references between two maps only when a loop
closure is detected. However, in practice, the two maps may still contain overlaps in
other regions if the place-recognition or the geometric-verification steps failed to detect
them earlier. However, the CSfM system is still able to detect and incorporate them in
a later stage in case a MAV retraverses the same environment.

Loop closure

The computed similarity transformation parameters {R, t, s} also incorporate the
amount of drift that has been accumulated along the loop.
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The standard solution to optimize both the full map and keyframes after loop closure
is to run global BA. However, this approach is computationally demanding and may
fail completely due to convergence into local minima. Therefore, we chose to split
the optimization into two steps. In the first step, we marginalize out the map-points.
This reduces the map representation to a pose-graph with edges of different strength
between poses. Strasdat et al. [Strasdat et al., 2010] were the first to propose 7-DoF
pose-graph optimization including the scale as a drift parameter, which leads to a
substantial improvement in a monocular-SLAM context. The parametrization of this
pose-graph relaxation is included in the g2o framework [Kümmerle et al., 2011] and
used by the CSfM system. After pose-graph optimization, the map-points are updated
accordingly and global BA is run to further refine both map-points and keyframe poses
simultaneously.

Implementation Design for Concurrent Map Access

KF-List

KF KF KF

MPMP MP MP MP MP MP

Figure A.3 – Data-structure design for
concurrency.

If two or more maps have been merged, mul-
tiple frame-handling threads concurrently read
and modify a single map (as depicted in Figure
A.1(a)). Processing keyframes in parallel on a
multi-core processor is the key to real-time per-
formance of the CSfM system. However, when
multiple things happen at the same time, special
measures need to be taken both on the data-
structure and on the algorithm layout level.

The difficulty of shared memory between multiple
threads comes from the consequences of modifying data. We can ensure the integrity of
the shared data by using the concept of mutual exclusion locks. This concept defines that
if a thread wants to access some data-object, it first needs to acquire the data-object’s
lock, which is only possible if no other thread has previously acquired the lock without
releasing it.

The design of data-structures defines the scope for simultaneous data access. Figure
A.3 illustrates the map data structure of the CSfM system. The map consists of a
list of keyframes (KF-List), whereas each keyframe (KF) holds a list of references to
map-points (MP) that it observes. The map-points in turn also have a list of references
to keyframes which they are observed by. There are only locks on the keyframe list
and on the individual keyframes. If a thread owns the lock of a keyframe, it is allowed
to read all map-points which the keyframe observes. Hence—in order to modify
a map-point—it is necessary to acquire the locks of all keyframes that observe the
map-point.
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This property is used in the mapping pipeline: If a frame-handler thread locks all
core and periphery keyframes {C,P}, it is allowed to modify these keyframes and all
map-points which are observed by at least one of the core-keyframes C. Fortunately,
this is exactly the set of objects which change during local BA and triangulation.

Since no list of map-points exists, all map-points must be accessed via a keyframe.
Knowledge of the lock state of this keyframe automatically inhibits that threads modify
data that are out of their scope. Moreover, this design eliminates the overhead of locking
individual map-points.

The employed locking strategy uses shared and upgradeable locks4 which allows other
threads to simultaneously read the data in the same neighborhood except for the
negligible time when updates are saved in the map. If the MAVs operate in different
parts of the map with non-overlapping core and periphery keyframes, they can even
update the map concurrently.

Experimental Results
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Figure A.4 – Influence of pose optimization and
local BA on the reprojection error in newly re-
ceived keyframes.

Experiments were performed using two
AscTec FireFly MAVs5 equipped with
an IMU, a single downlooking cam-
era, and a Core-2-Duo computer. The
ground-station was a 2.8 GHz i7 laptop.
A video of the experimental results is
available at http://rpg.ifi.uzh.ch.

To evaluate its performance, our CSfM
back-end was tested in both indoor
and outdoor environments. Indoors,
ground truth was obtained from a Vi-
con motion-capture system that pro-
vides absolute position information
with millimeter accuracy at 100 Hz. The
output of the CSfM was evaluated by
comparing the keyframe positions to
the ground truth.6 The indoor environment consisted of a flat surface of approximately
8 by 8 meters. We added additional texture to the surface such that the VO algorithm
has always enough features to track.

4Implemented e.g. in the Boost library: www.boost.org.
5www.asctec.de/Firefly
6Since the scale of the map created by the CSfM system and the coordinate transformation between the

computed and the ground truth trajectories are unknown, we derived the aligning similarity transformation
{R̄, t̄, s̄} using a least-squares procedure.
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(a) Without scale correction. Scale jump is
marked with a blue arrow.

(b) With scale correction.

Figure A.5 – Two maps of a flat surface seen from the side. The points on the bottom represent
the map-points and the triangles on the top the key-frames. In (a), the scale jump of the map
is clearly visible (blue arrow). In (b), the scale-difference estimation was activated and no
scale-jump occurs.

Figure A.4 illustrates the influence of pose optimization (Section A.3.3) and local BA
(Section A.3.8) on the median reprojection error of map-points. The peaks in the initial
reprojection errors (blue dots) originate from the scale difference discussed in Section
A.3.4. As observed, they get canceled after pose optimization and local BA. Moreover,
the peaks in the initial error disappear as soon as the scale difference factor λk has
adapted. Figure A.5 shows the effect of scale difference estimation and correction
that we mentioned in Section A.3.4. If the scale drifts, the system is able to recover
for reprojection errors up to 5 pixels. However, when the drift becomes too large,
the system looses connection to the map and scale jumps occur. This effect does not
arise if the scale is estimated and corrected, as shown in Figure A.5b. The amount of
drift depends on the chosen trajectory and on the distribution of the features in the
keyframes.

Figure A.6(a) shows a large loop trajectory before and after pose-graph optimization.
On this trajectory, the system adopted 110 keyframes over 16.7m. The evolution of
the error over time is reported in Figure A.6(b). The loop closure occurs around 35s
and measurements are only indicated at times when a keyframe was created. The
RMS error of the keyframe positions right before and after loop-closure detection and
optimization was 0.1m and 0.04m, respectively.

Figure A.7a shows two MAVs simultaneously mapping two distinct areas. As soon as
the CSfM system detects an overlap (b), it merges the two maps into a single, global
one. Figure A.7(c) shows comparison with ground truth obtained from a Vicon motion-
capture system. Figure A.7(d) indicates the corresponding error for both trajectories.
The length of the combined trajectory was 30m, the total number of keyframes in the
final map was 154, and the final RMS error 0.06m.

Our CSfM algorithm was also tested on two outdoor datasets from the European project
sFly [Scaramuzza et al., 2014]. The combined trajectory length was approximately
400m (see Figure A.8(e)). Figures A.8(a) to A.8(d) show the mapping of the outdoor
environment. Since both MAVs start at the same location, the two maps are immediately
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merged. Hence, the relative pose of the two MAVs is known from the beginning. Based
on the color of the map-points, which is set to the color of the last MAV that observed
it, one can see that both MAVs successfully localize in parts mapped by the other
MAV (e.g., compare Figures A.8(c) and A.8(d)). The GPS accuracy around the test area
was ranging between 5 and 15 meters because of foliage and surrounding buildings.
Therefore, GPS cannot be used as a reliable ground-truth. Nevertheless, some drift is
still clearly visible between the estimated trajectory and the GPS. This is due to the
absence of loop closures between the trajectories undergone by the two MAVs.

The most common failure case of the system occured when the place-recognition
module missed to detect an overlap. In this case, after merging at a later stage, the
global map contained redundant and, because of drift and map alignment errors,
slightly misaligned map-points. The system was often able to recover from such
situations through loop-closure detection and optimization at a second traversal.

By transmitting only binary features extracted from keyframes, the required bandwidth
can be kept at a considerably low level (∼1 Mbit/s for 200 BRISK [Leutenegger et al.,
2011] features and 10 Hz keyframe rate) compared to streaming entire raw images
(∼86.6 Mbit/s for grayscale 752×480-pixel images and 30 Hz framerate). Note that the
reduced keyframe-rate for our approach is because our VO already preselects a subset
of frames as keyframes.

The average keyframe processing time on the ground-station ranged between 22ms
and 45ms, resulting in a frame rate of up to 45Hz for one MAV. The average com-
putation time per keyframe depends, to a large extend, on both the trajectory and
the environment. A MAV that is constantly exploring new environments produces
more keyframes—and, thus, a higher workload for the CSfM system—than a MAV
that remains in previously-mapped areas. In the latter situation, most keyframes are
dropped since they do not provide new information. On average the CSfM system
selects only 85% of all received keyframes. Regarding the environment, an increased
density of features implicitly leads to an increased number of map-point references and,
thus, higher reprojection, matching and BA computation times. The average number or
reprojected map-points ranged between 200 and 350. Furthermore, the efficiency of
the algorithm also depends on inherent parameters, such as keyframe-selection criteria
and size of the local BA window. The parallelized system pipeline is designed such
that the processing time does not increase with higher numbers of MAVs—given that
for each MAV a processing core is provided. In experiments on the mentioned 4-core
laptop, the processing time with two MAVs did not decrease significantly and with
three MAVs real-time performance could still be achieved. One bottleneck is the place
recognition module which currently is not parallelized and sequentializes the requests.
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Figure A.6 – (a) 3D visualization of a pose-graph before (blue) and after (green) optimization
on a loop trajectory. (b) Evolution of the RMS error of the loop trajectory (a) with and without
explicit loop closure optimization. The loop closure occurs around 35 s.

Conclusion and Future Work

We proposed a system (named CSfM) for collaborative monocular SLAM with multiple
MAVs using a centralized approach. By distributing the workload between the MAVs
and the ground-station, we save processing power, require much less transmission
bandwidth, and keep some autonomy on the MAVs themselves, i.e. the stability of the
MAVs is not threatened by the reliability of the communication link. The CSfM system
is highly modular and can work with different VO and place recognizer modules.
We also presented a method for scale-difference correction, which solves an inherent
problem of the decoupled system. The algorithm employs state-of-the-art techniques
for active loop closure detection, bundle adjustment, and 7-DoF pose-graph relaxation.
Results on real data including a comparison to ground truth demonstrate the high
accuracy that can be achieved with vision-only SLAM. Finally, real-time performance
was achieved with a system that allows multiple threads to concurrently read and
modify the same map.

Future work will leverage on the potential to localize multiple MAVs in the same
environment to allow purely vision-based coordinated flight of multiple robots.
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(a) before map merging (b) after map merging
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Figure A.7 – Experimental results showing maps concurrently created by two MAVs in a real
indoor environment. (a) The maps shortly after an overlap was detected by the place recognizer
(red line). (b) The global map after merging. (c) The map of Figure A.7b (after loop-closure and
map-merging) is compared to the ground-truth. The blue dots mark the keyframe positions,
while the green and purple lines are the ground-truth trajectories of both MAVs. (d) Evolution
of the RMS error of the keyframes.
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(a) (b)

(c) (d)

GPS

(e)

Figure A.8 – (a) The first MAV takes off and starts building its map. (b) The second MAV starts
and immediately localizes in the map of the first MAV. The relative position of the two MAVs
is now known. (c) The MAVs return to the take-off location. (d) Note that the color of the
map-points indicate which MAV has last observed the points. One can observe that the red
MAV observes and localizes with the map-points created by the green MAV. (e) Trajectories of
the two MAVs in the outdoor experiment overlayed with the GPS measurements.
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Appendix B. Semi-Direct Visual Odometry

Semi-Direct Visual Odometry for
Monocular and Multi-Camera Systems

C. Forster, Z. Zhang, M. Gassner, M. Werlberger, D. Scaramuzza1

Abstract — Direct methods for Visual Odometry (VO) have gained
popularity due to their capability to exploit information from all
image gradients in the image. However, low computational speed as
well as missing guarantees for optimality and consistency are limiting
factors of direct methods, where established feature-based methods
instead succeed at. Based on these considerations, we propose a Semi-
direct VO (SVO) that uses direct methods to track and triangulate
pixels that are characterized by high image gradients but relies on
proven feature-based methods for joint optimization of structure
and motion. Together with a robust probabilistic depth estimation
algorithm, this enables us to efficiently track pixels lying on weak
corners and edges in environments with little or high-frequency
texture. We further demonstrate that the algorithm can easily be
extended to multiple cameras, to track edges, to include motion
priors, and to enable the use of very large field of view cameras,
such as fisheye and catadioptric ones. Experimental evaluation on
benchmark datasets shows that the algorithm is significantly faster
than the state of the art while achieving highly competitive accuracy.

Introduction

Estimating the six degrees-of-freedom motion of a camera merely from its stream
of images has been an active field of research for several decades [Ullman, 1979,
Tomasi and Kanade, 1992, Chiuso et al., 2002, Nister et al., 2004, Davison et al., 2007,
Scaramuzza and Fraundorfer, 2011]. Today, state-of-the-art visual SLAM (V-SLAM)
and visual odometry (VO) algorithms run in real-time on smart-phone processors and
approach the accuracy, robustness, and efficiency that is required to enable various

1The authors are with with the Robotics and Perception Group, University of Zurich, Switzerland.
Contact information: {forster, zzhang, gassner, werlberger, sdavide}@ifi.uzh.ch. This research was partially
funded by the Swiss National Foundation (project number 200021-143607, “Swarm of Flying Cameras”),
the National Center of Competence in Research Robotics (NCCR), the UZH Forschungskredit, and the
SNSF-ERC Starting Grant.
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interesting applications. Examples comprise the robotics and automotive industry,
where the ego-motion of a vehicle must be known for autonomous operation. Other
applications are virtual and augmented reality, which requires precise and low latency
pose estimation of mobile devices.

The central requirement for the successful adoption of vision-based methods for such
challenging applications is to obtain highest accuracy and robustness with a limited
computational budget. The most accurate camera motion estimate is obtained through
joint optimization of structure (i.e., landmarks) and motion (i.e., camera poses). For
feature-based methods, this is an established problem that is commonly known as bundle
adjustment [Triggs et al., 2000] and many solvers exist, which address the underlying
non-linear least-squares problem efficiently [Dellaert and Kaess, 2006, Kaess et al., 2012,
Agarwal et al., Kümmerle et al., 2011]. Three aspects are key to obtain highest accuracy
when using sparse feature correspondence and bundle adjustment: (1) long feature
tracks with minimal feature drift, (2) a large number of uniformly distributed features
in the image plane, and (3) reliable association of new features to old landmarks (i.e.,
loop-closures).

The probability that many pixels are tracked reliably, e.g., in scenes with little or
high frequency texture (such as sand [Maimone et al., 2007] or asphalt [Lovegrove
et al., 2011]), is increased when the algorithm is not restricted to use local point
features (e.g., corners or blobs) but may track edges [Klein and Murray, 2008] or
more generally, all pixels with gradients in the image, such as in dense [Newcombe
et al., 2011b] or semi-dense approaches [Engel et al., 2014]. Dense or semi-dense
algorithms that operate directly on pixel-level intensities are also denoted as direct
methods [Irani and Anandan, 1999]. Direct methods minimize the photometric error
between corresponding pixels in contrast to feature-based methods, which minimize
the reprojection error. The great advantage of this approach is that there is no prior step of
data association: this is implicitly given through the geometry of the problem. However,
joint optimization of dense structure and motion in real-time is still an open research
problem, as is the optimal and consistent [Bar-Shalom et al., 2001, Huang et al., 2010]
fusion of direct methods with complementary measurements (e.g., inertial). In terms
of efficiency, previous direct methods are computationally expensive as they require a
semi-dense [Engel et al., 2014] or dense [Newcombe et al., 2011b] reconstruction of the
environment, while the dominant cost of feature-based methods is the extraction of
features and descriptors, which incurs a high constant cost per frame.

In this work, we propose a VO algorithm that combines the advantages of direct and
feature-based methods. We introduce the sparse image alignment algorithm (Sec. B.5),
an efficient direct approach to estimate frame-to-frame motion by minimizing the
photometric error of features lying on intensity corners and edges. The 3D points
corresponding to features are obtained by means of robust recursive Bayesian depth
estimation (Sec. B.6). Once feature correspondence is established, we use bundle
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adjustment for refinement of the structure and the camera poses to achieve highest
accuracy (Sec. B.5.2). Consequently, we name the system semi-direct visual odometry
(SVO).

Our implementation of the proposed approach is exceptionally fast, requiring only
2.5 milliseconds to estimate the pose of a frame on a standard laptop computer, while
achieving comparable accuracy with respect to the state of the art on benchmark
datasets. The improved efficiency is due to three reasons: firstly, SVO extracts features
only for selected keyframes in a parallel thread, hence, decoupled from hard real-time
constraints. Secondly, the proposed direct tracking algorithm removes the necessity for
robust data association. Finally, contrarily to previous direct methods, SVO requires
only a sparse reconstruction of the environment.

This paper extends our previous work [Forster et al., 2014b], which was also released
as open source software.2 The novelty of the present work is the generalization to
wide FoV lenses (Sec. B.7), multi-camera systems (Sec. B.8), the inclusion of motion
priors (Sec. B.9) and the use of edgelet features. Additionally, we present several new
experimental results in Sec. B.11 with comparisons against previous works.

Related Work

Methods that simultaneously recover camera pose and scene structure, can be divided
into two classes:

Feature-based The standard approach to solve this problem is to extract a sparse
set of salient image features (e.g. corners, blobs) in each image; match them in
successive frames using invariant feature descriptors; robustly recover both camera
motion and structure using epipolar geometry; and finally, refine the pose and structure
through reprojection error minimization. The majority of VO and V-SLAM algorithms
[Scaramuzza and Fraundorfer, 2011] follow a variant of this procedure. A reason for the
success of these methods is the availability of robust feature detectors and descriptors
that allow matching images under large illumination and view-point changes. Feature
descriptors can also be used to establish feature correspondences with old landmarks
when closing loops, which increases both the accuracy of the trajectory after bundle
adjustment Triggs et al. [2000], Klein and Murray [2007] and the robustness of the
overall system due to re-localization capabilities. This is also where we draw the
line between VO and V-SLAM: While VO is only about incremental estimation of the
camera pose, V-SLAM algorithms, such as [Mur-Artal et al., 2015a], detect loop-closures
and subsequently refine large parts of the map.

2http://github.com/uzh-rpg/rpg_svo

48

http://github.com/uzh-rpg/rpg_svo


B.2. Related Work

The disadvantage of feature-based approaches is their low speed due to feature ex-
traction and matching at every frame, the necessity for robust estimation techniques
that deal with erroneous correspondences (e.g., RANSAC [Fischler and Bolles, 1981],
M-estimators [MacTavish and Barfoot, 2015]), and the fact that most feature detectors
are optimized for speed rather than precision. Furthermore, relying only on well
localized salient features (e.g., corners), only a small subset of the information in the
image is exploited.

In SVO, features are extracted only for selected keyframes, which reduces the computa-
tion time significantly. Once extracted, a direct method is used to track features from
frame to frame, resulting in outlier-free and sub-pixel precise matches. Apart from well
localized corner features, this allows tracking and mapping any pixel with non-zero
intensity gradient.

Direct methods Direct methods estimate structure and motion directly by minimizing
an error measure that is based on the image’s pixel-level intensities [Irani and Anandan,
1999]. The local intensity gradient magnitude and direction is used in the optimization
compared to feature-based methods that consider only the distance to a feature-location.
Pixel correspondence is given directly by the geometry of the problem, eliminating
the need for robust data association techniques. However, this makes the approach
dependent on a good initialization that must lie in the basin of attraction of the cost
function.

Using a direct approach, the six degree of freedom (DoF) motion of a camera can be
recovered by image-to-model alignment, which is the process of aligning the observed
image to a view synthesized from the estimated 3D map. Early direct VO methods
tracked and mapped few—sometimes manually selected—planar patches [Jin et al.,
2003, Benhimane and Malis, 2006, Silveira et al., 2008, Mei et al., 2008, Pretto et al., 2011].
By estimating the surface normals of the patches [Molton et al., 2004], they could be
tracked over a wide range of viewpoints. In [Comport et al., 2010], the local planarity
assumption was relaxed and direct tracking with respect to arbitrary 3D structures
computed from stereo cameras was proposed. For RGB-D cameras, where a dense
depth-map for each image is given by the sensor, dense image-to-model alignment
was subsequently introduced in [Meilland et al., 2011, Tykkala et al., 2011, Kerl et al.,
2013]. In conjunction with dense depth registration this has become the standard in
camera tracking for RGB-D cameras [Meilland and Comport, 2013, Whelan et al., 2014,
Handa et al., 2014, Whelan et al., 2015]. With DTAM [Newcombe et al., 2011b], a
direct method was introduced that computes a dense depthmap from a single moving
camera in real-time. The camera pose is found through direct whole image alignment
using the depthmap. However, inferring a dense depthmaps from monocular images is
computationally intensive and is typically addressed using GPU parallelism, such as
in the open-source REMODE algorithm [Pizzoli et al., 2014]. Early on it was realized
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that only pixels with an intensity gradient provide information for motion estimation
[Dellaert and Collins, 1999]. In this spirit, a semi-dense approach was proposed in
[Engel et al., 2013] where the depth is only estimated for pixels with high intensity
gradients. In our experimental evaluation in Sec. B.11.1 we show that it is possible to
reduce the number of tracked pixels even more for frame-to-frame motion estimation
without any noticeable loss in robustness or accuracy. Therefore, we propose the sparse
image-to-model alignment algorithm that uses only sparse pixels at corners and along
image intensity gradients.

A disadvantage of direct methods is that joint optimization of dense structure and
motion in real-time is still an open research problem. For this reason, the standard
approach is to estimate the latest camera pose with respect to a previously accumulated
dense map and subsequently, given a set of estimated camera poses, update the dense
map [Newcombe et al., 2011b, Ondruska et al., 2015]. Clearly, this separation of tracking
and mapping only results in optimal accuracy when the output of each stage yields
the optimal estimate. Other algorithms optimize a graph of poses but do not allow a
deformation of the structure once triangulated [Engel et al., 2014]. Contrarily, some
algorithms ignore the camera poses and instead allow non-rigid deformation of the
3D structure [Whelan et al., 2014, 2015]. The obtained results are accurate and visually
impressive, however, a thorough probabilistic treatment is missing when processing
measurements, separating tracking and mapping, or fixating and removing states. To
the best of our knowledge, it is therefore currently not possible to obtain accurate
covariance estimates from dense VO. Hence, the consistent fusion [Bar-Shalom et al.,
2001, Kottas et al., 2012] with complementary sensors (e.g., inertial) is currently not
possible. In the proposed work, we use direct methods only to establish feature
correspondence. Subsequently, bundle adjustment can be used for joint optimization of
structure and motion where it is also possible to include inertial measurements as we
have demonstrated in previous work [Forster et al., 2015a].

System Overview

Figure B.1 provides an overview of the proposed approach. We use two parallel threads
(as in [Klein and Murray, 2007]), one for estimating the camera motion, and a second
one for mapping as the environment is being explored. This separation allows fast
and constant-time tracking in one thread, while the second thread extends the map,
decoupled from hard real-time constraints.

The motion-estimation thread implements the proposed semi-direct approach to mo-
tion estimation. Our approach is divided into three steps: sparse image alignment,
relaxation, and refinement (Fig. B.1). Sparse image alignment estimates frame-to-
frame motion by minimizing the intensity difference of features that correspond to the
projected location of the same 3D points. A subsequent step relaxes the geometric con-
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Figure B.1 – Tracking and mapping pipeline

straint to obtain sub-pixel feature correspondence. This step introduces a reprojection
error, which we finally refine by means of bundle adjustment.

In the mapping thread, a probabilistic depth-filter is initialized for each feature for
which the corresponding 3D point is to be estimated. New depth-filters are initialized
whenever a new keyframe is selected for corner pixels as well as for pixels along
intensity gradient edges. The filters are initialized with a large uncertainty in depth
and undergo a recursive Bayesian update with every subsequent frame. When a depth
filter’s uncertainty becomes small enough, a new 3D point is inserted in the map and
is immediately used for motion estimation.

Notation

The intensity image recorded from a moving camera C at timestep k is denoted with
IC

k : ΩC ⊂ R2 7→ R, where ΩC is the image domain. Any 3D point ρ ∈ R3 maps to the
image coordinates u ∈ R2 through the camera projection model: u = π(ρ). Given the
inverse scene depth ρ > 0 at pixel u ∈ RC

k , the position of a 3D point is obtained using
the back-projection model ρ = π−1

ρ (u). Where we denote with RC
k ⊆ Ω those pixels

for which the depth is known at time k in camera C. The projection models are known
from prior calibration [Furgale et al., 2013].

The position and orientation of the world frame W with respect to the kth camera frame
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Figure B.2 – Changing the relative pose Tk,k−1 between the current and the previous frame
implicitly moves the position of the reprojected points in the new image u′i. Sparse image
alignment seeks to find Tk,k−1 that minimizes the photometric difference between image patches
corresponding to the same 3D point (blue squares). Note, in all figures, the parameters to
optimize are drawn in red and the optimization cost is highlighted in blue.

is described by the rigid body transformation TkW ∈ SE(3) [Ma et al., 2005]. A 3D point
Wρ that is expressed in world coordinates can be transformed to the kth camera frame
using: kρ = TkW Wρ.

Motion Estimation

In this section, we describe the proposed semi-direct approach to motion estimation,
which assumes that the position of some 3D points corresponding to features in
previous frames are known from prior depth estimation.

Sparse Image Alignment

Image to model alignment estimates the incremental camera motion by minimizing the
intensity difference (photometric error) of pixels that observe the same 3D point.

To simplify a later generalization to multiple cameras, we introduce a body frame B that
is rigidly attached to the camera frame C with known extrinsic calibration TCB ∈ SE(3)
(see Fig. B.2). Our goal is to estimate the incremental motion of the body frame
Tkk−1

.
= TBkBk−1 such that the photometric error is minimized:

T?kk−1 = arg min
Tkk−1

∑
u∈R̄C

k−1

1
2
‖rIC

u
(Tkk−1)‖2

ΣI
, (B.1)

where the photometric residual rIC
u

is defined by the intensity difference of pixels in
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subsequent images IC
k and IC

k−1 that observe the same 3D point ρu:

rIC
u
(Tkk−1)

.
= IC

k

(
π(TCBTkk−1 ρu)

)
− IC

k−1

(
π(TCB ρu)

)
. (B.2)

The 3D point ρu (which is expressed in the reference frame Bk−1) can be computed for
pixels with known depth by means of back-projection:

ρu = TBC π−1
ρ (u), ∀ u ∈ RC

k−1, (B.3)

However, the optimization in Eq. (B.1) includes only a subset of those pixels R̄C
k−1 ⊆

RC
k−1, namely those for which the back-projected points are also visible in the image

IC
k :

R̄C
k−1 =

{
u
∣∣∣ u ∈ RC

k−1 ∧ π
(
TCBTkk−1TBC π−1

ρ (u)
)
∈ ΩC

}
.

Image to model alignment has previously been used in the literature to estimate
camera motion. Apart from minor variations in the formulation, the main difference
among the approaches is the source of the depth information as well as the region
RC

k−1 in image IC
k for which the depth is known. As discussed in Section B.2, we

denote methods that know and exploit the depth for all pixels in the reference view as
dense methods [Newcombe et al., 2011b]. Converseley, approaches that only perform
the alignment for pixels with high image gradients are denoted semi-dense [Engel
et al., 2013]. In this paper, we propose a novel sparse image alignment approach that
assumes known depth only for corners and features lying on intensity edges. Fig. B.3
summarizes our notation of dense, semi-dense, and sparse approaches.

To make the sparse approach more robust, we propose to aggregate the photometric
cost in a small patch centered at the feature pixel. Since the depth for neighboring
pixels is unknown, we approximate it with the same depth that was estimated for the
feature.

To summarize, sparse image alignment solves the non-linear least squares problem
in Eq. (B.1) with RC

k−1 corresponding to small patches centered at corner and edgelet
features with known depth. This optimization can be solved efficiently using standard
iterative non-linear least squares algorithms such as Levenberg-Marquardt. More details
on the optimization, including the analytic Jacobians, are provided in the Appendix.

Relaxation and Refinement

Sparse image alignment is an efficient method to estimate the incremental motion
between subsequent frames. However, to minimize drift in the motion estimate, it is
paramount to register a new frame to the oldest frame possible. One approach is to

53



Appendix B. Semi-Direct Visual Odometry

(a) Sparse (b) Semi-Dense (c) Dense

Figure B.3 – An image from the ICL-NUIM dataset (Sec. B.11.2) with pixels used for image-to-
model alignment (marked in green for corners and magenta for edgelets) for sparse, semi-dense,
and dense methods. Dense approaches (c) use every pixel in the image, semi-dense (b) use just
the pixels with high intensity gradient, and the proposed sparse approach (a) uses selected
pixels at corners or along intensity gradient edges.

use an older frame as reference for image alignment [Engel et al., 2014]. However, the
robustness of the alignment cannot be guaranteed as the distance between the frames
in the alignment increases (see experiment in Section B.11.1). We therefore propose to
relax the geometric constraints given by the reprojection of 3D points and to perform
an individual 2D alignment of corresponding feature patches. The alignment of each
patch in the new frame is performed with respect to a reference patch from the frame
where the feature was first extracted; hence, the oldest frame possible, which should
maximally minimize feature drift. However, the 2D alignment generates a reprojection
error that is the difference between the projected 3D point and the aligned feature
position. Therefore, in a final step, we perform bundle adjustment to optimize both the
3D point’s position and the camera poses such that this reprojection error is minimized.

In the following, we detail our approach to feature alignment and bundle adjustment.
Thereby, we take special care of features lying on intensity gradient edges.

2D feature alignment minimizes the intensity difference of a small image patch P that
is centered at the projected feature position u′ in the newest frame k with respect to
a reference patch from the frame r where the feature was first observed (see Fig. B.4).
To improve the accuracy of the alignment, we apply an affine warping A to the
reference patch, which is computed from the estimated relative pose Tkr between the
reference frame and the current frame [Klein and Murray, 2007]. For corner features,
the optimization computes a correction δu? ∈ R2 to the predicted feature position u′

that minimizes the photometric cost:

u′? = u′ + δu?, with u′ = π
(
TCB Tkr TBC π−1

ρ (u)
)

(B.4)

δu? = arg min
δu

∑
∆u∈P

1
2

∥∥∥∥IC
k
(
u′+δu+∆u

)
− IC

r (u + A∆u)
∥∥∥∥2

,
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n

δu

(a) Edge alignment.

δu

(b) Corner alignment.

Figure B.4 – Different alignment strategies for corners and edgelets. The alignment of an edge
feature is restricted to the normal direction n of the edge.

where ∆u is the iterator variable that is used to compute the sum over the patch P . This
alignment is solved using the inverse compositional Lucas-Kanade algorithm [Baker
and Matthews, 2004].

For features lying on intensity gradient edges, 2D feature alignment is problematic
because of the aperture problem — features may drift along the edge. Therefore, we
limit the degrees of freedom in the alignment to the normal direction to the edge. This is
illustrated in Fig. B.4a, where a warped reference feature patch is schematically drawn
at the predicted position in the newest image. For features on edges, we therefore
optimize for a scalar correction δu? ∈ R in the direction of the edge normal n to obtain
the corresponding feature position u′? in the newest frame:

u′? = u′ + δu? · n, with (B.5)

δu?=arg min
δu

∑
∆u∈P

1
2

∥∥∥∥IC
k
(
u′+δu·n+∆u

)
−IC

r (u + A∆u)
∥∥∥∥2

.

This is similar to previous work on VO with edgelets, where feature correspondence
is found by sampling along the normal direction for abrupt intensity changes [Harris
and Stennett, 1990, Drummond and Cipolla, 2002, Comport et al., 2003, Vacchetti et al.,
2004, Reitmayr and Drummond, 2006, Klein and Murray, 2008]. However, in our case,
sparse image alignment provides a very good initialization of the feature position,
which directly allows us to follow the intensity gradient in an optimization.

After feature alignment, we have established feature correspondence with subpixel
accuracy. However, feature alignment violated the epipolar constraints and introduced
a reprojection error δu, which is typically well below 0.5 pixels. Therefore, in the
last step of motion estimation, we refine the camera poses and landmark positions
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X = {TkW, ρi} by minimizing the squared sum of reprojection errors:

X ? = arg min
X ∑

k∈K
∑

i∈LC
k

1
2
‖u′?i − π

(
TCB TkW ρi

)
‖2 (B.6)

+ ∑
k∈K

∑
i∈LE

k

1
2
‖nT

i

(
u′?i − π

(
TCB TkW ρi

))
‖2

whereK is the set of all keyframes in the map, LC
k the set of all landmarks corresponding

to corner features, and LE
k the set of all edge features that were observed in the kth

camera frame. The reprojection error of edge features is projected along the edge
normal because the component along the edge cannot be determined.

The optimization problem in Eq. (B.6) is a standard bundle adjustment problem that
can be solved in real-time using iSAM2 [Kaess et al., 2012]. In [Forster et al., 2015a] we
further show how the objective function can be extended to include inertial measure-
ments.

While optimization over the whole trajectory in Eq. (B.6) results in the most accurate
results (see Sec. B.11.2), we found that for many applications (e.g. for state estimation
of micro aerial vehicles [Forster et al., 2014b, Faessler et al., 2015]) it suffices to only
optimize the latest camera pose and the 3D points separately.

Mapping

In the previous section, we assumed that the depth at sparse feature locations in the
image is known. In this section, we describe how the mapping thread estimates this
depth for newly detected features. Therefore, we assume that the camera poses are
known from the motion estimation thread.

The depth at a single pixel is estimated from multiple observations by means of a
recursive Bayesian depth filter. New depth filters are initialized at intensity corners and
along gradient edges when the number of tracked features falls below some threshold
and, therefore, a keyframe is selected. Every depth filter is associated to a reference
keyframe r, where the initial depth uncertainty is initialized with a large value. For a
set of previous keyframes3 as well as every subsequent frame with known relative pose
{Ik, Tkr}, we search for a patch along the epipolar line that has the highest correlation
(see Fig. B.5). Therefore, we move the reference patch along the epipolar line and
compute the zero mean sum of squared differences. From the pixel with maximum

3In the previous publication of SVO [Forster et al., 2014b] and in the open source implementation we
suggested to update the depth filter only with newer frames k > r, which works well for down-looking
cameras in micro aerial vehicle applications. However, for forward motions, it is beneficial to update
the depth filters also with previous frames k < r, which increases the performance with forward-facing
cameras.
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Tr,k
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ρ̂i

ui u′i

ρ̃ki

ρmini

ρmaxi

Figure B.5 – Probabilistic depth estimate ρ̂i for feature i in the reference frame r. The point at
the true depth projects to similar image regions in both images (blue squares). Thus, the depth
estimate is updated with the triangulated depth ρ̃k

i computed from the point u′i of highest
correlation with the reference patch. The point of highest correlation lies always on the epipolar
line in the new image.

correlation, we triangulate the depth measurement ρ̃k
i , which is used to update the

depth filter. If enough measurements were obtained such that uncertainty in the depth
is below a certain threshold, we initialize a new 3D point at the estimated depth, which
subsequently can be used for motion estimation (see system overview in Fig. B.1). This
approach for depth estimation also works for features on gradient edges. Due to the
aperture problem, we however skip measurements where the edge is parallel to the
epipolar line.

Ideally, we would like to model the depth with a non-parametric distribution to deal
with multiple depth hypotheses (top rows in Fig. B.6). However, this is computationally
too expensive. Therefore, we model the depth filter according to [Vogiatzis and
Hernández, 2011] with a two dimensional distribution: the first dimension is the inverse
depth ρ [Civera et al., 2008], while the second dimension γ is the inlier probability
(see bottom rows in Fig. B.6). Hence, a measurement ρ̃k

i is modeled with a Gaussian
+ Uniform mixture model distribution: an inlier measurement is normally distributed
around the true inverse depth ρi while an outlier measurement arises from a uniform
distribution in the interval [ρmin

i , ρmax
i ]:

p(ρ̃k
i |ρi, γi) = γiN

(
ρ̃k

i

∣∣∣ρi, τ2
i

)
+ (1−γi)U

(
ρ̃k

i

∣∣∣ρmin
i , ρmax

i

)
, (B.7)

where τ2
i the variance of a good measurement that can be computed geometrically by

assuming a disparity variance of one pixel in the image plane [Pizzoli et al., 2014].

Assuming independent observations, the Bayesian estimation for ρ on the basis of the
measurements ρ̃r+1, . . . , ρ̃k is given by the posterior

p(ρ, γ|ρ̃r+1, . . . , ρ̃k) ∝ p(ρ, γ)∏
k

p(ρ̃k|ρ, γ), (B.8)
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(a) After 3 measurements with 70% inlier probability.
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(b) After 30 measurements with 70% inlier probability.

Figure B.6 – Illustration of posterior distributions for depth estimation. The histogram in the
top rows show the measurements affected by outliers. The distribution in the middle rows show
the posterior distribution when modeling the depth with a single variate Gaussian distribution.
The bottom rows show the posterior distribution of the proposed approach that is using the
model from [Vogiatzis and Hernández, 2011]. The distribution is bi-variate and models the
inlier probability (vertical axis) together with the inverse depth (horizontal axis).

with p(ρ, γ) being a prior on the true inverse depth and the ratio of good measurements
supporting it. For incremental computation of the posterior, the authors of [Vogiatzis
and Hernández, 2011] show that (B.8) can be approximated by the product of a Gaussian
distribution for the depth and a Beta distribution for the inlier ratio:

q(ρ, γ|ak, bk, µk, σ2
k ) = Beta(γ|ak, bk)N (ρ|µk, σ2

k ), (B.9)

where ak and bk are the parameters controlling the Beta distribution. The choice
is motivated by the fact that the Beta × Gaussian is the approximating distribution
minimizing the Kullback-Leibler divergence from the true posterior (B.8). Upon the
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Correct match

Epipolar line

Reference patch

Outlier match

Figure B.7 – Illustration of the epipolar search to estimate the depth of the pixel in the center
of the reference patch in the left image. Given the extrinsic and intrinsic calibration of the
two images, the epipolar line that corresponds to the reference pixel is computed. Due to
self-similar texture, erroneous matches along the epipolar line are frequent.

k-th observation, the update takes the form

p(ρ, γ|ρ̃r+1, . . . , ρ̃k) ≈ q(d, γ|ak−1, bk−1, µk−1, σ2
k−1)

· p(ρ̃k|d, γ) · const, (B.10)

and the authors of [Vogiatzis and Hernández, 2011] approximated the true posterior
(B.10) with a Beta × Gaussian distribution by matching the first and second order
moments for d̂ and γ. The updates formulas for ak, bk, µk and σ2

k are thus derived and
we refer to the original work in [Vogiatzis and Hernández, 2011] for the details on the
derivation.

Fig. B.6 shows a small simulation experiment that highlights the advantage of the model
proposed in [Vogiatzis and Hernández, 2011]. The histogram in the top rows show
the measurements that are corrupted by 30% outlier measurements. The distribution
in the middle rows show the posterior distribution when modeling the depth with a
single variate Gaussian distribution as used for instance in [Engel et al., 2013]. Outlier
measurements have a huge influence on the mean of the estimate. The figures in
the bottom rows show the posterior distribution of the proposed approach that is
using the model from [Vogiatzis and Hernández, 2011] with the inlier probability
drawn in the vertical axis. As more measurements are received at the same depth, the
inlier probability increases. In this model, the mean of the estimate is less affected by
outliers while the inlier probability is informative about the confidence of the estimate.
Fig. B.7 shows qualitatively the importance of robust depth estimation in self-similar
environments, where outlier matches are frequent.

In [Pizzoli et al., 2014] we demonstrate how the same depth filter can be used for dense
mapping.
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(a) Perspective (b) Fisheye (c) Catadioptric

Figure B.8 – Different optical distortion models that are supported by SVO.

Large Field of View Cameras

To model large optical distortion, such as fisheye and catadioptric (see Fig. B.8), we use
the camera model proposed in [Scaramuzza et al., 2006], which models the projection
π(·) and unprojection π−1(·) functions with polynomials. Using the Jacobians of
the camera distortion in the sparse image alignment and bundle adjustment step is
sufficient to enable motion estimation for large FoV cameras.

For estimating the depth of new features (c.f., Sec. B.6), we need to sample pixels
along the epipolar line. For distorted images, the epipolar line is curved (see Fig. B.7).
Therefore, we regularly sample the great circle, which is the intersection of the epipolar
plane with the unit sphere centered at the camera pose of interest. The angular
resolution of the sampling corresponds approximately to one pixel in the image
plane. For each sample, we apply the camera projection model π(·) to obtain the
corresponding pixel coordinate on the curved epipolar line.

Multi-Camera Systems

The proposed semi-direct camera motion estimation starts directly with an optimization
of the relative pose Tkk−1. Since in Sec. B.5.1 we already introduced a body frame B
that is rigidly attached to the camera, it is now straightforward to generalize sparse
image alignment to multiple rigidly attached and synchronized cameras. Let us assume
that given a camera rig with M cameras (see Fig. B.9). The extrinsic calibration of the
individual cameras c ∈ C with respect to the body frame TCB is assumed to be known
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TBC2
TBC1

Tkk−1
Body Frame

Figure B.9 – Visual odometry with multiple rigidly attached and synchronized cameras. We
know the relative pose of each camera to the body frame TBCj from extrinsic calibration and the
goal is to estimate the relative motion of the body frame Tkk−1.

from prior extrinsic calibration4. To use multiple cameras, we only need to add an extra
summation in the cost function of Eq. (B.1) to use the information from all images for
sparse image alignment:

T?kk−1 = arg min
Tkk−1

∑
C∈C

∑
u∈R̄C

k−1

1
2
‖rIC

u
(Tkk−1)‖2

ΣI
. (B.11)

The same summation is necessary in the bundle adjustment step to sum the reprojection
errors from all cameras. The remaining steps of feature alignment and mapping are
independent of how many cameras are used. To summarize, the only modification to
enable the use of multiple cameras is to refer the optimizations to a central body frame,
which requires us to include the extrinsic calibration TCB in the Jacobians as shown in
the Appendix.

Motion Priors

In feature-poor environments, during rapid motions, or in case of dynamic obstacles it
can be very helpful to employ a motion prior. A motion prior is an additional term
that is added to the cost function in Eq. (B.11), which penalizes motions that are not in
agreement with the prior estimate. Thereby, “jumps” in the motion estimate due to
unconstrained degrees of freedom or outliers can be suppressed. In a car scenario for
instance, a constant velocity motion model may be assumed as the inertia of the car
prohibits sudden changes from one frame to the next. Other priors may come from
additional sensors such as gyroscopes, which allow us to measure the incremental
rotation between two frames.

Let us assume that we are given a relative translation prior p̃kk−1 (e.g., from a constant
velocity assumption) and a relative rotation prior R̃kk−1 (e.g., from integrating a gyro-

4We use the calibration toolbox Kalibr [Furgale et al., 2013], which is available at https://github.com/
ethz-asl/kalibr
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scope). In this case, we can employ a motion prior by adding additional terms to the
cost of the sparse image alignment step:

T?kk−1 = arg min
Tkk−1

∑
C∈C

∑
u∈R̄C

k−1

1
2
‖rIC

u
(Tkk−1)‖2

ΣI
(B.12)

+
1
2
‖pkk−1 − p̃kk−1‖2

Σp

+
1
2
‖ log(R̃Tkk−1Rkk−1)

∨‖2
ΣR

,

where the covariances Σp, ΣR are set according to the uncertainty of the motion prior
and the variables (pkk−1, Rkk−1)

.
= Tkk−1 are the current estimate of the relative position

and orientation (expressed in body coordinates B). The logarithm map maps a rotation
matrix to its rotation vector (see Eq. (B.18)). Note that the same cost function can be
added to the bundle adjustment step. For further details on solving Eq. (B.12), we refer
the interested reader to the Appendix.

Implementation Details

In this section we provide additional details on various aspects of our implementation.

Initialization

The algorithm is bootstrapped to obtain the pose of the first two keyframes and the
initial map using the 5-point relative pose algorithm from [Nister, 2004].

Sparse Image Alignment

For sparse image alignment, we use a patch size of 4× 4 pixels. In the experimental
section we demonstrate that the sparse approach with such a small patch size achieves
comparable performance to semi-dense and dense methods in terms of robustness
when the inter-frame distance is small, which typically is true for frame-to-frame
motion estimation. In order to cope with large motions, we apply the sparse image
alignment algorithm in a coarse-to-fine scheme. Therefore, the image is halfsampled
to create an image pyramid of five levels. The photometric cost is then optimized at
the coarsest level until convergence, starting from the initial condition Tkk−1 = I4×4.
Subsequently, the optimization is continued at the next finer level to improve the
precision of the result. To save processing time, we stop after convergence on the third
level, at which stage the estimate is accurate enough to initialize feature alignment.
To increase the robustness against dynamic obstacles, occlusions and reflections, we
additionally employ a robust cost function [Kerl et al., 2013, MacTavish and Barfoot,
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2015].

Feature Alignment

For feature alignment we use a patch-size of 8× 8 pixels. Since the reference patch
may be multiple frames old, we employ an affine illumination model to cope with
illumination changes [Jin et al., 2001]. For all experiments we limit the number of
matched features to 180 in order to guarantee a constant cost per frame.

Mapping

In the mapping thread, we divide the image in cells of fixed size (e.g., 32× 32 pixels).
For every keyframe a new depth-filter is initialized at the FAST corner [Rosten et al.,
2010] with highest score in the cell unless there is already a 2D-to-3D correspondence
present. In cells where no corner is found, we detect the pixel with highest gradient
magnitude and initialize an edge feature. This results in evenly distributed features in
the image.

To speed up the depth-estimation we only sample a short range along the epipolar line;
in our case, the range corresponds to twice the standard deviation of the current depth
estimate. We use a 8× 8 pixel patch size for the epipolar search.

Experimental Evaluation

We implemented the proposed VO system in C++ and tested its performance in terms
of accuracy, robustness, and computational efficiency. We first compare the proposed
sparse image alignment algorithm against semi-dense and dense image alignment
algorithms and investigate the influence of the patch size used in the sparse approach.
Finally, in Sec. B.11.2 we compare the full pipeline in different configurations against
the state of the art on nine different dataset sequences.

Image Alignment: From Sparse to Dense

In this section we evaluate the robustness of the proposed sparse image alignment
algorithm (Sec. B.5.1) and compare its performance to semi-dense and dense image
alignment alternatives. Additionally, we investigate the influence of the patch-size that
is used for the sparse approach.

The experiment is based on a synthetic dataset with known camera motion, depth
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(a) Synthetic scene (b) Depth of the scene

(c) Sparse (d) Semi-Dense (e) Dense

Figure B.10 – An image from the Urban Canyon dataset [Zhang et al., 2016] (Sec. B.11.1) with
pixels used for image-to-model alignment (marked in green) for sparse, semi-dense, and dense
methods. Dense approaches use every pixel in the image, semi-dense use just the pixels with
high intensity gradient, and the proposed sparse approach uses selected pixels at corners or
along intensity gradient edges.

and calibration [Zhang et al., 2016].5 The camera performs a forward motion through
an urban canyon as the excerpt of the dataset in Fig. B.10a shows. The dataset
consists of 2500 frames with 0.2 meters distance between frames and a median scene
depth of 12.4 meters. For the experiment, we select a reference image Ir with known
depth (see Fig. B.10b) and estimate the relative pose Trk of 60 subsequent images
k ∈ {r + 1, . . . , r + 60} along the trajectory by means of image to model alignment. For
each image pair {Ir, Ik}, the alignment is repeated 800 times with initial perturbation
that is sampled uniformly within a 2 m range around the true value. We perform the
experiment at 18 reference frames along the trajectory. The alignment is considered
converged when the estimated relative pose is closer than 0.1 meters from the ground-
truth. The goal of this experiment is to study the magnitude of the perturbation from
which image to model alignment is capable to converge as a function of the distance to
the reference image. The performance in this experiment is a measure of robustness:
successful pose estimation from large initial perturbations shows that the algorithm is
capable of dealing with rapid camera motions. Furthermore, large distances between
the reference image Ir and test image Ik simulates the performance at low camera
frame-rates.

For the sparse image alignment algorithm, we extract 100 FAST corners in the reference
image (see Fig. B.10c) and initialize the corresponding 3D points using the known

5The Urban Canyon dataset Zhang et al. [2016] is available at http://rpg.ifi.uzh.ch/fov.html
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Figure B.11 – Convergence probability of the model-based image alignment algorithm as a
function of the distance to the reference image and evaluated for sparse image alignment with
patch sizes ranging from 1× 1 to 5× 5 pixels, semi-dense, and dense image alignment. The
colored region highlights the 68% confidence interval.
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(a) (b) (c) Machine Hall 1 (d) Machine Hall 2

Figure B.12 – Figures (a) and (b) show excerpts of the EuRoC dataset Burri et al. [2015] with
tracked corners marked in green and edgelets marked in magenta. Figures (c) and (d) show the
reconstructed trajectory and pointcloud on the first two trajectories of the dataset.

depth-map from the rendering process. We repeat the experiment with patch-sizes
ranging from 1× 1 pixels to 5× 5 pixels. We evaluate the semi-direct approach (as
proposed in the LSD framework [Engel et al., 2013]) by using pixels along intensity
gradients (see Fig. B.10d). Finally, we perform the experiment using all pixels in the
reference image as proposed in DTAM [Newcombe et al., 2011b].

The results of the experiment are shown in Fig. B.11. Each plot shows a variant of the
image alignment algorithm with the vertical axis indicating the percentage of converged
trials and the horizontal axis the frame index counted from the reference frame. We
can observe that the difference between semi-dense image alignment and dense image
alignment is marginal. This is because pixels that exhibit no intensity gradient are not
informative for the optimization as their Jacobians are zero [Dellaert and Collins, 1999].
We suspect that using all pixels becomes only useful when considering motion blur and
image defocus, which is out of the scope of this evaluation. In terms of sparse image
alignment, we observe a gradual improvement when increasing the patch size to 4× 4
pixels. A further increase of the patch size does not show improved convergence and
will eventually suffer from the approximations adopted by not warping the patches
according to the surface orientation.

Compared to the semi-dense approach, the sparse approaches do not reach the same
convergence radius, particularly in terms of distance to the reference image. For this
reason SVO uses sparse image alignment only to align with respect to the previous
image (i.e., k = r + 1), in contrast to LSD [Engel et al., 2013] which aligns with respect
to the last keyframe.

In terms of computational efficiency, we note that the complexity scales linearly with
the number of pixels used in the optimization. The plots show that we can trade-off
using a high frame rate camera and a sparse approach with a lower frame-rate camera
and a semi-dense approach. The evaluation of this trade-off would ideally incorporate
the power consumption of both the camera and processors, which is out of the scope of
this evaluation.
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Real and Synthetic Experiments

In this section, we compare the proposed algorithm against the state of the art on real
and synthetic datasets. Therefore, we present results of the proposed pipeline on the
EUROC benchmark [Burri et al., 2015], the TUM RGB-D benchmark dataset [Sturm
et al., 2012], the synthetic ICL-NUIM dataset [Handa et al., 2014], and our own dataset
that compares different field of view cameras. A selection of these experiments, among
others (e.g., from the KITTI benchmark), can also be viewed in the video attachment of
this paper.

Euroc Datasets

The EUROC dataset [Burri et al., 2015] consists of stereo images and inertial data that
was recorded using a VI-Sensor [Nikolic et al., 2014] that was mounted on a micro
aerial vehicle and flown inside a machine hall. Extracts from the dataset are shown in
Fig. B.12a and B.12b. The dataset provides a precise ground-truth trajectory that was
obtained using a Leica MS50 laser tracking system. In Table B.1 we present results of
various monocular and stereo configurations of the proposed algorithm on the first two
trajectories of the dataset. The trajectories are 65 and 58 meters long respectively.

We compare our algorithm against the open-source versions of ORB-SLAM [Mur-
Artal et al., 2015a] and LSD-SLAM [Engel et al., 2014] on these datasets with their
default parameter settings. In contrast to SVO, ORB-SLAM and LSD-SLAM detect
loop-closures and subsequently perform a global optimization. Hence, during loop-
closure refinements, the latest camera pose may undergo significant “jumps”. For this
reason, we base the evaluation on the final poses of all keyframes in the trajectory. We
observed that the initial poses of LSD-SLAM are not accurate due to the initialization
procedure and therefore discard the first 350 frames in the evaluation for LSD-SLAM.

To understand the influence of the proposed extensions of SVO, we run the algorithm
in various configurations. “SVO Mono” (only corners) uses only the images that were
recorded with the left camera of the sensor. “SVO Mono + Prior” indicates that we use
measurements from the gyroscope as priors in the image alignment step as we discussed
in Sec. B.9. In the next setting we additionally use edgelet features in combination with
corner features. In these first three settings, we only optimize the latest pose; conversely,
the keyword “Bundle Adjustment” indicates that results were obtained by optimizing
the whole history of keyframes by means of the incremental smoothing algorithm
iSAM2 [Kaess et al., 2012]. Therefore, we insert and optimize every new keyframe
in the iSAM2 graph when a new keyframe is selected. In this setting, we do neither
use motion priors nor edgelets. Since SVO is a visual odometry, it does not not detect
loop-closures and only maintains a small local map of the last keyframes. To provide a
fair comparison with ORB-SLAM and LSD-SLAM, we deactivated their capability to
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Machine Hall 1 Machine Hall 2
Mean Median RMSE [m] Mean Median RMSE [m]

SVO Mono 0.224 0.198 0.269 0.531 0.356 0.652
SVO Mono + Prior 0.199 0.131 0.270 0.345 0.314 0.408
SVO Mono + Prior + Edgelet 0.171 0.149 0.201 0.368 0.318 0.425
SVO Mono + Bundle Adjustment 0.048 0.042 0.057 0.061 0.060 0.072

SVO Stereo 0.096 0.092 0.104 0.064 0.063 0.070
SVO Stereo + Prior 0.071 0.066 0.078 0.067 0.059 0.072
SVO Stereo + Prior + Edgelet 0.072 0.060 0.083 0.072 0.062 0.077
SVO Stereo + Bundle Adjustment 0.039 0.037 0.043 0.046 0.042 0.053

ORB Mono SLAM (No loop closure) 0.105 0.126 0.114 0.175 0.209 0.190
LSD Mono SLAM (No loop closure) 0.111 0.107 0.125 0.388 0.357 0.428

Timing
Mean [ms] St.D. CPU@20 fps

SVO Mono 2.53 0.42 55 ±10 %
SVO Mono + Prior 2.32 0.40 70 ± 8 %
SVO Mono + Prior + Edgelet 2.51 0.52 73 ± 7 %
SVO Mono + Bundle Adjustment 5.25 10.89 72 ±13 %

SVO Stereo 4.70 1.31 90 ± 6 %
SVO Stereo + Prior 3.86 0.86 90 ± 7 %
SVO Stereo + Prior + Edgelet 4.12 1.11 91 ± 7 %
SVO Stereo + Bundle Adjustment 7.61 19.03 96 ±13 %

ORB Mono SLAM (No loop closure) 29.81 5.67 187 ±32 %
LSD Mono SLAM (No loop closure) 23.23 5.87 236 ±37 %

Table B.1 – Absolute translation errors in meters after 6 DoF alignment with the ground-truth
trajectory and timing measurements on laptop computer with Intel Core i7-4810MQ CPU (2.80
GHz) averaged over three runs of the EUROC Machine Hall 01 dataset. Loop closure detection
and optimization was deactived for ORB and LSD SLAM to allow a fair comparison with
SVO. The first and second column report mean and standard devitation of the processing time.
Since all algorithms use multi-threading, the third column reports the average CPU load when
providing new images at a constant rate of 20 Hz.

detect large loop closures via image retrieval. Additionally, we provide results using
both image streams of the stereo camera. Therefore, we apply the approach introduced
in Sec. B.8 to estimate the motion of a multi-camera system.

To obtain a measure of accuracy of the different approaches, we align the final trajec-
tory of keyframes with the ground-truth trajectory using the least-squares approach
proposed in [Umeyama, 1991]. Since scale cannot be recovered using a single camera,
we also rescale the estimated trajectory to best fit with the ground-truth trajectory.
Subsequently, we compute the Euclidean distance between the estimated and ground-
truth keyframe poses and compute the mean, median, and Root Mean Square Error
(RMSE) in meters. We chose the absolute trajectory error measure instead of relative
drift metrics [Sturm et al., 2012] because the final trajectory in ORB-SLAM consists only
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Thread Intel i7 [ms] Jetson TX1 [ms]

Sparse image alignment 1 0.66 2.54
Feature alignment 1 1.04 1.40
Optimize pose & landmarks 1 0.42 0.88
Extract features 2 1.64 5.48
Update depth filters 2 1.80 2.97

Table B.2 – Mean time consumption in milliseconds by individual components of SVO Mono
on the EUROC Machine Hall 1 dataset. We report timing results on a laptop with Intel Core i7
(2.80 GHz) processor and on the NVIDIA Jetson TX1 ARM processor.

of a sparse set of keyframes, which makes drift measures on relatively short trajectories
less expressive. The reported results are averaged over three runs.

The results show that using a stereo camera in general results in much higher accuracy.
Apart from the additional visual measurements, the main reason for the improved
results is that the stereo system does not drift in scale and inter camera triangulations
allow to quickly initialize new 3D landmarks in case of on-spot rotations. Notice that
SVO with bundle adjustment is twice as accurate as ORB and LSD SLAM.

However, the power of the less accurate configurations of SVO becomes obvious when
analyzing the timing and processor usage of the approaches, which are reported in
the right columns of Table B.1. In the table, we report the mean time to process a
single frame in milliseconds and the standard deviation over all measurements. Since
all algorithms make use of multi-threading and the time to process a single frame
may therefore be misleading, we additionally report the CPU usage (continuously
sampled during execution) when providing new images at a constant rate of 20 Hz to
the algorithm. All measurements are averaged over 3 runs of the first EUROC dataset
and computed on the same laptop computer (Intel Core i7-2760QM CPU). In Table
E.1, we further report the average time consumption of individual components of SVO
on the laptop computer and an NVIDIA TX1 ARM processor, which is popular in
mobile robotics applications. The results show that the SVO approach is up to ten
times faster than ORB-SLAM and LSD-SLAM and requires only a fourth of the CPU
usage. The reason for this significant difference is that SVO does not extract features
and descriptors in every frame, as in ORB-SLAM, but does so only for keyframes in
the concurrent mapping thread. Additionally, ORB-SLAM—being a SLAM approach—
spends most of the processing time in finding matches to the map (see Table I in
[Mur-Artal et al., 2015b]), which in theory results in a pose-estimate without drift in an
already mapped area. Contrarily, in the first three configurations of SVO, we estimate
only the pose of the latest camera frame with respect to the local map. Compared to
LSD-SLAM, SVO is faster because it operates on significantly less numbers of pixels,
hence, also does not result in a semi-dense reconstruction of the environment. This,
however, could be achieved in a parallel process as we have shown in [Pizzoli et al.,
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fr2_desk fr2_xyz
RMSE [cm] RMSE [cm]

SVO Mono (with edgelets) 9.7 1.1
SVO Mono + Bundle Adjustment 6.7 0.8

LSD-SLAM [Engel et al., 2014]© 4.5 1.5
ORB-SLAM [Mur-Artal et al., 2015a]© 0.9 0.3
PTAM [Klein and Murray, 2007] × / × 0.2 / 24.3
Semi-Dense VO [Engel et al., 2013] 13.5 3.8

Direct RGB-D VO [Kerl et al., 2013] F 1.8 1.2
Feature-based RGB-D SLAM [Endres et al., 2012] F© 9.5 2.6

Table B.3 – Results on the TUM RGB-D benchmark dataset [Sturm et al., 2012]. Results for
[Engel et al., 2014, 2013, Kerl et al., 2013, Endres et al., 2012] were obtained from [Engel et al.,
2014] and for PTAM we report two results that were published in [Mur-Artal et al., 2015a]
and [Engel et al., 2013] respectively. Algorithms marked with F use a depth-sensor, and ©
indicates loop-closure detection. The symbol × indicates that tracking the whole trajectory did
not succeed.

2014, Faessler et al., 2015, Forster et al., 2015c]. We further remark that the bundle
adjustment version has a significantly higher standard deviation in the timing as we
update iSAM2 at every keyframe, which takes approximately 10 milliseconds longer
than processing a regular frame. Using a motion prior further helps to improve the
efficiency as the sparse-image-alignment optimization can be initialized closer to the
solution, and therefore needs less iterations to converge.

An edgelet provides only a one-dimensional constraint in the image domain, while a
corner provides a two-dimensional constraint. Therefore, whenever sufficient corners
can be detected, the SVO algorithm prioritizes the corners. Since the environment in the
EUROC dataset is well textured and provides many corners, the use of edgelets does
not improve the accuracy. However, the edgelets bring a benefit in terms of robustness
when the texture is such that no corners are present.

TUM Datasets

A common dataset to evaluate visual odometry algorithms is the TUM Munich RGB-D
benchmark [Sturm et al., 2012]. The dataset was recorded with a Microsoft Kinect
RGB-D camera, which provides images of worse quality (e.g. rolling shutter, motion
blur) than the VI-Sensor EUROC dataset. Fig. B.13 shows excerpts from the “fr2_desk”
and “fr2_xyz” datasets which have a trajectory length of 18.8 m and 7 m respectively.
Groundtruth is provided by a motion capture system. Table B.3 shows the results of
the proposed algorithm (averaged over three runs) and comparisons against related
works. The resulting trajectory and the recovered landmarks are shown in Fig. B.14.
The results from related works were obtained from the evaluation in [Mur-Artal et al.,
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(a) fr2 desk (b) fr2 xyz

Figure B.13 – Impressions from the TUM RGB-D benchmark dataset Sturm et al. [2012] with
tracked corners in green and edgelets in magenta.

(a) fr2_desk (side) (b) fr2_desk (top)

Figure B.14 – Estimated trajectory and pointcloud of the TUM “fr2_desk” dataset.

2015a] and [Engel et al., 2014]. We argue that the better performance of ORB-SLAM
and LSD-SLAM is due to the capability to detect loop-closures.

ICL-NUIM Datasets

The ICL-NUIM dataset [Handa et al., 2014] is a synthetic dataset that aims to benchmark
RGB-D, visual odometry and SLAM algorithms. The dataset consists of four trajectories
of length 6.4 m, 1.9 m, 7.3 m, and 11.1 m. The synthesized images are corrupted by
noise to simulate real camera images. Ground-truth and calibration are provided by
the dataset. Most reported results on this dataset use the synthetsized measurements
from the depth sensor together with the rendered images. Indeed, the datsets are very
challenging for purely vision-based odometry due to difficult texture and frequent
on-spot rotations as can be seen in the excerpts from the dataset in Fig. B.15.
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(a) (b)

Figure B.15 – Impressions from the synthetic ICL-NUIM dataset Handa et al. [2014] with
tracked corners marked in green and edgelets in magenta.

lr_kt0 lr_kt1 lr_kt2 lr_kt3
RMSE RMSE RMSE RMSE

SVO Mono (with edgelets) 0.02 0.07 0.1 0.07

LSD SLAM × × × ×
ORB SLAM [Mur-Artal et al., 2015a]© × × 0.03 0.12

DVO [Kerl et al., 2013] F 0.29 0.12 0.47 0.54
FOVIS [Huang et al., 2011a] F 2.05 1.87 1.49 1.47
ICP [Newcombe et al., 2011a] F 0.07 0.005 0.01 0.36
ICP+RGB-D [Whelan et al., 2013] F 0.39 0.021 0.12 0.86

Table B.4 – Results on the ICL-NUIM Dataset [Handa et al., 2014]. Algorithms marked with
F use a depth-sensor, and © indicates loop-closure detection. The symbol × indicates that
tracking the whole trajectory did not succeed.

Table B.4 reports the results of the proposed algorithm (averaged over three runs) and
the results from other algorithms on the “living room” sequence. Similar to the previous
datasets, we report the root mean square error after rotation, translation and scale
alignment with the ground-truth trajectory. Fig. B.16 shows the reconstructed maps
and recovered trajectories. The maps are very noisy due to the fine grained texture of
the scene. We also run ORB-SLAM and LSD-SLAM on the dataset. ORB-SLAM fails to
initialize on the second sequence and we did not manage to obtain any results from
LSD-SLAM on all datasets. The reason for the failures is lack of texture for initialization
and frequent on-spot rotations. For SVO, this also required us to set a particularly low
FAST corner detection threshold on this dataset (to 5 instead of 20). A lower threshold
results in detection of many low-quality features. However, features are only used
in SVO once their corresponding scene depth is sucessfully estimated by means of
the robust depth filter described in Sec. B.6. Hence, the process of depth estimation
helps to identify the stable features with low score that can be reliably used for motion
estimation.
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(a) Living Room 0 (b) Living Room 1

(c) Living Room 2 (d) Living Room 3

Figure B.16 – Results on the ICL-NUIM Handa et al. [2014] noisy synthetic living room dataset.

In this dataset, we were not able to refine the results of SVO with bundle adjustment.
The reason is that the iSAM2 backend is based on Gauss Newton which is very sensitive
to underconstrained variables that render the linearized problem indeterminant. The
frequent on-spot rotations and very low parallax angle triangulations result in many
underconstrained variables. Using an optimizer that is based on Levenberg Marquardt
or adding additional inertial measurements [Forster et al., 2015a] would help in such
cases.

For comparison, Table B.4 also shows the results reported in [Handa et al., 2014] of
algorithms that also use the depth measurements.

73



Appendix B. Semi-Direct Visual Odometry

(a) Perspective. (b) Fisheye.

Figure B.17 – SVO tracking with (a) perspective and (b) fisheye camera lens.

Circle Dataset

In the last experiment, we want to demonstrate the usefulness of wide field of view
lenses for VO. We recorded the dataset with a micro aerial vehicle that we flew in
a motion capture room and commanded it to fly a perfect circle with downfacing
camera. Subsequently, we flew the exact same trajectory again with a wide fisheye
camera. Excerpts from the dataset are shown in Fig. B.17. We run SVO (without bundle
adjustment) on both datasets and show the resulting trajectories in Fig. B.18. To run
SVO on the fisheye images, we use the modifications described in Sec. B.7. While the
recovered trajectory from the perspective camera slowly drifts over time, the result
on the fisheye camera perfectly overlaps with the groundtruth trajectory. We also
run ORB-SLAM and LSD-SLAM on the trajectory with the perspective images. The
result of ORB-SLAM is as close to the ground-truth trajectory as the SVO fisheye result.
However, if we deactivate loop-closure detection (shown result) the trajectory drifts
more than SVO. We were not able to run LSD-SLAM and ORB-SLAM on the fisheye
images as the open source implementations do not support very large FoV cameras.
Due to the difficult high-frequency texture of the floor, we were not able to initialize
LSD-SLAM on this dataset. A more in-depth evaluation of the benefit of large FoV
cameras for SVO is provided in Zhang et al. [2016].

Discussion

In this section we discuss the proposed SVO algorithm in terms of efficiency, accuracy,
and robustness.
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Figure B.18 – Comparison of perspective and fisheye lense on the same circular trajectory that
was recorded with a micro aerial vehicle in a motion capture room. The ORB-SLAM result
was obtained with the perspective camera images and loop-closure was deactivated for a fair
comparison with SVO. ORB-SLAM with a perspective camera and with loop-closure activated
performs as good as SVO with a fisheye camera.

Efficiency

Feature-based algorithms incur a constant cost of feature and descriptor extraction per
frame. For example, ORB-SLAM requires 11 milliseconds per frame for ORB feature
extraction only [Mur-Artal et al., 2015a]. This constant cost per frame is a bottleneck
for feature-based VO algorithms. On the contrary, SVO does not have this constant
cost per frame and benefits greatly from the use of high frame-rate cameras. SVO
extracts features only for selected keyframes in a parallel thread, thus, decoupled
from hard real-time constraints. The proposed tracking algorithm, on the other hand,
benefits from high frame-rate cameras: the sparse image alignment step is automatically
initialized closer to the solution and, thus, converges faster. Therefore, increasing the
camera frame-rate actually reduces the computational cost per frame in SVO. The
same principle applies to LSD-SLAM. However, LSD-SLAM tracks significantly more
pixels than SVO and is, therefore, up to an order of magnitude slower. To summarize,
on a laptop computer with an Intel i7 2.8 GHz CPU processor ORB-SLAM and LSD-
SLAM require approximately 30 and 23 milliseconds respectively per frame while SVO
requires only 2.5 milliseconds (see Table B.1).

Accuracy

SVO computes feature correspondence with sub-pixel accuracy using direct feature
alignment. Subsequently, we optimize both structure and motion to minimize the
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Figure B.19 – Successful tracking in scenes of high-frequency texture.

reprojection errors (see Sec. B.5.2). We use SVO in two settings: if highest accuracy is
not necessary, such as for motion estimation of micro aerial vehicles [Faessler et al.,
2015], we only perform the refinement step (Sec. B.5.2) for the latest camera pose,
which results in the highest frame-rates (i.e., 2.5 ms). If highest accuracy is required,
we use iSAM2 [Kaess et al., 2012] to jointly optimize structure and motion of the
whole trajectory. iSAM2 is an incremental smoothing algorithm, which leverages the
expressiveness of factor graphs [Dellaert and Kaess, 2006] to maintain sparsity and
to identify and update only the typically small subset of variables affected by a new
measurement. In an odometry setting, this allows iSAM2 to achieve the same accuracy
as batch estimation of the whole trajectory, while preserving real-time capability.
Bundle adjustment with iSAM2 is consistent [Forster et al., 2015a], which means that
the estimated covariance of the estimate matches the estimation errors (e.g., are not
over-confident). Consistency is a prerequisite for optimal fusion with additional sensors
[Bar-Shalom et al., 2001]. In [Forster et al., 2015a], we therefore show how SVO can
be fused with inertial measurements to achieve a drift that is approximately 0.1% of
the traveled distance. LSD-SLAM, on the other hand, only optimizes a graph of poses
and leaves the structure fixed once computed (up to a scale). The optimization does
not capture correlations between the semi-dense depth estimates and the camera pose
estimates. This separation of depth estimation and pose optimization is only optimal if
each step yields the optimal solution.

Robustness

SVO is most robust when a high frame-rate camera is used (e.g., between 40 and 80
frames per second). This increases the resilience to fast motions as it is demonstrated
in the video attachment. A fast camera, together with the proposed robust depth
estimation, allows us to track the camera in environments with repetitive and high
frequency texture (e.g., grass or asphalt as shown in Fig. B.19). The advantage of
the proposed probabilistic depth estimation method over the standard approach of
triangulating points from two views only is that we observe far fewer outliers as every
depth filter undergoes many measurements until convergence. Furthermore, erroneous
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measurements are explicitly modeled, which allows the depth to converge in highly
self-similar environments.

A further advantage of SVO is that the algorithm starts directly with an optimization.
Data association in sparse image alignment is directly given by geometry of the problem
and therefore, no RANSAC [Fischler and Bolles, 1981] is required as it is typical in
feature-based approaches. Starting directly with an optimization also simplifies greatly
the use of multi-camera systems, which greatly improves resilience to on-spot rotations
as the field of view of the system is enlarged and depth can be triangulated from
inter-camera-rig measurements.

Finally, the use of gradient edge features (i.e., edgelets) increases the robustness in areas
where only few corner features are found. Our simulation experiments have shown
that the proposed sparse image alignment approach achieves comparable performance
as semi-dense and dense alignment in terms of robustness of frame-to-frame motion
estimation.

Conclusion

In this paper, we proposed the semi-direct VO pipeline “SVO” that is significantly faster
than the current state-of-the-art VO algorithms while achieving highly competitive
accuracy. The gain in speed is due to the fact that features are only extracted for selected
keyframes in a parallel thread and feature matches are established very fast and robustly
with the novel sparse image alignment algorithm. Sparse image alignment tracks a set
of features jointly under epipolar constrains and can be used instead of KLT-tracking
[Lucas and Kanade, 1981] when the scene depth at the feature positions is known. We
further propose to estimate the scene depth using a robust filter that explicitly models
outlier measurements. Robust depth estimation and direct tracking allows us to track
very weak corner features and edgelets. A further benefit of SVO is that it directly starts
with an optimization, which allows us to easily integrate measurements from multiple
cameras as well as motion priors. The formulation further allows using large FoV
cameras with fisheye and catadioptric lenses. The SVO algorithm has further proven
successful in real-world applications such as vision-based flight of quadrotors [Faessler
et al., 2015] or 3D scanning applications with smartphones. Acknowledgments The
authors gratefully acknowledge Henri Rebecq for creating the “Urban Canyon” datasets
that can be accessed here: http://rpg.ifi.uzh.ch/fov.html

Appendix

In this section, we derive the analytic solution to the multi-camera sparse-image-
alignment problem with motion prior.
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Given a rig of M calibrated cameras c ∈ C with known extrinsic calibration TCB, the goal
is to estimate the incremental body motion TBB−1 by minimizing the intensity residual
rIC

i
of corresponding pixels in subsequent images. Corresponding pixels are found

by means of projecting a known point on the scene surface ρi
.
= B−1ρi (prefix B− 1

denotes that the point is expressed in the previous frame of reference) into images
of camera C that were recorded at poses k and k− 1, which are denoted IC

k and IC
k−1

respectively. To improve the convergence properties of the optimization (see Sec. B.11.1),
we accumulate the intensity residual errors in small patches P centered at the pixels
where the 3d points project. Therefore, we use the iterator variable ∆u to sum the
intensities over a small patch P . We further assume that a prior of the incremental
body motion T̃kk−1

.
= (R̃, p̃) is given. The goal is to find the incremental camera rotation

and translation Tkk−1
.
= (R, p) that minimizes the sum of squared errors:

(R?, p?) = arg min
(R,p)

C(R, p), with (B.13)

C(R, p) = ∑
C∈C

N

∑
i=1

∑
∆u∈P

1
2
‖rIC

i,∆u
‖2

ΣI
+

1
2
‖rR‖2

ΣR
+

1
2
‖rp‖2

Σp
,

where N is the number of visible 3D points. We have furder defined the image intensity
and prior residuals as:

rIC
i,∆u

.
= IC

k

(
π(TCB(Rρi + p)) + ∆u

)
− IC

k−1

(
π(TCB ρi) + ∆u

)
rR

.
= log(R̃TR)∨

rp
.
= p− p̃ (B.14)

For readability, we write the cost function in matrix form

C(R, p) = r(R, p)TΣ−1r(R, p), (B.15)

where Σ is a block-diagonal matrix composed of the measurement covariances. Since
the residuals are non-linear in (R, p), we solve the optimization problem in an iterative
Gauss-Newton procedure [Barfoot, 2015]. Therefore, we substitute the following
perturbations in the cost function:

R ← R exp(δφ∧), p ← p + Rδp, (B.16)

where the hat operator (.)∧ forms a 3× 3 skew-symmetric matrix from a vector in R3.

As it is common practice for optimizations involving rotations [Forster et al., 2015a,
Barfoot, 2015], we use the exponential map exp(·) to perturb the rotation in the tangent
space of SO(3) which avoids singularities and provides a minimal parametrization
of the rotation increment. The exponential map (at the identity) exp : so(3) → SO(3)
associates a 3× 3 skew-symmetric matrix to a rotation and coincides with the standard
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matrix exponential (Rodrigues’ formula):

exp(φ∧) = I +
sin(‖φ‖)
‖φ‖ φ∧ +

1− cos(‖φ‖)
‖φ‖2

(
φ∧
)2 . (B.17)

The inverse relation is the logarithm map (at the identity), which associates R ∈ SO(3) to
a skew symmetric matrix:

log(R) =
ϕ · (R− RT)

2 sin(ϕ)
with ϕ = cos−1

(
tr (R)− 1

2

)
. (B.18)

Note that log(R)∨ = aϕ, where a and ϕ are the rotation axis and the rotation angle of
R, respectively.

Substituting the perturbations makes the residual errors a function defined on a vector
space. This allows us to linearize the quadratic cost at the current estimate, form the
normal equations, and solve them for the optimal perturbations:

JTΣ−1J [δφT δpT]T = −JTΣ−1r(R, p), (B.19)

where we introduced the variable J, which stacks all Jacobian matrices from the
linearization. The solution is subsequently used to update our estimate in (R, p)
according to (B.16). This procedure is repeated until the norm of the update vectors is
sufficiently small, which indicates convergence.

In the following, we show how to linearize the residuals to obtain the Jacobians.
Therefore, we substitute the perturbations in the residuals and expand:

rR(R exp(δφ∧)) (B.20)

= log(R̃TR exp(δφ∧))∨
(a)' rR(R) + J−1

r (log(R̃TR)∨)δφ

rp(p + Rδp) (B.21)

= (p + Rδp)− p̃ = rp(p) + Rδp
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rIC
i
(R exp(δφ∧)) (B.22)
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In step (a), we have used a first-order expansion of the matrix logarithm:

log
(

exp(φ∧) exp(δφ∧)
)∨
≈ φ + J−1

r (φ)δφ, (B.24)

which holds for small values of δφ. The term J−1
r is the inverse of the right Jacobian of

SO(3) [Barfoot, 2015, Chirikjian, 2012]:

J−1
r (φ) = I +

1
2

φ∧ +
(

1
‖φ‖2 +

1 + cos(‖φ‖)
2‖φ‖ sin(‖φ‖)

)
(φ∧)2.

In step (b), we invert the perturbation and apply it to the reference frame. This trick
stems from the inverse compositional [Baker and Matthews, 2004] formulation, which
allows us to keep the term containing the perturbation constant such that the Jacobian
of the intensity residual remains unchanged over all iterations, greatly improving
compuational efficiency. In (c), we first used that exp(δφ∧)−1 = exp(−δφ∧) and
subsequently used the first-order approximation of the exponential map:

exp(δφ) ' I + δφ∧. (B.25)

For step (d), we used a property of skew symmetric matrices

δφ∧ρ = −ρ∧δφ. (B.26)

Finally, in step (e), we perform a Taylor expansion around the perturbation. The term
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∂IC
k−1(u)
∂u denotes the image derivative at pixel u and ∂π(ρ)

∂ρ is the derivative of the camera
projection function, which for standard pinhole projection with focal length ( fx, fy) and
camera center (cx, cy) takes the form

∂π(ρ)

∂ρ
=

[
fx

x
z 0 − cx

z2

0 fy
y
z − cy

z2

]
with ρ = [x, y, z]T. (B.27)

To summarize, the Jacobians of the residuals are:

∂rR
∂δφ

= J−1
r (Log(R̃TR)) (B.28)
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On-Manifold Preintegration for Real-Time
Visual-Inertial Odometry

Christian Forster, Luca Carlone, Frank Dellaert, Davide Scaramuzza

Abstract — Current approaches for visual-inertial odometry (VIO)
are able to attain highly accurate state estimation via nonlinear op-
timization. However, real-time optimization quickly becomes in-
feasible as the trajectory grows over time; this problem is further
emphasized by the fact that inertial measurements come at high
rate, hence leading to fast growth of the number of variables in the
optimization. In this paper, we address this issue by preintegrat-
ing inertial measurements between selected keyframes into single
relative motion constraints. Our first contribution is a preintegration
theory that properly addresses the manifold structure of the rotation
group. We formally discuss the generative measurement model as
well as the nature of the rotation noise and derive the expression
for the maximum a posteriori state estimator. Our theoretical devel-
opment enables the computation of all necessary Jacobians for the
optimization and a-posteriori bias correction in analytic form. The
second contribution is to show that the preintegrated IMU model
can be seamlessly integrated into a visual-inertial pipeline under the
unifying framework of factor graphs. This enables the application
of incremental-smoothing algorithms and the use of a structureless
model for visual measurements, which avoids optimizing over the
3D points, further accelerating the computation. We perform an
extensive evaluation of our monocular VINpipeline on real and simu-
lated datasets. The results confirm that our modelling effort leads to
accurate state estimation in real-time, outperforming state-of-the-art
approaches.

84



C.1. Introduction

Introduction

The use of cameras and inertial sensors for three-dimensional structure and motion
estimation has received considerable attention from the robotics community. Both
sensor types are cheap, ubiquitous, and complementary. A single moving camera is an
exteroceptive sensor that allows us to measure appearance and geometry of a three-
dimensional scene, up to an unknown metric scale; an inertial measurement unit (IMU)
is a proprioceptive sensor that renders metric scale of monocular vision and gravity
observable [Martinelli, 2012] and provides robust and accurate inter-frame motion
estimates. Applications of VINrange from autonomous navigation in GPS-denied
environments, to 3D reconstruction, and augmented reality.

The existing literature on VIO imposes a trade-off between accuracy and computational
efficiency (a detailed review is given in Section C.2). On the one hand, filtering
approaches enable fast inference, but their accuracy is deteriorated by the accumulation
of linearization errors. On the other hand, full smoothing approaches, based on
nonlinear optimization, are accurate, but computationally demanding. Fixed-lag
smoothing offers a compromise between accuracy for efficiency; however, it is not
clear how to set the length of the estimation window so to guarantee a given level of
performance.

In this work we show that it is possible to overcome this trade-off. We design a
VINsystem that enables fast incremental smoothing and computes the optimal maximum
a posteriori (MAP) estimate in real time. An overview of our approach is given in
Section C.4.

The first step towards this goal is the development of a novel preintegration theory.
The use of preintegrated IMU measurements was first proposed in [Lupton and Sukkarieh,
2012] and consists of combining many inertial measurements between two keyframes
into a single relative motion constraint. We build upon this work and present a
preintegration theory that properly addresses the manifold structure of the rotation
group SO(3). Our preintegration theory is presented in Sections C.5-C.6. Compared
with [Lupton and Sukkarieh, 2012], our theory offers a more formal treatment of the
rotation noise, and avoids singularities in the representation of rotations. Furthermore,
we are able to derive all necessary Jacobians in analytic form: specifically, we report
the analytic Jacobians of the residuals, the noise propagation, and the a-posteriori bias
correction in the appendix of this paper.

Our second contribution is to frame the IMU preintegration theory into a factor
graph model. This enables the application of incremental smoothing algorithms, as
iSAM2 [Kaess et al., 2012], which avoid the accumulation of linearization errors and
offer an elegant way to trade-off accuracy with efficiency. Inspired by [Carlone et al.,
2014, Mourikis and Roumeliotis, 2007], we also adopt a structureless model for visual
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measurements, which allows eliminating a large number of variables (i.e., all 3D points)
during incremental smoothing, further accelerating the computation (Section C.7). In
contrast to [Mourikis and Roumeliotis, 2007], we use the structureless model in an
incremental smoothing framework. This has two main advantages: we do not need
to delay the processing of visual measurements, and we can relinearize the visual
measurements multiple times.

In order to demonstrate the effectiveness of our model, we integrated the proposed
IMU preintegration in a state-of-the-art VINpipeline and tested it on real and simu-
lated datasets (Sections C.8). Our theoretical development leads to tangible practical
advantages: an implementation of the approach proposed in this paper performs
full-smoothing at a rate of 100 Hz and achieves superior accuracy with respect to
competitive state-of-the-art filtering and optimization approaches.

Besides the technical contribution, the paper also provides a tutorial contribution for
practitioners. In Section C.3 and across the paper, we provide a short but concise
summary of uncertainty representation on manifolds and exemplary derivations for
uncertainty propagation and Jacobian computation. The complete derivation of all
equations and Jacobians – necessary to implement our model – are given in the
appendix.

This paper is an extension of our previous work [Forster et al., 2015b] with additional
experiments, an in-depth discussion of related work, and comprehensive technical
derivations. The results of the new experiments highlight the accuracy of bias estima-
tion, demonstrate the consistency of our approach, and provide comparisons against
full batch estimation. We release our implementation of the preintegrated IMU and
structureless vision factors in the GTSAM 4.0 optimization toolbox [Dellaert, 2012].

Related Work

Related work on visual-inertial odometry can be sectioned along three main dimensions.
The first dimension is the number of camera-poses involved in the estimation. While
full smoothers (or batch nonlinear least-squares algorithms) estimate the complete history
of poses, fixed-lag smoothers (or sliding window estimators) consider a window of the latest
poses, and filtering approaches only estimate the latest state. Both fixed-lag smoothers
and filters marginalize older states and absorb the corresponding information in a
Gaussian prior.

The second dimension regards the representation of the uncertainty for the mea-
surements and the Gaussian priors: the Extended Kalman Filter (EKF) represents the
uncertainty using a covariance matrix; instead, information filters and smoothers resort
to the information matrix (the inverse of the covariance) or the square-root of the
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information matrix [Kaess et al., 2012, Wu et al., 2015].

Finally, the third dimension distinguishes existing approaches by looking at the number
of times in which the measurement model is linearized. While a standard EKF (in
contrast to the iterated EKF) processes a measurement only once, a smoothing approach
allows linearizing multiple times.

While the terminology is vast, the underlying algorithms are tightly related. For
instance, it can be shown that the iterated Extended Kalman filter equations are
equivalent to the Gauss-Newton algorithm, commonly used for smoothing [Bell and
Cathey, 1993].

Filtering

Filtering algorithms enable efficient estimation by restricting the inference process
to the latest state of the system. The complexity of the EKF grows quadratically in
the number of estimated landmarks, therefore, a small number of landmarks (in the
order of 20) are typically tracked to allow real-time operation [Davison et al., 2007,
Bloesch et al., 2015, Jones and Soatto, 2011]. An alternative is to adopt a “structureless”
approach where landmark positions are marginalized out of the state vector. An elegant
example of this strategy is the Multi-State Constraint Kalman filter (MSC-KF) [Mourikis
and Roumeliotis, 2007]. The structureless approach requires to keep previous poses in
the state vector, by means of stochastic cloning [Roumeliotis and Burdick, 2002].

A drawback of using a structureless approach for filtering, is that the processing of
landmark measurements needs to be delayed until all measurements of a landmark
are obtained [Mourikis and Roumeliotis, 2007]. This hinders accuracy as the filter
cannot use all current visual information. Marginalization is also a source of errors
as it locks in linearization errors and erroneous outlier measurements. Therefore, it
is particularly important to filter out spurious measurements as a single outlier can
irreversibly corrupt the filter [Tsotsos et al., 2015]. Further, linearization errors introduce
drift in the estimate and render the filter inconsistent. An effect of inconsistency is
that the estimator becomes over-confident, resulting in non-optimal information fusion.
Generally, the VINproblem has four unobservable directions: the global position and
the orientation around the gravity direction (yaw) [Martinelli, 2013, Kottas et al., 2012].
In [Kottas et al., 2012] it is shown that linearization at the wrong estimate results in
only three unobservable directions (the global position); hence, erroneous linearization
adds spurious information in yaw direction to the Gaussian prior, which renders
the filter inconsistent. This problem was addressed with the first-estimates jacobian
approach [Huang et al., 2008], which ensures that a state is not updated with different
linearization points — a source of inconsistency. In the observability-constrained EKF
(OC-EKF) an estimate of the unobservable directions is maintained which allows to
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update the filter only in directions that are observable [Kottas et al., 2012, Hesch et al.,
2014]. A thorough analysis of VINobservability properties is given in [Martinelli, 2012,
2013, Hernandez et al., 2015].

Fixed-lag Smoothing

Fixed-lag smoothers estimate the states that fall within a given time window, while
marginalizing out older states [Mourikis and Roumeliotis, 2008, Sibley et al., 2010,
Dong-Si and Mourikis, 2011, Leutenegger et al., 2013, 2015]. In a maximum likelihood
estimation setup, fixed-lag smoothers lead to an optimization problem over a set
of recent states. For nonlinear problems, smoothing approaches are generally more
accurate than filtering, since they relinearize past measurements [Maybeck, 1979].
Moreover, these approaches are more resilient to outliers, which can be discarded
a posteriori (i.e., after the optimization), or can be alleviated by using robust cost
functions. On the downside, the marginalization of the states outside the estimation
window leads to dense Gaussian priors which hinder efficient inference. For this
reason, it has been proposed to drop certain measurements in the interest of sparsity
[Leutenegger et al., 2015]. Furthermore, due to marginalization, fixed-lag smoothers
share part of the issues of filtering (consistency, build-up of linearization errors) [Huang
et al., 2011b, Dong-Si and Mourikis, 2011, Hesch et al., 2014].

Full Smoothing

Full smoothing methods estimate the entire history of the states (camera trajectory
and 3D landmarks), by solving a large nonlinear optimization problem [Jung and
Taylor, 2001, Sterlow and Singh, 2004, Bryson et al., 2009, Indelman et al., 2013b, Patron-
Perez et al., 2015]. Full smoothing guarantees the highest accuracy; however, real-time
operation quickly becomes infeasible as the trajectory and the map grow over time.
Therefore, it has been proposed to discard frames except selected keyframes [Strasdat
et al., 2010, Klein and Murray, 2009, Nerurkar et al., 2014, Leutenegger et al., 2015]
or to run the optimization in a parallel thread, using a tracking and mapping dual
architecture [Klein and Murray, 2007, Mourikis and Roumeliotis, 2008]. A breakthrough
has been the development of incremental smoothing techniques (iSAM [Kaess et al., 2008],
iSAM2 [Kaess et al., 2012]), which leverage the expressiveness of factor graphs to maintain
sparsity and to identify and update only the typically small subset of variables affected
by a new measurement.

Nevertheless, the high rate of inertial measurements (usually 100 Hz to 1 kHz) still
constitutes a challenge for smoothing approaches. A naive implementation would
require adding a new state at every IMU measurement, which quickly becomes im-
practically slow [Indelman et al., 2012]. Therefore, inertial measurements are typically
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integrated between frames to form relative motion constraints [Indelman et al., 2013a,b,
Shen, 2014, Keivan et al., 2014, Leutenegger et al., 2015]. For standard IMU integration
between two frames, the initial condition is given by the state estimate at the first
frame. However, at every iteration of the optimization, the state estimate changes,
which requires to repeat the IMU integration between all frames [Leutenegger et al.,
2015]. Lupton and Sukkarieh [2012] show that this repeated integration can be avoided
by a reparametrization of the relative motion constraints. Such reparametrization is
called IMU preintegration.

In the present work, we build upon the seminal work [Lupton and Sukkarieh, 2012]
and bring the theory of IMU preintegration to maturity by properly addressing the
manifold structure of the rotation group SO(3). The work [Lupton and Sukkarieh,
2012] adopted Euler angles as global parametrization for rotations. Using Euler angles
and applying the usual averaging and smoothing techniques of Euclidean spaces for
state propagation and covariance estimation is not properly invariant under the action
of rigid transformations [Hornegger and Tomasi, 1999, Moakher, 2002]. Moreover,
Euler angles are known to have singularities. Our work, on the other hand, provides
a formal treatment of the rotation measurements (and the corresponding noise), and
provides a complete derivation of the maximum a posteriori estimator. We also derive
analytic expressions for the Jacobians (needed for the optimization), which, to the
best of our knowledge, have not been previously reported in the literature. In the
experimental section, we show that a proper representation of the rotation manifold
results in higher accuracy and robustness, leading to tangible advantages over the
original proposal [Lupton and Sukkarieh, 2012].

Preliminaries

In this paper we formulate VINin terms of MAP estimation. In our model, MAP
estimation leads to a nonlinear optimization problem that involves quantities living
on smooth manifolds (e.g., rotations, poses). Therefore, before delving into details, we
conveniently review some useful geometric concepts. This section can be skipped by
the expert reader.

We structure this section as follows: Section C.3.1 provides useful notions related
to two main Riemannian manifolds: the Special Orthogonal Group SO(3)and the
Special Euclidean Group SE(3). Our presentation is based on [Chirikjian, 2012, Wang
and Chirikjian, 2008]. Section C.3.2 describes a suitable model to describe uncertain
rotations in SO(3). Section C.3.3 reviews optimization on manifolds, following standard
references [Absil et al., 2007].
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SO(3)

so(3)

δφ

Log(R)

φ

R

Exp(φ + δφ)

Exp(Jr(φ)δφ)

Figure C.1 – The right Jacobian Jr relates an additive perturbation δφ in the tangent space to a
multiplicative perturbation on the manifold SO(3), as per Eq. (C.7).

Notions of Riemannian geometry

Special Orthogonal Group SO(3)describes the group of 3D rotation matrices and it
is formally defined as SO(3) .

= {R ∈ R3×3 : RTR = I, det(R) = 1}. The group operation
is the usual matrix multiplication, and the inverse is the matrix transpose. The group
SO(3)also forms a smooth manifold. The tangent space to the manifold (at the identity)
is denoted as so(3), which is also called the Lie algebra and coincides with the space of
3× 3 skew symmetric matrices. We can identify every skew symmetric matrix with a
vector in R3 using the hat operator:

ω∧ =

ω1

ω2

ω3


∧

=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3). (C.1)

Similarly, we can map a skew symmetric matrix to a vector in R3 using the vee operator
(·)∨: for a skew symmetric matrix S = ω∧, the vee operator is such that S∨ = ω. A
property of skew symmetric matrices that will be useful later on is:

a∧ b = −b∧ a, ∀ a, b ∈ R3. (C.2)

The exponential map (at the identity) exp : so(3)→ SO(3) associates an element of the
Lie Algebra to a rotation and coincides with standard matrix exponential (Rodrigues’
formula):

exp(φ∧) = I + sin(‖φ‖)
‖φ‖ φ∧ + 1−cos(‖φ‖)

‖φ‖2 (φ∧)2 . (C.3)

A first-order approximation of the exponential map that we will use later on is:

exp(φ∧) ≈ I + φ∧ . (C.4)

The logarithm map (at the identity) associates a matrix R 6= I in SO(3) to a skew
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symmetric matrix:

log(R) =
ϕ · (R− RT)

2 sin(ϕ)
with ϕ = cos−1

(
tr (R)− 1

2

)
. (C.5)

Note that log(R)∨ = aϕ, where a and ϕ are the rotation axis and the rotation angle of
R, respectively. If R = I, then ϕ = 0 and a is undetermined and can therefore be chosen
arbitrarily.

The exponential map is a bijection if restricted to the open ball ‖φ‖ < π, and the
corresponding inverse is the logarithm map. However, if we do not restrict the domain,
the exponential map becomes surjective as every vector φ = (ϕ + 2kπ)a, k ∈ Z would
be an admissible logarithm of R.

For notational convenience, we adopt “vectorized” versions of the exponential and
logarithm map:

Exp : R3 → SO(3) ; φ 7→ exp(φ∧)
Log : SO(3) → R3 ; R 7→ log(R)∨,

(C.6)

which operate directly on vectors, rather than on skew symmetric matrices in so(3).

Later, we will use the following first-order approximation:

Exp(φ + δφ) ≈ Exp(φ) Exp(Jr(φ)δφ). (C.7)

The term Jr(φ) is the right Jacobian of SO(3) [Chirikjian, 2012, p.40] and relates additive
increments in the tangent space to multiplicative increments applied on the right-hand-
side (Fig. C.1):

Jr(φ) = I− 1−cos(‖φ‖)
‖φ‖2 φ∧ + ‖φ‖−sin(‖φ‖)

‖φ3‖ (φ∧)2. (C.8)

A similar first-order approximation holds for the logarithm:

Log
(

Exp(φ) Exp(δφ)
)
≈ φ + J−1

r (φ)δφ. (C.9)

Where the inverse of the right Jacobian is

J−1
r (φ) = I +

1
2

φ∧ +
(

1
‖φ‖2 +

1 + cos(‖φ‖)
2‖φ‖ sin(‖φ‖)

)
(φ∧)2.

The right Jacobian Jr(φ) and its inverse J−1
r (φ) reduce to the identity matrix for

‖φ‖=0.
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Another useful property of the exponential map is:

R Exp(φ) RT = exp(Rφ∧RT) = Exp(Rφ) (C.10)

⇔ Exp(φ) R = R Exp(RTφ). (C.11)

Special Euclidean Group SE(3)describes the group of rigid motion in 3D, which is
the semi-direct product of SO(3) and R3, and it is defined as SE(3) .

= {(R, p) : R ∈
SO(3), p ∈ R3}. Given T1, T2 ∈ SE(3), the group operation is T1 · T2 = (R1R2 , p1 +

R1p2), and the inverse is T−1
1 = (RT1 , −RT1 p1). The exponential map and the logarithm map

for SE(3)are defined in [Wang and Chirikjian, 2008]. However, these are not needed in
this paper for reasons that will be clear in Section C.3.3.

Uncertainty Description in SO(3)

A natural definition of uncertainty in SO(3) is to define a distribution in the tangent
space, and then map it to SO(3) via the exponential map (C.6) [Barfoot and Furgale,
2014, Wang and Chirikjian, 2006, 2008]:

R̃ = R Exp(ε), ε ∼ N (0, Σ), (C.12)

where R is a given noise-free rotation (the mean) and ε is a small normally distributed
perturbation with zero mean and covariance Σ.

To obtain an explicit expression for the distribution of R̃, we start from the integral of
the Gaussian distribution in R3:∫

R3
p(ε)dε =

∫
R3

αe−
1
2 ‖ε‖

2
Σ dε = 1, (C.13)

where α = 1/
√
(2π)3 det(Σ) and ‖ε‖2

Σ
.
= εTΣ−1ε is the squared Mahalanobis distance

with covariance Σ. Then, applying the change of coordinates ε = Log(R−1R̃) (this is the
inverse of (C.12) when ‖ε‖ < π), the integral (C.13) becomes:∫

SO(3)
β(R̃) e−

1
2‖Log(R−1R̃)‖2

Σ dR̃ = 1, (C.14)

where β(R̃) is a normalization factor. The normalization factor assumes the form β(R̃) =

α/|det(J (R̃)|, where J (R̃)
.
= Jr(Log(R−1R̃)) and Jr(·) is the right Jacobian (C.8); J (R̃)

is a by-product of the change of variables, see [Barfoot and Furgale, 2014] for a
derivation.

From the argument of (C.14) we can directly read our “Gaussian” distribution in SO(3):
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p(R̃) = β(R̃) e−
1
2‖Log(R−1R̃)‖2

Σ . (C.15)

For small covariances we can approximate β ' α, as Jr(Log(R−1R̃)) is well approxi-
mated by the identity matrix when R̃ is close to R. Note that (C.14) already assumes
relatively a small covariance Σ, since it “clips” the probability tails outside the open
ball of radius π (this is due to the re-parametrization ε = Log(R−1R̃), which restricts ε

to ‖ε‖ < π). Approximating β as a constant, the negative log-likelihood of a rotation R,
given a measurement R̃ distributed as in (C.15), is:

L(R) = 1
2

∥∥∥Log(R−1R̃)
∥∥∥2

Σ
+ const =

1
2

∥∥∥Log(R̃−1R)
∥∥∥2

Σ
+ const, (C.16)

which geometrically can be interpreted as the squared angle (geodesic distance in
SO(3)) between R̃ and R weighted by the inverse uncertainty Σ−1.

Gauss-Newton Method on Manifold

A standard Gauss-Newton method in Euclidean space works by repeatedly optimizing
a quadratic approximation of the (generally non-convex) objective function. Solving the
quadratic approximation reduces to solving a set of linear equations (normal equations),
and the solution of this local approximation is used to update the current estimate.
Here we recall how to extend this approach to (unconstrained) optimization problems
whose variables belong to some manifoldM.

Let us consider the following optimization problem:

min
x∈M

f (x), (C.17)

where the variable x belongs to a manifoldM; for the sake of simplicity we consider a
single variable in (C.17), while the description easily generalizes to multiple variables.

Contrarily to the Euclidean case, one cannot directly approximate (C.17) as a quadratic
function of x. This is due to two main reasons. First, working directly on x leads to
an over-parametrization of the problem (e.g., we parametrize a rotation matrix with
9 elements, while a 3D rotation is completely defined by a vector in R3) and this can
make the normal equations under-determined. Second, the solution of the resulting
approximation does not belong toM in general.

A standard approach for optimization on manifold [Absil et al., 2007, Smith, 1994],
consists of defining a retraction Rx, which is a bijective map between an element δx of
the tangent space (at x) and a neighborhood of x ∈ M. Using the retraction, we can
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re-parametrize our problem as follows:

min
x∈M

f (x) ⇒ min
δx∈Rn

f (Rx(δx)). (C.18)

The re-parametrization is usually called lifting [Absil et al., 2007]. Roughly speaking,
we work in the tangent space defined at the current estimate, which locally behaves as
an Euclidean space. The use of the retraction allows framing the optimization problem
over an Euclidean space of suitable dimension (e.g., δx ∈ R3 when we work in SO(3)).
We can now apply standard optimization techniques to the problem on the right-hand
side of (C.18). In the Gauss-Newton framework, we square the cost around the current
estimate. Then we solve the quadratic approximation to get a vector δx? in the tangent
space. Finally, the current guess on the manifold is updated as

x̂ ← Rx̂(δx?). (C.19)

This “lift-solve-retract” scheme can be generalized to any trust-region method [Absil
et al., 2007]. Moreover, it provides a grounded and unifying generalization of the
error state model, commonly used in aerospace literature for filtering [Farrell, 2008] and
recently adopted in robotics for optimization [Leutenegger et al., 2013, Nerurkar et al.,
2014].

We conclude this section by discussing the choice of the retraction Rx. A possible
retraction is the exponential map. It is known that, computationally, this may not be
the most convenient choice, see [Manton, 2002].

In this work, we use the following retraction for SO(3),

RR(φ) = R Exp(δφ), δφ ∈ R3, (C.20)

and for SE(3), we use the retraction at T .
= (R, p):

RT(δφ, δp) = (R Exp(δφ), p + R δp), [δφ δp] ∈ R6, (C.21)

which explains why in Section C.3.1 we only defined the exponential map for SO(3):
with this choice of retraction we never need to compute the exponential map for SE(3).

Maximum a Posteriori Visual-Inertial State Estimation

We consider a VINproblem in which we want to track the state of a sensing system
(e.g., a mobile robot, a UAV, or a hand-held device), equipped with an IMU and a
monocular camera. We assume that the IMU frame “B” coincides with the body frame
we want to track, and that the transformation between the camera and the IMU is fixed
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TWB
.= (RWB,Wp)

ρl

TBC

Body/IMU
Cam

World

zl

Figure C.2 – TWB
.
= (RWB, Wp) is the pose of the body frame B w.r.t. the world frame W. We

assume that the body frame coincides with the IMU frame. TBC is the pose of the camera in the
body frame, known from prior calibration.

and known from prior calibration (Fig. C.2). Furthermore, we assume that a front-end
provides image measurements of 3D landmarks at unknown position. The front-end
also selects a subset of images, called keyframes [Strasdat et al., 2010], for which we want
to compute a pose estimate. Section C.8.2 discusses implementation aspects, including
the choice of the front-end in our experiments.

The State

The state of the system at time i is described by the IMU orientation, position, velocity
and biases:

xi
.
= [Ri, pi, vi, bi]. (C.22)

The pose (Ri, pi) belongs to SE(3), while velocities live in a vector space, i.e., vi ∈ R3.
IMU biases can be written as bi = [bg

i ba
i ] ∈ R6, where bg

i , ba
i ∈ R3 are the gyroscope

and accelerometer bias, respectively.

Let Kk denote the set of all keyframes up to time k. In our approach we estimate the
state of all keyframes:

Xk
.
= {xi}i∈Kk . (C.23)

In our implementation, we adopt a structureless approach (cf., Section C.7), hence the
3D landmarks are not part of the variables to be estimated. However, the proposed
approach generalizes in a straightforward manner to also estimating the landmarks
and the camera intrinsic and extrinsic calibration parameters.
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The Measurements

The input to our estimation problem are the measurements from the camera and the
IMU. We denote with Ci the image measurements at keyframe i. At time i, the camera
can observe multiple landmarks l, hence Ci contains multiple image measurements zil .
With slight abuse of notation we write l ∈ Ci when a landmark l is seen at time i.

We denote with Iij the set of IMU measurements acquired between two consecutive
keyframes i and j. Depending on the IMU measurement rate and the frequency of
selected keyframes, each set Iij can contain from a small number to hundreds of IMU
measurements. The set of measurements collected up to time k is

Zk
.
= {Ci, Iij}(i,j)∈Kk

. (C.24)

Factor Graphs and MAP Estimation

The posterior probability of the variables Xk, given the available visual and inertial
measurements Zk and priors p(X0) is:

p(Xk|Zk) ∝ p(X0)p(Zk|Xk)
(a)
= p(X0) ∏

(i,j)∈Kk

p(Ci, Iij|Xk)

(b)
= p(X0) ∏

(i,j)∈Kk

p(Iij|xi, xj) ∏
i∈Kk

∏
l∈Ci

p(zil |xi). (C.25)

The factorizations (a) and (b) follow from a standard independence assumption among
the measurements. Furthermore, the Markovian property is applied in (b) (e.g., an
image measurement at time i only depends on the state at time i).

As the measurements Zk are known, we are free to eliminate them as variables and
consider them as parameters of the joint probability factors over the actual unknowns.
This naturally leads to the well known factor graph representation, a class of bipartite
graphical models that can be used to represent such factored densities [Kschischang
et al., 2001, Dellaert, 2005]. A schematic representation of the connectivity of the
factor graph underlying the VINproblem is given in Fig. C.3 (the connectivity of
the structureless vision factors will be clarified in Section C.7). The factor graph is
composed of nodes for unknowns and nodes for the probability factors defined on
them, and the graph structure expresses which unknowns are involved in each factor.

The MAPestimate X ?
k corresponds to the maximum of (C.25), or equivalently, the

minimum of the negative log-posterior. Under the assumption of zero-mean Gaussian
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Structureless Projection Factor

Preintegrated IMU Factor
IMU Measurements

3D Landmark

Keyframes

Camera Frames

Figure C.3 – Left: visual and inertial measurements in VIN. Right: factor graph in which several
IMU measurements are summarized in a single preintegrated IMU factor and a structureless
vision factor constraints keyframes observing the same landmark.

noise, the negative log-posterior can be written as a sum of squared residual errors:

X ?
k

.
= arg min

Xk
− loge p(Xk|Zk) (C.26)

= arg min
Xk
‖r0‖2

Σ0
+ ∑

(i,j)∈Kk

‖rIij‖2
Σij

+ ∑
i∈Kk

∑
l∈Ci

‖rCil‖2
ΣC

where r0, rIij , rCil are the residual errors associated to the measurements, and Σ0, Σij,
and ΣC are the corresponding covariance matrices. Roughly speaking, the residual
error is a function of Xk that quantifies the mismatch between a measured quantity and
the predicted value of this quantity given the state Xk and the priors. The goal of the
following sections is to provide expressions for the residual errors and the covariances.

IMU Model and Motion Integration

An IMU commonly includes a 3-axis accelerometer and a 3-axis gyroscope and allows
measuring the rotation rate and the acceleration of the sensor with respect to an inertial
frame. The measurements, namely Bã(t), and Bω̃WB(t), are affected by additive white
noise η and a slowly varying sensor bias b:

Bω̃WB(t) = BωWB(t) + bg(t) + ηg(t) (C.27)

Bã(t) = RTWB(t) (Wa(t)− Wg) + ba(t) + ηa(t), (C.28)

In our notation, the prefix B denotes that the corresponding quantity is expressed in
the frame B (c.f., Fig. C.2). The pose of the IMU is described by the transformation
{RWB, Wp}, which maps a point from sensor frame B to W. The vector BωWB(t)∈R3 is
the instantaneous angular velocity of B relative to W expressed in coordinate frame
B, while Wa(t)∈R3 is the acceleration of the sensor; Wg is the gravity vector in world
coordinates. We neglect effects due to earth’s rotation, which amounts to assuming
that W is an inertial frame.

The goal now is to infer the motion of the system from IMU measurements. For this
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purpose we introduce the following kinematic model [Murray et al., 1994, Farrell, 2008]:

ṘWB = RWB Bω∧WB, Wv̇ = Wa, Wṗ = Wv, (C.29)

which describes the evolution of the pose and velocity of B.

The state at time t + ∆t is obtained by integrating Eq. (C.29):

RWB(t + ∆t) = RWB(t) Exp
(∫ t+∆t

t
BωWB(τ)dτ

)
Wv(t + ∆t) = Wv(t) +

∫ t+∆t

t
Wa(τ)dτ

Wp(t + ∆t) = Wp(t) +
∫ t+∆t

t
Wv(τ)dτ +

∫∫ t+∆t

t
Wa(τ)dτ2.

Assuming that Wa and BωWB remain constant in the time interval [t, t + ∆t], we can
write:

RWB(t + ∆t) = RWB(t) Exp (BωWB(t)∆t)

Wv(t + ∆t) = Wv(t) + Wa(t)∆t

Wp(t + ∆t) = Wp(t) + Wv(t)∆t +
1
2 Wa(t)∆t2. (C.30)

Using Eqs. (C.27)–(C.28), we can write Wa and BωWB as a function of the IMU measure-
ments, hence (C.30) becomes

R(t + ∆t) = R(t) Exp
((

ω̃(t)− bg(t)− ηgd(t)
)

∆t
)

v(t + ∆t) = v(t) + g∆t + R(t)
(

ã(t)−ba(t)−ηad(t)
)

∆t

p(t + ∆t) = p(t) + v(t)∆t +
1
2

g∆t2

+
1
2
R(t)

(
ã(t)−ba(t)−ηad(t)

)
∆t2, (C.31)

where we dropped the coordinate frame subscripts for readability (the notation should
be unambiguous from now on). This numeric integration of the velocity and po-
sition assumes a constant orientation R(t) for the time of integration between two
measurements, which is not an exact solution of the differential equation (C.29) for
measurements with non-zero rotation rate. In practice, the use of a high-rate IMU
mitigates the effects of this approximation. We adopt the integration scheme (C.31) as
it is simple and amenable for modeling and uncertainty propagation. While we show
that this integration scheme performs very well in practice, we remark that for slower
IMU measurement rates one may consider using higher-order numerical integration
methods [Crouch and Grossman, 1993, Munthe-Kaas, 1999, Park and Chung, 2005,
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Images:
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Figure C.4 – Different rates for IMU and camera.

Andrle and Crassidis, 2013].

The covariance of the discrete-time noise ηgd is a function of the sampling rate and
relates to the continuous-time spectral noise ηg via Cov(ηgd(t)) = 1

∆t Cov(ηg(t)). The
same relation holds for ηad (cf., [Crassidis, 2006, Appendix]).

IMU Preintegration on Manifold

While Eq. (C.31) could be readily seen as a probabilistic constraint in a factor graph, it
would require to include states in the factor graph at high rate. Intuitively, Eq. (C.31)
relates states at time t and t + ∆t, where ∆t is the sampling period of the IMU, hence
we would have to add new states in the estimation at every new IMU measurement
[Indelman et al., 2012].

Here we show that all measurements between two keyframes at times k = i and k = j
(see Fig. C.4) can be summarized in a single compound measurement, named preinte-
grated IMU measurement, which constrains the motion between consecutive keyframes.
This concept was first proposed in [Lupton and Sukkarieh, 2012] using Euler angles
and we extend it, by developing a suitable theory for preintegration on the manifold
SO(3).

We assume that the IMU is synchronized with the camera and provides measurements
at discrete times k (cf., Fig. C.4).1 Iterating the IMU integration (C.31) for all ∆t intervals

1We calibrate the IMU-camera delay using the Kalibr toolbox [Furgale et al., 2013]. An alternative is to
add the delay as a state in the estimation process [Li and Mourikis, 2014].
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Appendix C. Visual-Inertial Estimation

between two consecutive keyframes at times k = i and k = j (c.f., Fig. C.4), we find:

Rj = Ri

j−1

∏
k=i

Exp
((

ω̃k − bg
k − η

gd
k

)
∆t
)

,

vj =vi+ g∆tij +
j−1

∑
k=i

Rk

(
ãk − ba

k − ηad
k

)
∆t (C.32)

pj =pi+
j−1

∑
k=i

[
vk∆t +

1
2

g∆t2 +
1
2
Rk

(
ãk − ba

k − ηad
k

)
∆t2
]

where we introduced the shorthands ∆tij
.
= ∑

j−1
k=i ∆t and (·)i

.
= (·)(ti) for readability.

While Eq. (C.32) already provides an estimate of the motion between time ti and tj,
it has the drawback that the integration in (C.32) has to be repeated whenever the
linearization point at time ti changes [Leutenegger et al., 2015] (intuitively, a change in
the rotation Ri implies a change in all future rotations Rk, k = i, . . . , j− 1, and makes
necessary to re-evaluate summations and products in (C.32)).

We want to avoid to recompute the above integration whenever the linearization point
at time ti changes. Therefore, we follow [Lupton and Sukkarieh, 2012] and define the
following relative motion increments that are independent of the pose and velocity at
ti:

∆Rij
.
= RTi Rj =

j−1

∏
k=i

Exp
((

ω̃k − bg
k − η

gd
k

)
∆t
)

∆vij
.
= RTi

(
vj − vi − g∆tij

)
=

j−1

∑
k=i

∆Rik

(
ãk − ba

k − ηad
k

)
∆t

∆pij
.
= RTi

(
pj − pi − vi∆tij − 1

2 ∑
j−1
k=i g∆t2

)
=

j−1

∑
k=i

[
∆vik∆t +

1
2

∆Rik

(
ãk − ba

k − ηad
k

)
∆t2
]

(C.33)

where ∆Rik
.
= RTi Rk and ∆vik

.
= RTi (vk − vi − g∆tik). We highlight that, in contrast to

the “delta” rotation ∆Rij, neither ∆vij nor ∆pij correspond to the true physical change in
velocity and position but are defined in a way that make the right-hand side of (C.33)
independent from the state at time i as well as gravitational effects. Indeed, we will be
able to compute the right-hand side of (C.33) directly from the inertial measurements
between the two keyframes.

Unfortunately, summations and products in (C.33) are still function of the bias estimate.
We tackle this problem in two steps. In Section C.6.1, we assume bi is known; then, in
Section C.6.3 we show how to avoid repeating the integration when the bias estimate
changes.
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In the rest of the paper, we assume that the bias remains constant between two
keyframes:

bg
i = bg

i+1 = . . . = bg
j−1, ba

i = ba
i+1 = . . . = ba

j−1. (C.34)

Preintegrated IMU Measurements

Equation (C.33) relates the states of keyframes i and j (left-hand side) to the measure-
ments (right-hand side). In this sense, it can be already understood as a measurement
model. Unfortunately, it has a fairly intricate dependence on the measurement noise
and this complicates a direct application of MAP estimation; intuitively, the MAP
estimator requires to clearly define the densities (and their log-likelihood) of the mea-
surements. In this section we manipulate (C.33) so to make easier the derivation of the
measurement log-likelihood. In practice, we isolate the noise terms of the individual
inertial measurements in (C.33). As discussed above, across this section assume that
the bias at time ti is known.

Let us start with the rotation increment ∆Rij in (C.33). We use the first-order approxi-
mation (C.7) (rotation noise is “small”) and rearrange the terms, by “moving” the noise
to the end, using the relation (C.11):

∆Rij
eq.(C.7)'

j−1

∏
k=i

[
Exp

((
ω̃k − bg

i

)
∆t
)

Exp
(
−Jk

r η
gd
k ∆t

)]
eq.(C.11)
= ∆R̃ij

j−1

∏
k=i

Exp
(
−∆R̃Tk+1j J

k
r η

gd
k ∆t

)
.
= ∆R̃ijExp

(
−δφij

)
(C.35)

with Jk
r

.
= Jk

r((ω̃k− bg
i )∆t). In the last line of (C.35), we defined the preintegrated rotation

measurement ∆R̃ij
.
= ∏

j−1
k=i Exp

((
ω̃k − bg

i

)
∆t
)
, and its noise δφij, which will be further

analysed in the next section.

Substituting (C.35) back into the expression of ∆vij in (C.33), using the first-order

approximation (C.4) for Exp
(
−δφij

)
, and dropping higher-order noise terms, we

obtain:

∆vij
eq.(C.4)'

j−1

∑
k=i

∆R̃ik(I− δφ∧ik) (ãk − ba
i )∆t− ∆R̃ikηad

k ∆t

eq.(C.2)
= ∆ṽij +

j−1

∑
k=i

[
∆R̃ik (ãk − ba

i )
∧ δφik∆t− ∆R̃ikηad

k ∆t
]

.
= ∆ṽij − δvij (C.36)
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where we defined the preintegrated velocity measurement ∆ṽij
.
= ∑

j−1
k=i ∆R̃ik

(
ãk − ba

i
)

∆t
and its noise δvij.

Similarly, substituting (C.35) and (C.36) in the expression of ∆pij in (C.33), and using
the first-order approximation (C.4), we obtain:

∆pij
eq.(C.4)
'

j−1

∑
k=i

[
(∆ṽik − δvik)∆t +

1
2

∆R̃ik(I− δφ∧ik) (ãk − ba
i )∆t2 − 1

2
∆R̃ikηad

k ∆t2
]

eq.(C.2)
= ∆p̃ij +

j−1

∑
k=i

[
− δvik∆t +

1
2

∆R̃ik (ãk − ba
i )
∧ δφik∆t2 − 1

2
∆R̃ikηad

k ∆t2
]

.
= ∆p̃ij − δpij, (C.37)

where we defined the preintegrated position measurement ∆p̃ij and its noise δpij.

Substituting the expressions (C.35), (C.36), (C.37) back in the original definition of
∆Rij, ∆vij, ∆pij in (C.33), we finally get our preintegrated measurement model (remember
Exp(−δφij)

T = Exp(δφij)):

∆R̃ij = RTi RjExp
(

δφij

)
∆ṽij = RTi

(
vj − vi − g∆tij

)
+ δvij

∆p̃ij = RTi

(
pj − pi − vi∆tij −

1
2

g∆t2
ij

)
+ δpij (C.38)

where our compound measurements are written as a function of the (to-be-estimated)
state “plus” a random noise, described by the random vector [δφT

ij , δvT
ij , δpT

ij ]
T.

To wrap-up the discussion in this section, we manipulated the measurement model (C.33)
and rewrote it as (C.38). The advantage of Eq. (C.38) is that, for a suitable distribution
of the noise, it makes the definition of the log-likelihood straightforward. For instance
the (negative) log-likelihood of measurements with zero-mean additive Gaussian noise
(last two lines in (C.38)) is a quadratic function. Similarly, if δφij is a zero-mean Gaus-
sian noise, we compute the (negative) log-likelihood associated with ∆R̃ij. The nature
of the noise terms is discussed in the following section.

Noise Propagation

In this section we derive the statistics of the noise vector [δφT
ij , δvT

ij , δpT
ij ]

T. While we
already observed that it is convenient to approximate the noise vector to be zero-mean
Normally distributed, it is of paramount importance to accurately model the noise
covariance. Indeed, the noise covariance has a strong influence on the MAP estimator
(the inverse noise covariance is used to weight the terms in the optimization (C.26)). In
this section, we therefore provide a derivation of the covariance Σij of the preintegrated
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measurements:

η∆
ij

.
= [δφT

ij , δvT
ij , δpT

ij ]
T ∼ N (09×1, Σij). (C.39)

We first consider the preintegrated rotation noise δφij. Recall from (C.35) that

Exp
(
−δφij

) .
= ∏

j−1
k=i Exp

(
−∆R̃Tk+1jJ

k
r η

gd
k ∆t

)
. (C.40)

Taking the Log on both sides and changing signs, we get:

δφij = −Log
(

∏
j−1
k=i Exp

(
−∆R̃Tk+1jJ

k
r η

gd
k ∆t

))
. (C.41)

Repeated application of the first-order approximation (C.9) (recall that η
gd
k as well

as δφij are small rotation noises, hence the right Jacobians are close to the identity)
produces:

δφij ' ∑
j−1
k=i ∆R̃Tk+1j J

k
r η

gd
k ∆t (C.42)

Up to first order, the noise δφij is zero-mean and Gaussian, as it is a linear combination

of zero-mean noise terms η
gd
k . This is desirable, since it brings the rotation measurement

model (C.38) exactly in the form (C.12).

Dealing with the noise terms δvij and δpij is now easy: these are linear combinations
of the acceleration noise ηad

k and the preintegrated rotation noise δφij, hence they are
also zero-mean and Gaussian. Simple manipulation leads to:

δvij '
j−1

∑
k=i

[
−∆R̃ik (ãk − ba

i )
∧δφik∆t + ∆R̃ikηad

k ∆t
]

(C.43)

δpij '
j−1

∑
k=i

[
δvik∆t− 1

2
∆R̃ik (ãk − ba

i )
∧δφik∆t2 +

1
2

∆R̃ikηad
k ∆t2

]
where the relations are valid up to the first order.

Eqs. (C.42)-(C.43) express the preintegrated noise η∆
ij as a linear function of the IMU

measurement noise ηd
k

.
= [η

gd
k , ηad

k ], k = 1, . . . , j− 1. Therefore, from the knowledge of
the covariance of ηd

k (given in the IMU specifications), we can compute the covariance
of η∆

ij , namely Σij, by a simple linear propagation.

In Appendix C.10.1, we provide a more clever way to compute Σij. In particular,
we show that Σij can be conveniently computed in iterative form: as a new IMU
measurement arrive we only update Σij, rather than recomputing it from scratch. The
iterative computation leads to simpler expressions and is more amenable for online
inference.
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Incorporating Bias Updates

In the previous section, we assumed that the bias {b̄a
i , b̄g

i } that is used during preinte-
gration between k = i and k = j is correct and does not change. However, more likely,
the bias estimate changes by a small amount δb during optimization. One solution
would be to recompute the delta measurements when the bias changes; however, that
is computationally expensive. Instead, given a bias update b← b̄ + δb, we can update
the delta measurements using a first-order expansion:

∆R̃ij(b
g
i ) ' ∆R̃ij(b̄

g
i ) Exp

(
∂∆R̄ij
∂bg δbg

)
(C.44)

∆ṽij(b
g
i , ba

i ) ' ∆ṽij(b̄
g
i , b̄a

i ) +
∂∆v̄ij
∂bg δbg

i +
∂∆v̄ij
∂ba δba

i

∆p̃ij(b
g
i , ba

i ) ' ∆p̃ij(b̄
g
i , b̄a

i ) +
∂∆p̄ij
∂bg δbg

i +
∂∆p̄ij
∂ba δba

i

This is similar to the bias correction in [Lupton and Sukkarieh, 2012] but operates
directly on SO(3). The Jacobians { ∂∆R̄ij

∂bg , ∂∆v̄ij
∂bg , . . .} (computed at b̄i, the bias estimate

at integration time) describe how the measurements change due to a change in the
bias estimate. The Jacobians remain constant and can be precomputed during the
preintegration. The derivation of the Jacobians is very similar to the one we used in
Section C.6.1 to express the measurements as a large value plus a small perturbation
and is given in Appendix C.10.2.

Preintegrated IMU Factors

Given the preintegrated measurement model in (C.38) and since measurement noise is
zero-mean and Gaussian (with covariance Σij) up to first order (C.39), it is now easy to
write the residual errors rIij

.
= [rT∆Rij

, rT∆vij
, rT∆pij

]T ∈ R9, where

r∆Rij

.
= Log

((
∆R̃ij(b̄

g
i )Exp

(
∂∆R̄ij
∂bg δbg

))T
RTi Rj

)
(C.45)

r∆vij

.
= RTi

(
vj − vi − g∆tij

)
−
[
∆ṽij(b̄

g
i , b̄a

i ) +
∂∆v̄ij
∂bg δbg +

∂∆v̄ij
∂ba δba

]
r∆pij

.
= RTi

(
pj − pi − vi∆tij − 1

2 g∆t2
ij

)
−
[
∆p̃ij(b̄

g
i , b̄a

i ) +
∂∆p̄ij
∂bg δbg +

∂∆p̄ij
∂ba

δba
]

,

in which we also included the bias updates of Eq. (C.44).

According to the “lift-solve-retract” method (Section C.3.3), at each Gauss-Newton
iteration we need to re-parametrize (C.45) using the retraction (C.21). Then, the “solve”
step requires to linearize the resulting cost around the current estimate. For the purpose
of linearization, it is convenient to compute analytic expressions of the Jacobians of the
residual errors, which we derive in the Appendix C.10.3.
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Bias Model

When presenting the IMU model (C.27), we said that biases are slowly time-varying
quantities. Hence, we model them with a “Brownian motion”, i.e., integrated white
noise:

ḃg(t) = ηbg, ḃa(t) = ηba. (C.46)

Integrating (C.46) over the time interval [ti, tj] between two consecutive keyframes i
and j we get:

bg
j = bg

i + ηbgd, ba
j = ba

i + ηbad, (C.47)

where, as done before, we use the shorthand bg
i

.
= bg(ti), and we define the discrete

noises ηbgd and ηbad, which have zero mean and covariance Σbgd .
= ∆tijCov(ηbg) and

Σbad .
= ∆tijCov(ηba), respectively (cf. [Crassidis, 2006, Appendix]).

The model (C.47) can be readily included in our factor graph, as a further additive
term in (C.26) for all consecutive keyframes:

‖rbij‖2 .
= ‖bg

j − bg
i ‖2

Σbgd + ‖ba
j − ba

i ‖2
Σbad (C.48)

Structureless Vision Factors

In this section we introduce our structureless model for vision measurements. The
key feature of our approach is the linear elimination of landmarks. Note that the
elimination is repeated at each Gauss-Newton iteration, hence we are still guaranteed
to obtain the optimal MAP estimate.

Visual measurements contribute to the cost (C.26) via the sum:
∑i∈Kk ∑l∈Ci

‖rCil‖2
ΣC = ∑L

l=1 ∑i∈X (l) ‖rCil‖2
ΣC (C.49)

which, on the right-hand-side, we rewrote as a sum of contributions of each landmark
l = 1, . . . , L. In (C.49), X (l) denotes the subset of keyframes in which l is seen.

A fairly standard model for the residual error of a single image measurement zil is the
reprojection error:

rCil = zil − π(Ri, pi, æl), (C.50)

where æl ∈ R3 denotes the position of the l-th landmark, and π(·) is a standard
perspective projection, which also encodes the (known) IMU-camera transformation
TBC.
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Direct use of (C.50) would require to include the landmark positions æl , l = 1, . . . , L
in the optimization, and this impacts negatively on computation. Therefore, in the
following we adopt a structureless approach that avoids optimization over the landmarks,
thus ensuring to retrieve the MAPestimate.

As recalled in Section C.3.3, at each GNiteration, we lift the cost function, using the
retraction (C.21). For the vision factors this means that the original residuals (C.49)
become:

∑L
l=1 ∑i∈X (l) ‖zil − π̌(δφi, δpi, δæl)‖2

ΣC (C.51)

where δφi, δpi, δæl are now Euclidean corrections, and π̌(·) is the lifted cost function.
The “solve” step in the GNmethod is based on linearization of the residuals:

∑L
l=1 ∑i∈X (l) ‖FilδTi + Eilδæl − bil‖2, (C.52)

where δTi
.
= [δφi δpi]

T; the Jacobians Fil , Eil , and the vector bil (both normalized by
Σ1/2
C ) result from the linearization. The vector bil is the residual error at the linearization

point.

Writing the second sum in (C.52) in matrix form we get:

∑L
l=1 ‖Fl δTX (l) + El δæl − bl‖2 (C.53)

where Fl , El , bl are obtained by stacking Fil , Eil , bil , respectively, for all i ∈ X (l).

Since a landmark l appears in a single term of the sum (C.53), for any given choice
of the pose perturbation δTX (l), the landmark perturbation δæl that minimizes the
quadratic cost ‖Fl δTX (l) + El δæl − bl‖2 is:

δæl = −(ET
l El)

−1ET
l (Fl δTX (l) − bl) (C.54)

Substituting (C.54) back into (C.53) we can eliminate the variable δæl from the optimiza-
tion problem:

L

∑
l=1
‖(I− El(ET

l El)
−1ET

l )
(

Fl δTX (l) − bl

)
‖2, (C.55)

where I − El(ET
l El)

−1ET
l is an orthogonal projector of El . In Appendix C.10.4 we

show that the cost (C.55) can be further manipulated, leading to a more efficient
implementation.

This approach is well known in the bundle adjustment literature as the Schur complement
trick, where a standard practice is to update the linearization point of æl via back-
substitution [Hartley and Zisserman, 2004]. In contrast, we obtain the updated landmark
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Figure C.5 – Simulation setup: The camera moves along a circular trajectory while observing
features (green lines) on the walls of a square environment.

positions from the linearization point of the poses using a fast linear triangulation.
Using this approach, we reduced a large set of factors (C.51) which involve poses and
landmarks into a smaller set of L factors (C.55), which only involve poses. In particular,
the factor corresponding to landmark l only involves the states X (l) observing l,
creating the connectivity pattern of Fig. C.3. The same approach is also used in
MSC-KF [Mourikis and Roumeliotis, 2007] to avoid the inclusion of landmarks in the
state vector. However, since MSC-KF can only linearize and absorb a measurement
once, the processing of measurements needs to be delayed until all measurements of the
same landmark are observed. This does not apply to the proposed optimization-based
approach, which allows for multiple relinearizations and the incremental inclusion of
new measurements.

Experimental Analysis

We tested the proposed approach on both simulated and real data. Section C.8.1
reports simulation results, showing that our approach is accurate, fast, and consistent.
Section C.8.2 compares our approach against the state-of-the-art, confirming its superior
accuracy in real indoor and outdoor experiments.

Simulation Experiments

We simulated a camera following a circular trajectory of three meter radius with a
sinusoidal vertical motion. The total length of the trajectory is 120 meters. While
moving, the camera observes landmarks as depicted in Fig. C.5. The number of
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Figure C.6 – Left: CPU time required for inference, comparing batch estimation against iSAM2.
Right: histogram plot of CPU time for the proposed approach.

landmark observations per frame is limited to 50. To simulate a realistic feature-tracker,
we corrupt the landmark measurements with isotropic Gaussian noise with standard
deviation σpx = 1 pixel. The camera has a focal length of 315 pixels and runs at
a rate of 2.5 Hz (simulating keyframes). The simulated acceleration and gyroscope
measurements are computed from the analytic derivatives of the parametric trajectory
and additionally corrupted by white noise and a slowly time-varying bias terms,
according to the IMU model in Eq. (C.27).2 To evaluate our approach, we performed
a Monte Carlo analysis with 50 simulation runs, each with different realizations of
process and measurement noise. In each run we compute the MAP estimate using
the IMU and the vision models presented in this paper. The optimization (whose
solution is the MAP estimate) is solved using the incremental smoothing algorithm
iSAM2 [Kaess et al., 2012]. iSAM2 uses the Bayes tree [Kaess et al., 2010] data structure
to obtain efficient variable ordering that minimizes fill-in in the square-root information
matrix and, thus, minimizes computation time. Further, iSAM2 exploits the fact that
new measurements often have only local effect on the MAP estimate, hence applies
incremental updates directly to the square-root information matrix, only re-solving for
the variables affected by a new measurement.

In the following we present the results of our experiments, organized in four subsections:
1) pose estimation accuracy and timing, 2) consistency, 3) bias estimation accuracy, and
4) first-order bias correction. Then, in Section C.8.1 we compare our approach against
the original proposal of [Lupton and Sukkarieh, 2012].

Pose Estimation Accuracy and Timing

The optimal MAP estimate is given by the batch nonlinear optimization of the least-
squares objective in Eq. (C.26). However, as shown on the left in Fig. C.6, the computa-
tional cost of batch optimization quickly increases as the trajectory length grows. A key

2We used the following IMU parameters: Gyroscope and accelerometer continuous-time noise density:
σg = 0.0007 [rad/(s

√
Hz)], σa = 0.019 [m/(s2

√
Hz)]. Gyroscope and accelerometer bias continous-time

noise density: σbg = 0.0004 [rad/(s2
√

Hz)], σba = 0.012 [m/(s3
√

Hz)].
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Figure C.7 – Root Mean Squared Error (RMSE) averaged over 50 Monte Carlo experiments,
comparing batch nonlinear optimization and iSAM2.

ingredient that makes our approach extremely efficient is the use of the incremental
smoothing algorithm iSAM2 [Kaess et al., 2012], which performs close-to-optimal
inference, while preserving real-time capability. Fig. C.7 shows that the accuracy of
iSAM2 is practically the same as the batch estimate. In odometry problems, the iSAM2
algorithm results in approximately constant update time per frame (Fig. C.6, left),
which in our experiment is approximately 10 milliseconds per update (Fig. C.6, right).

Consistency

For generic motion, the VINproblem has four unobservable degrees of freedom, three
corresponding to the global translation and one to the global orientation around
the gravity direction (yaw), see [Kottas et al., 2012]. A VINalgorithm must preserve
these observability properties and avoid inclusion of spurious information along the
unobservable directions, which would result in inconsistency [Kottas et al., 2012].
Fig. C.8 reports orientation and position errors with the corresponding 3σ bounds,
confirming that our approach is consistent. In the VINproblem, the gravity direction
is observable, hence the uncertainty on roll and pitch remains bounded. In contrast,
global yaw and position cannot be measured and the uncertainty slowly grows over
time.

To present more substantial evidence of the fact that our estimator is consistent, we
recall a standard measure of consistency, the average Normalized Estimation Error
Squared (NEES) [Bar-Shalom et al., 2001]. The NEES is the squared estimation error εk

normalized by the estimator-calculated covariance Σk:

ηk
.
= εT

k Σ̂
−1
k εk (NEES) (C.56)
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Figure C.8 – Orientation and position errors with 3σ bounds (single simulation).

The error in estimating the current pose is computed as:

εk
.
=
[
Log(R̂Tk R

gt
k ), R̂

T
k (p̂k − pgt

k )
]T

(C.57)

where the exponent “gt” denotes ground-truth states and (R̂k, p̂k) denotes the estimated
pose at time k. Note that the error (C.57) is expressed in the body frame and it is
consistent with our choice of the retraction in Eq. (C.21) (intuitively, the retraction
applies the perturbation in the body frame).

The average NEES over N independent Monte Carlo runs, can be computed by averaging
the NEES values:

η̄k =
1
N ∑N

i=1 η
(i)
k (average NEES) (C.58)
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Figure C.9 – Normalized Estimation Error Squared (NEES) averaged over 50 Monte Carlo runs.
The average NEES is reported for the current pose (top), current position (middle), and current
rotation (bottom).

where η
(i)
k is the NEES computed at the i-th Monte Carlo run. If the estimator is

consistent, then Nη̄k is χ2
n chi-square distributed with n = dim(εk) · N degrees of

freedom [Bar-Shalom et al., 2001, pp. 234]. We evaluate this hypothesis with a χ2
n

acceptance test [Bar-Shalom et al., 2001, pp. 235]. For a significance level α = 2.5% and
n = dim(εk) · N = 6 · 50, the acceptance region of the test is given by the two-sided
probability concentration region η̄k ∈ [5.0, 7.0]. If η̄k rises significantly higher than the
upper bound, the estimator is overconfident, if it tends below the lower bound, it is
conservative. In VINone usually wants to avoid overconfident estimators: the fact that
η̄k exceeds the upper bound is an indicator of the fact that the estimator is including
spurious information in the inference process.

In Fig. C.9 we report the average NEES of the proposed approach. The average NEES
approaches the lower bound but, more importantly, it remains below the upper bound
at 7.0 (black dots), which assures that the estimator is not overconfident. We also
report the average rotational and translational NEES to allow a comparison with the
observability-constrained EKF in [Kottas et al., 2012, Hesch et al., 2014], which obtains
similar results by enforcing explicitly the observability properties in EKF.

Bias Estimation Accuracy

Our simulations allow us to compare the estimated gyroscope and accelerometer bias
with the true biases that were used to corrupt the simulated inertial measurements.
Fig. C.10 shows that biases estimated by our approach (in blue) correctly track the
ground truth biases (in red). Note that, since we use a smoothing approach, at each
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Figure C.10 – Comparison between ground truth bias (red line) and estimated bias (blue lines)
in a Monte Carlo run.

step, we potentially change the entire history of the bias estimates, hence we visualize
the bias estimates using multiple curves. Each curve represents the history of the
estimated biases from time zero (left-most extreme of the blue curve) to the current
time (right-most extreme of the blue curve).

First-Order Bias Correction

We performed an additional Monte-Carlo analysis to evaluate the a-posteriori bias
correction proposed in Section C.6.3. The preintegrated measurements are computed
with the bias estimate at the time of integration. However, as seen in Fig. C.10, the bias
estimate for an older preintegrated measurement may change when more information
becomes available. To avoid repeating the integration when the bias estimate changes,
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Figure C.11 – Error committed when using the first-order approximation (C.44) instead of
repeating the integration, for different bias perturbations. Left: ∆p̃ij(b̄i + δbi) error; Center:
∆ṽij(b̄i + δbi) error; Right: ∆R̃ij(b̄i + δbi) error. Statistics are computed over 1000 Monte Carlo
runs.

we perform a first-order correction of the preintegrated measurement according to
Eq. (C.44). The accuracy of this first order bias correction is reported in Fig. C.11. To
compute the statistics, we integrated 100 random IMU measurements with a given
bias estimate b̄i which results in the preintegrated measurements ∆R̃ij(b̄i), ∆ṽij(b̄i)

and ∆p̃ij(b̄i). Subsequently, a random perturbation δbi with magnitude between 0.04
and 0.2 was applied to both the gyroscope and accelerometer bias. We repeated the
integration at b̄i + δbi to obtain ∆R̃ij(b̄i + δbi), ∆ṽij(b̄i + δbi) and ∆p̃ij(b̄i + δbi). This
ground-truth result was then compared against the first-order correction in (C.44) to
compute the error of the approximation. The errors resulting from the first-order
approximation are negligible, even for relatively large bias perturbations.

Advantages over the Euler-angle-based formulation

In this section we compare the proposed IMU preintegration with the original for-
mulation of [Lupton and Sukkarieh, 2012], based on Euler angles. We observe three
main problems with the preintegration using Euler angles, which are avoided in our
formulation.

The first drawback is that, in contrast to the integration using the exponential map
in Eq. (C.30), the rotation integration based on Euler angles is only exact up to the
first order. For the interested reader, we recall the rotation rate integration using
Euler angles in Appendix C.10.5. On the left of Fig. C.12, we report the integration
errors commited by the Euler angle parametrization when integrating angular rates
with randomly selected rotation axes and magnitude in the range from 1 to 3 rad/s.
Integration error in Euler angles accumulates quickly when the sampling time ∆t or the
angular rate ω̃ are large. On the other hand, the proposed approach, which performs
integration directly on the rotation manifold, is exact, regardless the values of ∆t and ω̃.

The second drawback is that the Euler parametrization is not fair [Hornegger, 1997],
which means that, given the preintegrated Euler angles θ̃, the negative log-likelihood
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Figure C.12 – (a) Integration errors committed with the Euler angle parametrization for an-
gular velocities ω of increasing magnitude [rad/s]. (b) Negative log-likelihood of a rotation
measurement under the action of random rigid body transformations.

L(θ) = 1
2‖θ̃− θ‖2

Σ is not invariant under the action of rigid body transformations.
On the right of Fig. C.12 we show experimentally how the log-likelihood changes
when the frame of reference is rotated around randomly selected rotation axes. This
essentially means that an estimator using Euler angles may give different results for
different choices of the world frame (cf. with Fig. C.2). On the other hand, the SO(3)
parametrization can be easily seen to be fair (the negative likelihood (C.16) can be
promptly seen to be left invariant), and this is confirmed by Fig. C.12 (right).

The third drawback is the existence of so-called gimball lock singularities. For a zyx
Euler angle parametrization, the singularity is reached at pitch values of θ = π

2 + nπ,
for n ∈ Z. To evaluate the effect of the singularity and how it affects the computation
of preintegrated measurement noise, we performed the following Monte Carlo analysis.
We simulated a set of trajectories that reach maximum pitch values θmax of increasing
magnitude. For each trajectory, we integrate the rotation uncertainty using the Euler
parametrization and the proposed on-manifold approach. The ground-truth covariance
is instead obtained through sampling. We use the Kullback-Leibler (KL) divergence
to quantify the mismatch between the estimated covariances and the ground-truth
one. The results of this experiment are shown in Fig. C.13, where we observe that the
closer we get to the singularity, the worse is the noise propagation using Euler angles.
On the other hand, the proposed approach can accurately estimate the measurement
covariance, independently on the motion of the platform.

Real Experiments

We integrated the proposed inertial factors in a monocular VINpipeline to benchmark
its performance against the state of the art. In the following, we first discuss our
implementation, and then present results from an indoor experiment with motion-
capture ground-truth. Finally, we show results from longer trajectories in outdoor
experiments. The results confirm that our approach is more accurate than state-of-
the-art filtering and fixed-lag smoothing algorithms, and enables fast inference in
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Figure C.13 – Kullback-Leibler divergence between the preintegrated rotation covariance –
computed using Euler angles (red) and the proposed approach (blue)– and the ground-truth
covariance. The Euler angle parametrization degrades close to the singularity at θmax = 90 deg
while the proposed on-manifold approach is accurate regardless of the motion.

real-world problems.

Implementation

Our implementation consists of a high frame rate tracking front-end based on SVO3

Forster et al. [2014b] and an optimization back-end based on iSAM2 Kaess et al. [2012]4.
The front-end tracks salient features in the image at camera rate while the back-end
optimizes in parallel the state of selected keyframes as described in this paper.

SVO Forster et al. [2014b] is a precise and robust monocular visual odometry system
that employs sparse image alignment to estimate incremental motion and tracks features
by minimizing the photometric error between subsequent frames. The difference to
tracking features individually, as in standard Lucas-Kanade tracking, is that we exploit
the known depth of features from previous triangulations. This allows us to track all
features as a bundle in a single optimization that satisfies epipolar constraints; hence,
outliers only originate from erroneous triangulations. In the visual-inertial setting, we
further exploit the availability of accurate rotation increments, obtained by integrating
angular velocity measurements from the gyroscope. These increments are used as
rotation priors in the sparse-image-alignment algorithm, and this increases the overall
robustness of the system. The motion estimation is combined with an outlier resistant
probabilistic triangulation method that is implemented with a recursive Bayesian filter.
The high frame-rate motion estimation combined with the robust depth estimation
results in increased robustness in scenes with repetitive and high frequency texture (e.g.,
asphalt). The output of SVO are selected keyframes with feature-tracks corresponding
to triangulated landmarks. This data is passed to the back-end that computes the
visual-inertial MAP estimate in Eq. (C.26) using iSAM2 Kaess et al. [2012].

We remark that our approach does not marginalize out past states. Therefore, while
the approach is designed for fast visual-inertial odometry, if desired, it could be readily

3http://github.com/uzh-rpg/rpg_svo
4http://borg.cc.gatech.edu
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Figure C.14 – Left: two images from the indoor trajectory dataset with tracked features in green.
Right: top view of the trajectory estimate produced by our approach (blue) and 3D landmarks
triangulated from the trajectory (green).

extended to incorporate loop closures.

Indoor Experiments

The indoor experiment shows that the proposed approach is more accurate than two
competitive state-of-the-art approaches, namely OKVIS5 [Leutenegger et al., 2015], and
MSCKF [Mourikis and Roumeliotis, 2007]. The experiment is performed on the 430m-
long indoor trajectory of Fig. C.14. The dataset was recorded with a forward-looking
VI-Sensor [Nikolic et al., 2014] that consists of an ADIS16448 MEMS IMU and two
embedded WVGA monochrome cameras (we only use the left camera). Intrinsic and
extrinsic calibration was obtained using [Furgale et al., 2013]. The camera runs at 20Hz
and the IMU at 800Hz. Ground truth poses are provided by a Vicon system mounted
in the room; the hand-eye calibration between the Vicon markers and the camera is
computed using a least-squares method [Park and Martin, 1994].

Fig. C.15 compares the proposed system against the OKVIS algorithm [Leutenegger
et al., 2015], and an implementation of the MSCKF filter [Mourikis and Roumeliotis,
2007]. Both these algorithms currently represent the state-of-the-art in VIN, OKVIS for
optimization-based approaches, and MSCKF for filtering methods. We obtained the
datasets as well as the trajectories computed with OKVIS and MSCKF from the authors
of [Leutenegger et al., 2015]. We use the relative error metrics proposed in [Geiger et al.,
2012] to obtain error statistics. The metric evaluates the relative error by averaging
the drift over trajectory segments of different length ({10, 40, 90, 160, 250, 360}m in

5https://github.com/ethz-asl/okvis
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Figure C.15 – Comparison of the proposed approach versus the OKVIS algorithm [Leuteneg-
ger et al., 2015] and an implementation of the MSCKF filter [Mourikis and Roumeliotis,
2007]. Relative errors are measured over different segments of the trajectory, of length
{10, 40, 90, 160, 250, 360}m, according to the odometric error metric in [Geiger et al., 2012].

Fig. C.15). Our approach exhibits less drift than the state-of-the-art, achieving 0.3m
drift on average over 360m traveled distance; OKVIS and MSCKF accumulate an average
error of 0.7m. We observe significantly less drift in yaw direction in the proposed
approach while the error in pitch and and roll direction is constant for all methods due
to the observability of the gravity direction.

We highlight that these three algorithms use different front-end feature tracking sys-
tems, which influence the overall performance of the approach. Therefore, while in
Section C.8.1 we discussed only aspects related to the preintegration theory, in this
section we evaluate the proposed system as a whole (SVO, preintegration, structureless
vision factors, iSAM2).

Evaluating consistency in real experiments by means of analysing the average NEES
is difficult as one would have to evalate and average the results of multiple runs of
the same trajectory with different realizations of sensor noise. In Figure C.16 we show
the error plots with the 3-sigma bounds for a single run. The result is consistent as
the estimation errors remain within the bounds of the estimated uncertainty. In this
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Figure C.16 – Orientation and position errors with 3σ bounds for the real indoor experiment in
Fig. C.14.

experiment, we aligned only the first frame of the trajectory with the vicon trajectory.
Therefore, analyzing the drift over 400 meters is very prone to errors in the initial pose
from the ground-truth or errors in the hand-eye calibration of the system.

Figure C.17 illustrates the time required by the back-end to compute the full MAPes-
timate, by running iSAM2 with 10 optimization iterations. The experiment was per-
formed on a standard laptop (Intel i7, 2.4 GHz). The average update time for iSAM2 is
10ms. The peak corresponds to the start of the experiment in which the camera was
not moving. In this case the number of tracked features becomes very large making the
back-end slightly slower. The SVO front-end requires approximately 3ms to process a
frame on the laptop while the back-end runs in a parallel thread and optimizes only
keyframes. Although the processing times of OKVIS were not reported, the approach
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Figure C.17 – Processing-time per keyframe for the proposed VINapproach.

is described as computationally demanding [Leutenegger et al., 2015]. OKVIS needs to
repeat IMU integration at every change of the linearization point, which we avoid by
using the preintegrated IMU measurements.

Outdoor Experiments

The second experiment is performed on an outdoor trajectory, and compares the
proposed approach against the Google TangoPeanut sensor (mapper version 3.15), which
is an engineered VINsystem. We rigidly attached the VI-Sensor to a Tangodevice and
walked around an office building. Fig. C.18 depicts the trajectory estimates for our
approach and Google Tango. The trajectory starts and ends at the same location, hence
we can report the end-to-end error which is 1.5m for the proposed approach and 2.2m
for the Google Tangosensor.

In Fig. C.18 we also show the estimated landmark positions (in green). 3D points
are not estimated by our approach (which uses a structureless vision model), but are
triangulated from our trajectory estimate for visualization purposes.

The third experiment is the one in Fig. C.19. The trajectory goes across three floors
of an office building and eventually returns to the initial location on the ground floor.
Also in this case the proposed approach guarantees a very small end-to-end error
(0.5m), while Tangoaccumulates 1.4m error.

We remark that Tangoand our system use different sensors, hence the reported end-to-
end errors only allow for a qualitative comparison. However, the IMUs of both sensors
exhibit similar noise characteristics [tan, adi] and the Tangocamera has a significantly
larger field-of-view and better shutter speed control than our sensor. Therefore, the
comparison is still valuable to assess the accuracy of the proposed approach.

A video demonstrating the execution of our approach for the real experiments discussed
in this section can be viewed at https://youtu.be/CsJkci5lfco
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Figure C.18 – Outdoor trajectory (length: 300m) around a building with identical start and end
point at coordinates (0, 0, 0). The end-to-end error of the proposed approach is 1.0m. Google
Tango accumulated 2.2m drift. The green dots are the 3D points triangulated from our trajectory
estimate.

Figure C.19 – Real test comparing the proposed VINapproach against Google Tango. The
160m-long trajectory starts at (0, 0, 0) (ground floor), goes up till the 3rd floor of a building,
and returns to the initial point. The figure shows a side view (left) and a top view (right) of
the trajectory estimates for our approach (blue) and Tango(red). Google Tangoaccumulates
1.4m error, while the proposed approach only has 0.5m drift. 3D points triangulated from our
trajectory estimate are shown in green for visualization purposes.

Conclusion

This paper proposes a novel preintegration theory, which provides a grounded way
to model a large number of IMU measurements as a single motion constraint. Our
proposal improves over related works that perform integration in a global frame,
e.g., [Leutenegger et al., 2013, Mourikis and Roumeliotis, 2007], as we do not commit
to a linearization point during integration. Moreover, it leverages the seminal work on
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preintegration [Lupton and Sukkarieh, 2012], bringing to maturity the preintegration
and uncertainty propagation in SO(3).

As a second contribution, we discuss how to use the preintegrated IMU model in a
VINpipeline; we adopt a structureless model for visual measurements which avoids
optimizing over 3D landmarks. Our VINapproach uses iSAM2 to perform constant-time
incremental smoothing.

An efficient implementation of our approach requires 10ms to perform inference (back-
end), and 3ms for feature tracking (front-end). Experimental results also confirm that
our approach is more accurate than state-of-the-art alternatives, including filtering and
optimization-based techniques.

We release the source-code of the IMU preintegration and the structurless vision
factors in the GTSAM 4.0 optimization toolbox [Dellaert, 2012] and provide additional
theoretical derivations and implementation details in the Appendix of this paper.

Appendix

Iterative Noise Propagation

In this section we show that the computation of the preintegrated noise covariance,
discussed in Section C.6.2, can be carried out in iterative form, which leads to simpler
expressions and is more amenable for online inference.

Let us start from the preintegrated rotation noise in (C.42). To write δφij in iterative
form, we simply take the last term (k = j− 1) out of the sum and rearrange the terms:

δφij '
j−1

∑
k=i

∆R̃Tk+1jJ
k
r η

gd
k ∆t (C.59)

=
j−2

∑
k=i

∆R̃Tk+1jJ
k
r η

gd
k ∆t +

=I3×3︷︸︸︷
∆R̃Tjj J

j−1
r η

gd
j−1∆t

=
j−2

∑
k=i

(

=∆R̃k+1j︷ ︸︸ ︷
∆R̃k+1j−1∆R̃j−1j)

TJk
r η

gd
k ∆t + J

j−1
r η

gd
j−1∆t

= ∆R̃Tj−1j

j−2

∑
k=i

∆R̃Tk+1j−1J
k
r η

gd
k ∆t + J

j−1
r η

gd
j−1∆t

= ∆R̃Tj−1jδφij−1 + J
j−1
r η

gd
j−1∆t.
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Repeating the same process for δvij in (C.43):

δvij =
j−1

∑
k=i

[
−∆R̃ik (ãk−ba

i )
∧ δφik∆t + ∆R̃ikηad

k ∆t
]

(C.60)

=
j−2

∑
k=i

[
−∆R̃ik (ãk−ba

i )
∧ δφik∆t + ∆R̃ikηad

k ∆t
]

−∆R̃ij−1
(
ãj−1−ba

i
)∧

δφij−1∆t + ∆R̃ij−1ηad
j−1∆t

= δvij−1−∆R̃ij−1
(
ãj−1−ba

i
)∧

δφij−1∆t+∆R̃ij−1ηad
j−1∆t

Doing the same for δpij in (C.43), and noting that δpij can be written as a function of
δvij (cf. with the expression of δvij in (C.43)):

δpij =
j−1

∑
k=i

[
δvik∆t−1

2
∆R̃ik (ãk−ba

i )
∧ δφik∆t2+

1
2

∆R̃ikηad
k ∆t2

]

=
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∑
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[
δvik∆t− 1

2
∆R̃ik (ãk−ba

i )
∧ δφik∆t2 +

1
2

∆R̃ikηad
k ∆t2

]
+δvij−1∆t−1

2
∆R̃ij−1

(
ãj−1−ba

i
)∧

δφij−1∆t2+
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2

∆R̃ij−1ηad
j−1∆t2

= δpij−1 + δvij−1∆t− 1
2

∆R̃ij−1
(
ãj−1−ba

i
)∧

δφij−1∆t2 +
1
2

∆R̃ij−1ηad
j−1∆t2 (C.61)

Recalling that η∆
ik

.
= [δφik, δvik, δpik], and defining the IMU measurement noise ηd

k
.
=

[η
gd
k ηad

k ],6 we can finally write Eqs. (C.59)-(C.61) in compact matrix form as:

η∆
ij = Aj−1η∆

ij−1 + Bj−1ηd
j−1, (C.62)

From the linear model (C.62) and given the covariance Ση ∈ R6×6 of the raw IMU
measurements noise ηd

k , it is now possible to compute the preintegrated measurement
covariance iteratively:

Σij = Aj−1Σij−1AT
j−1 + Bj−1ΣηBT

j−1 (C.63)

starting from initial conditions Σii = 09×9.

Bias Correction via First-Order Updates

In this section we provide a complete derivation of the first-order bias correction
proposed in Section C.6.3.

6Both η∆
ij and ηd

k are column vectors: we omit the transpose in the definition to keep notation simple.
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Let us assume that we have computed the preintegrated variables at a given bias
estimate b̄i

.
= [b̄g

i b̄a
i ], and let us denote the corresponding preintegrated measurements

as

∆R̄ij
.
= ∆R̃ij(b̄i), ∆v̄ij

.
= ∆ṽij(b̄i), ∆p̄ij

.
= ∆p̃ij(b̄i). (C.64)

In this section we want to devise an expression to “update” ∆R̄ij, ∆v̄ij, ∆p̄ij when our
bias estimate changes.

Consider the case in which we get a new estimate b̂i ← b̄i + δbi, where δbi is a small
correction w.r.t. the previous estimate b̄i.

We start with the bias correction for the preintegrated rotation measurement. The key
idea here is to write ∆R̃ij(b̂i) (the preintegrated measurement at the new bias estimate)
as a function of ∆R̄ij (the preintegrated measurement at the old bias estimate), “plus” a
first-order correction. Recalling Eq. (C.35), we write ∆R̃ij(b̂i) as:

∆R̃ij(b̂i) =
j−1

∏
k=i

Exp
((

ω̃k − b̂g
i

)
∆t
)

(C.65)

Substituting b̂i = b̄i + δbi in the previous expression and using the first-order approxi-
mation (C.4) in each factor (we assumed small δbi):

∆R̃ij(b̂i) =
j−1

∏
k=i

Exp
((

ω̃k − (b̄g
i + δbg

i )
)

∆t
)

(C.66)

'
j−1

∏
k=i

Exp
((

ω̃k − b̄g
i

)
∆t
)

Exp
(
−Jk

r δbg
i ∆t

)
.

Now, we rearrange the terms in the product, by “moving” the terms including δbgd
i to

the end, using the relation (C.11):

∆R̃ij(b̂i)=∆R̄ij

j−1

∏
k=i

Exp
(
−∆R̃k+1j(b̄i)

TJk
r δbg

i ∆t
)

, (C.67)

where we used the fact that by definition it holds that ∆R̄ij = ∏
j−1
k=i Exp

((
ω̃k − b̄g

i

)
∆t
)
.

Repeated application of the first-order approximation (C.7) (recall that δbg
i is small,

hence the right Jacobians are close to the identity) produces:

∆R̃ij(b̂i) ' ∆R̄ijExp

(
j−1

∑
k=i
−∆R̃k+1j(b̄i)

TJk
r δbg

i ∆t

)

= ∆R̄ijExp
(

∂∆R̄ij

∂bg δbg
i

)
(C.68)
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Using (C.68) we can now update the preintegrated rotation measurement ∆R̃ij(b̄i) to
get ∆R̃ij(b̂i) without repeating the integration.

Let us now focus on the bias correction of the preintegrated velocity ∆ṽij(b̂i):

∆ṽij(b̂i) =
j−1

∑
k=i

∆R̃ik(b̂i)
(
ãk − b̄a

i − δba
i
)

∆t (C.69)

(C.68)'
j−1

∑
k=i

∆R̄ikExp
(

∂∆R̄ik

∂bg δbg
i

) (
ãk − b̄a

i − δba
i
)

∆t

(C.4)'
j−1

∑
k=i

∆R̄ik

(
I +

(
∂∆R̄ik

∂bg δbg
i

)∧) (
ãk − b̄a

i − δba
i
)

∆t

(a)' ∆v̄ij −
j−1

∑
k=i

∆R̄ik∆tδba
i +

j−1

∑
k=i

∆R̄ik

(
∂∆R̄ik

∂bg δbg
i

)∧ (
ãk − b̄a

i
)

∆t

(C.2)
= ∆v̄ij −

j−1

∑
k=i

∆R̄ik∆tδba
i −

j−1

∑
k=i

∆R̄ik
(
ãk − b̄a

i
)∧ ∂∆R̄ik

∂bg ∆t δbg
i

= ∆v̄ij +
∂∆v̄ij

∂ba δba
i +

∂∆v̄ij

∂bg δbg
i

Where for (a), we used ∆v̄ij = ∑
j−1
k=i ∆R̄ik

(
ãk − b̄a

i
)

∆t. Exactly the same derivation can
be repeated for ∆p̃ij(b̂i). Summarizing, the Jacobians used for the a posteriori bias
update in Eq. (C.44) are:

∂∆R̄ij
∂bg = −∑

j−1
k=i

[
∆R̃k+1j(b̄i)

T Jk
r ∆t

]
∂∆v̄ij
∂ba = −∑

j−1
k=i ∆R̄ik∆t

∂∆v̄ij
∂bg = −∑

j−1
k=i ∆R̄ik

(
ãk − b̄a

i
)∧ ∂∆R̄ik

∂bg ∆t
∂∆p̄ij
∂ba = ∑

j−1
k=i

∂∆v̄ik
∂ba ∆t− 1

2 ∆R̄ik∆t2

∂∆p̄ij
∂bg = ∑

j−1
k=i

∂∆v̄ik
∂bg ∆t− 1

2 ∆R̄ik
(
ãk − b̄a

i
)∧ ∂∆R̄ik

∂bg ∆t2

Note that the Jacobians can be computed incrementally, as new measurements arrive.

Jacobians of Residual Errors

In this section we provide analytic expressions for the Jacobian matrices of the residual
errors in Eq. (C.45). These Jacobians are crucial when using iterative optimization
techniques (e.g., the Gauss-Newton method of Section C.3.3) to minimize the cost in
Eq. (C.26).

“Lifting” the cost function (see Section C.3.3) consists in substituting the following
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retractions:

Ri ← Ri Exp(δφi), Rj ← Rj Exp(δφj),
pi ← pi + Riδpi, pj ← pj + Rjδpj,
vi ← vi + δvi, vj ← vj + δvi,

δbg
i ← δbg

i + δ̃bg
i , δba

i ← δba
i + δ̃ba

i ,

(C.70)

The process of lifting makes the residual errors a function defined on a vector space, on
which it is easy to compute Jacobians. Therefore, in the following sections we derive
the Jacobians w.r.t. the vectors δφi, δpi, δvi, δφj, δpj, δvj, δ̃bg

i , δ̃ba
i .

Jacobians of r∆pij

Since r∆pij is linear in δbg
i and δba

i , and the retraction is simply a vector sum, the
Jacobians of r∆pij w.r.t. δ̃bg

i , δ̃ba
i are simply the matrix coefficients of δbg

i and δba
i .

Moreover, Rj and vj do not appear in r∆pij , hence the Jacobians w.r.t. δφj, δvj are zero.
Let us focus on the remaining Jacobians:

r∆pij(pi+Riδpi) = RTi

(
pj−pi−Riδpi−vi∆tij−

1
2

g∆t2
ij

)
−C

= r∆pij(pi) + (−I3×1)δpi (C.71)

r∆pij(pj+Rjδpj) = RTi

(
pj+Rjδpj−pi−vi∆tij−

1
2

g∆t2
ij

)
−C

= r∆pij(pj) + (RTi Rj)δpj (C.72)

r∆pij(vi+δvi) = RTi

(
pj−pi−vi∆tij−δvi∆tij−

1
2

g∆t2
ij

)
−C

= r∆pij(vi) + (−RTi ∆tij)δvi (C.73)

r∆pij(Ri Exp(δφi)) = (RiExp(δφi))
T

(
pj − pi − vi∆tij −

1
2

g∆t2
ij

)
− C (C.74)

(C.4)' (I− δφ∧i )R
T
i

(
pj − pi − vi∆tij −

1
2

g∆t2
ij

)
− C

(C.2)
= r∆pij(Ri) +

(
RTi

(
pj − pi − vi∆tij −

1
2

g∆t2
ij

))∧
δφi.
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Where we used the shorthand C .
= ∆p̃ij +

∂∆p̄ij

∂bg
i

δbg
i +

∂∆p̄ij
∂ba

i
δba

i . Summarizing, the

Jacobians of r∆pij are:

∂r∆pij
∂δφi

= (RTi (pj−pi−vi∆tij− 1
2 g∆t2

ij))
∧ ∂r∆pij

∂δφj
= 0

∂r∆pij
∂δpi

= −I3×1
∂r∆pij
∂δpj

= RTi Rj
∂r∆pij
∂δvi

= −RTi ∆tij
∂r∆pij
∂δvj

= 0
∂r∆pij

∂δ̃ba
i
= − ∂∆p̄ij

∂ba
i

∂r∆pij

∂δ̃bg
i
= − ∂∆p̄ij

∂bg
i

Jacobians of r∆vij

As in the previous section, r∆vij is linear in δbg
i and δba

i , hence the Jacobians of r∆vij

w.r.t. δ̃bg
i , δ̃ba

i are simply the matrix coefficients of δbg
i and δba

i . Moreover, Rj, pi, and
pj do not appear in r∆vij , hence the Jacobians w.r.t. δφj, δpi, δpj are zero. The remaining
Jacobias are computed as:

r∆vij(vi + δvi) = RTi
(
vj − vi − δvi − g∆tij

)
− D

= r∆v(vi)− RTi δvi (C.75)

r∆vij(vj + δvj) = RTi
(
vj + δvj − vi − g∆tij

)
− D

= r∆v(vj) + RTi δvj (C.76)

r∆vij(Ri Exp(δφi)) = (Ri Exp(δφi))
T (vj − vi − g∆tij

)
− D

(C.4)' (I− δφ∧i )R
T
i
(
vj − vi − g∆tij

)
− D

(C.2)
= r∆v(Ri) +

(
RTi
(
vj − vi − g∆tij

))∧
δφi, (C.77)

with D .
=
[
∆ṽij +

∂∆v̄ij

∂bg
i

δbg
i +

∂∆v̄ij
∂ba

i
δba

i

]
. Summarizing, the Jacobians of r∆vij are:

∂r∆vij
∂δφi

=
(
RTi
(
vj − vi − g∆tij

))∧ ∂r∆vij
∂δφj

= 0
∂r∆vij
∂δpi

= 0
∂r∆vij
∂δpj

= 0
∂r∆vij
∂δvi

= −RTi
∂r∆vij
∂δvj

= RTi
∂r∆vij

∂δ̃ba
i
= − ∂∆v̄ij

∂ba
i

∂r∆vij

∂δ̃bg
i
= − ∂∆v̄ij

∂bg
i
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Jacobians of r∆Rij

The derivation of the Jacobians of r∆Rij is slightly more involved. We first note that
pi, pj, vi, vj, δba

i do not appear in the expression of r∆Rij , hence the corresponding
Jacobians are zero. The remaining Jacobians can be computed as follows:

r∆Rij(Ri Exp(δφi)) = Log
((

∆R̃ij(b̄
g
i )E
)T

(Ri Exp(δφi))
T
Rj

)
= Log

((
∆R̃ij(b̄

g
i )E
)T

Exp(−δφi)R
T
i Rj

)
(C.11)
= Log

((
∆R̃ij(b̄

g
i )E
)T

RTi RjExp(−RTj Riδφi)
)

(C.9)' r∆R(Ri)− J−1
r (r∆R(Ri))R

T
j Riδφi (C.78)

r∆Rij(Rj Exp(δφj)) = Log
((

∆R̃ij(b̄
g
i )E
)T

RTi (Rj Exp(δφj))
)

(C.9)' r∆R(Rj) + J−1
r (r∆R(Rj))δφj (C.79)

r∆Rij(δbg
i + δ̃bg

i ) = Log
((

∆R̃ij(b̄
g
i )Exp

(∂∆R̄ij

∂bg (δbg
i + δ̃bg

i )
))T

RTi Rj

)
(C.80)

(C.7)' Log
((

∆R̃ij(b̄
g
i ) E Exp

(
Jb

r
∂∆R̄ij

∂bg δ̃bg
i

))T

RTi Rj

)
= Log

(
Exp

(
− Jb

r
∂∆R̄ij

∂bg δ̃bg
i

) (
∆R̃ij(b̄

g
i ) E

)T
RTi Rj

)
= Log

(
Exp

(
− Jb

r
∂∆R̄ij

∂bg δ̃bg
i

)
Exp

(
r∆Rij(δbg

i )
))

(C.11)
= Log

(
Exp

(
r∆Rij(δbg

i )
)
· Exp

(
− Exp

(
r∆Rij(δbg

i )
)T

Jb
r

∂∆R̄ij

∂bg δ̃bg
i

))
(C.9)' r∆Rij(δbg

i )− J−1
r

(
r∆Rij(δbg

i )
)

Exp
(

r∆Rij(δbg
i )
)T

Jb
r

∂∆R̄ij

∂bg δ̃bg
i ,
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where we used the shorthands E .
= Exp

(
∂∆R̄ij
∂bg δbg

)
and Jb

r
.
= Jr

(
∂∆R̄ij
∂bg δbg

i

)
. In summary,

the Jacobians of r∆Rij are:

∂r∆Rij
∂δφi

= −J−1
r (r∆R(Ri))R

T
j Ri

∂r∆Rij
∂δpi

= 0
∂r∆Rij
∂δvi

= 0
∂r∆Rij
∂δφj

= J−1
r (r∆R(Rj))

∂r∆Rij
∂δpj

= 0
∂r∆Rij
∂δvj

= 0
∂r∆Rij

∂δ̃ba
i
= 0

∂r∆Rij

∂δ̃bg
i
= α

(C.81)

with α = −J−1
r

(
r∆Rij(δbg

i )
)

Exp
(

r∆Rij(δbg
i )
)T

Jb
r

∂∆R̄ij
∂bg .

Structureless Vision Factors: Null Space Projection

In this section we provide a more efficient implementation of the structureless vision
factors, described in Section C.7.

Let us consider Eq. (C.55). Recall that Q .
= (I − El(ET

l El)
−1ET

l ) ∈ R2nl×2nl is an
orthogonal projector of El , where nl is the number of cameras observing landmark l.
Roughly speaking, Q projects any vector in R2nl to the null space of the matrix El .
Since El ∈ R2nl×3 has rank 3, the dimension of its null space is 2nl − 3. Any basis
E⊥l ∈ R2nl×2nl−3 of the null space of El satisfies the following relation Meyer [2000]:

E⊥l
(
(E⊥l )

TE⊥l
)−1

(E⊥l )
T = I− El(ET

l El)
−1ET

l . (C.82)

A basis for the null space can be easily computed from El using SVD. Such basis is
unitary, i.e., satisfies (E⊥l )

TE⊥l = I. Substituting (C.82) into (C.55), and recalling that
E⊥l is a unitary matrix, we obtain:

L

∑
l=1
‖E⊥l (E⊥l )T

(
Fl δTX (l) − bl

)
‖2 (C.83)

=
L

∑
l=1

(
E⊥l (E

⊥
l )

T(Fl δTX (l) − bl)
)T(

E⊥l (E
⊥
l )

T(Fl δTX (l) − bl)
)

=
L

∑
l=1

(
Fl δTX (l) − bl

)T
E⊥l

=I3×3︷ ︸︸ ︷
(E⊥l )

TE⊥l (E
⊥
l )

T
(

Fl δTX (l) − bl

)
=

L

∑
l=1
‖(E⊥l )T

(
Fl δTX (l) − bl

)
‖2

which is an alternative representation of the cost function (C.55). This representation
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is usually preferable from a computational standpoint, as it does not include matrix
inversion and can be computed using a smaller number of matrix multiplications.

Rotation Rate Integration Using Euler Angles

In this section, we recall how to integrate rotation rate measurements using the Euler
angle parametrization. Let ω̃k be the rotation rate measurement at time k and η

g
k be the

corresponding noise. Then, given the vector of Euler angles at time k, namely θk ∈ R3,
we can integrate the rotation rate measurement ω̃k and get θk+1 as follows:

θk+1 = θk + [E′(θk)]
−1(ω̃k − η

g
k )∆t, (C.84)

where the matrix E′(θk) is the conjugate Euler angle rate matrix Diebel [2006]. The
covariance of θk+1 can be approximated by a first-order propagation as:

ΣEuler
k+1 = AkΣEuler

k AT
k + BkΣηBT

k (C.85)

where Ak
.
= I3×3 +

∂[E′(θk)]
−1

∂θk
∆t, Bk = −[E′(θk)]

−1∆t, and Ση is the covariance of the

measurement noise η
gd
k .
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REMODE: Probabilistic, Monocular Dense
Reconstruction in Real Time

Matia Pizzoli, Christian Forster, Davide Scaramuzza

Abstract — In this paper, we solve the problem of estimating dense
and accurate depth maps from a single moving camera. A proba-
bilistic depth measurement is carried out in real time on a per-pixel
basis and the computed uncertainty is used to reject erroneous es-
timations and provide live feedback on the reconstruction progress.
Our contribution is a novel approach to depth map computation that
combines Bayesian estimation and recent development on convex
optimization for image processing. We demonstrate that our method
outperforms state-of-the-art techniques in terms of accuracy, while
exhibiting high efficiency in memory usage and computing power.
We call our approach REMODE (REgularized MOnocular Depth Es-
timation) and the CUDA-based implementation runs at 30Hz on a
laptop computer.

Introduction

We present a method to compute an accurate, three-dimensional reconstruction of the
scene observed by a moving camera and provide, in real time, information about the
progress and the reliability of the ongoing estimation process. This problem is highly
relevant in robot perception, where cameras are valuable and widespread sensors. From
a single moving camera, it is possible to collect appearance and range information about
the observed three-dimensional scene. In a multi-view stereo setting, the uncertainty on
the depth measurement depends on the noise affecting image formation, on the camera
poses, and the scene structure. Knowing how these factors affect the measurement
uncertainty, it is possible to achieve arbitrarily high levels of confidence by collecting
measurements from different vantage points. Such a capability is particularly valuable
in robotics. For instance, if the camera is mounted on a robotic arm, the available high
level of mobility can be exploited to disambiguate scene details and occlusions at a
wide range of distances. The monocular setting is also an appealing sensing modality
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Figure D.1 – In monocular dense reconstructions, the probabilistic approach to depth estimation
produces compact and efficient representations. Highly parallelizable implementations are
achieved by estimating the depth for every pixel independently. A smoothing step is nonetheless
required to achieve robustness against noise and mitigate the effect of erroneous measurements.
Figures (a) and (b) show the result of Bayesian depth estimation from multiple views; (c) and
(d) show the same result after the de-noising step that we propose in this paper.

for Micro Aerial Vehicles (MAVs), where strict limitations apply on payload and power
consumption. In this case, the high agility turns the platform into a formidable depth
sensor, able to deal with a wide depth range and capable of achieving arbitrarily high
confidence in the measurement. Inevitably, this high flexibility comes at a cost. The
pose of the camera must be known and its accuracy influences the reconstruction
quality. For a camera, information resides in the changing of the intensity gradient
and this modality naturally fails in presence of low informative scenes that produce
untextured images. It is therefore crucial to know how reliable each measurement is.

Related Work

The problem of reconstructing the scene from images collected by a moving camera
has been studied for more than two decades and is known as Structure from Motion
in computer vision [Hartley and Zisserman, 2003] and Monocular SLAM in robotics
[Davison, 2003]. The growing interest for dense reconstructions has renewed the
attention in multi-view stereo techniques [Matthies et al., 1988, Kang et al., 2001,
Seitz et al., 2006, Furukawa and Ponce, 2010], where the involved computational
complexity used to prevent applications in robot perception. In robotics, the use of
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RGBD cameras is favouring the development of techniques for highly-detailed [Meilland
and Comport, 2013] and spatially-extended reconstructions [Whelan et al., 2013], their
applicability being limited to short range measurements and indoor environments.
The literature in dense stereo is vast and we refer to [Hirschmuller and Scharstein,
2009] for a comparison. However, few relevant works have addressed real-time, dense
reconstruction from a single moving camera and they shed light on some important
aspects. Figure D.1 illustrates the problem we address in this paper. If, on one
hand, estimating the depth independently for every pixel leads to efficient, parallel
implementations, on the other hand the authors of [Gallup et al., 2007, Stühmer
et al., 2010, Newcombe et al., 2011b] argued that, similar to other computer vision
problems, such as image de-noising [Rudin et al., 1992] and optical flow estimation
[Werlberger et al., 2010], a smoothing step is required in order to deal with noise and
spurious measurements. In [Stühmer et al., 2010], smoothness priors were enforced
over the reconstructed scene by minimizing a regularized energy functional based
on aggregating a photometric cost over different depth hypothesis and penalizing
non-smooth surfaces. The authors showed that the integration of multiple images
leads to significantly higher robustness to noise. A similar argument is put forth in
[Newcombe et al., 2011b], where the advantage of photometric cost aggregation [Szeliski
and Scharstein, 2004] over a large number of images taken from nearby viewpoints is
demonstrated. Regularized energy functionals also play an important role in recent
methods for volumetric reconstruction [Zach, 2008, Graber et al., 2011, Forster et al.,
2013], where the three-dimensional surface of a scene is generated by fusing several
depth maps obtained from multi-view stereo. Depending on the scene appearance and
the used stereo baselines, the computed depth maps are potentially noisy and a robust
fusion method helps mitigate the effect of wrong depth estimations.

However, despite the ground-breaking results, these approaches present some limita-
tions when addressing tasks in robot perception. Equally weighting measurements
from small and large baselines, in close and far scenes, causes the aggregated cost
to frequently present multiple or no minima. Depending on the depth range and
sampling, these failures are not always recoverable by the subsequent optimization
step. Furthermore, an inadequate number of images can lead to a poorly constrained
initialization for the optimization and erroneous measurements that are hard to detect.
It is not clear how many images should be collected, depending on the motion of the
camera and the scene structure. Finally, the number of depth hypotheses controls the
computational complexity, and the applicability is, thus, limited to scenes bounded in
depth.

Contributions and Outline

The discussed limitations are overcome by probabilistic approaches handling measure-
ment uncertainty. A compact representation and a Bayesian depth estimation from
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multi-view stereo were proposed in [Vogiatzis and Hernández, 2011]. We build on their
results for per-pixel depth estimation and introduce an optimization step to enforce
spatial regularity over the recovered depth map. We propose a regularization term
based on the weighted Huber norm but, differently from [Newcombe et al., 2011b], we
use the depth uncertainty to drive the smoothing and exploit a convex formulation for
which a highly parallelizable solution scheme has been recently introduced [Chambolle
and Pock, 2011]. The contributions of this paper are the following:

• a probabilistic depth map, in which the Bayesian scheme in [Vogiatzis and
Hernández, 2011] is integrated in a monocular SLAM algorithm to estimate
per-pixel depths based on the live camera stream;

• a fast smoothing method that takes into account the measurement uncertainty to
provide spatial regularity and mitigates the effect of noisy camera localization.

The outline of the paper follows. In Section D.2 we detail our method for depth
estimation from monocular views and in Section D.3 we provide the implementation
details. Section D.4 is dedicated to the discussion on the experimental evaluation.
Finally, in Section D.5, we summarize our contribution and draw the conclusion.

Monocular Dense Reconstruction

Considerations

The solution we propose to compute a dense reconstruction from a single moving
camera is motivated by the following considerations.

A measure of uncertainty is needed in robotic perception many reconstruction
pipelines previously proposed in computer vision and graphics literature aim at
providing visually appealing maps. In contrast, we are interested in accurately mapping
the environment in order to allow robotic tasks, such as autonomous navigation and
exploration, active perception or situation awareness in the case of human-operated
systems. As a passive sensing modality, measurement uncertainty in monocular multi-
view stereo is related to the camera motion and the amount of visual information
present in the scene (e.g. texture). A probabilistic depth map handles measure
uncertainty, thus, allowing efficient updating, optimal sensor placement, and fusion
with different sensors.

A dense reconstruction is needed to interact sparse visual maps based on image
features have been successfully used in robotics, e.g. to solve the SLAM problem.
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However, feature definitions change between sensing modalities and tasks; dense
representations are, thus, required to actually solve the problem of registering data
among largely different vantage points based on the three-dimensional structure
[Forster et al., 2013]. When the task involves physical interaction with the environment—
as in obstacle avoidance, path planning and manipulation—the highest achievable level
of detail is desirable in order to estimate the surfaces involved in the interaction.

Perception must be fast differently from many state-of-the-art systems, in order to be
useful in robot perception our pipeline must run in real-time using the robot’s on-board
computing power. Depth estimation must be updated efficiently and the uncertainty in
the estimation must improve according to the information conveyed by the image and
the current camera pose.

In the designing of the monocular multi view stereo algorithm, these considerations
naturally bring to the formulation of the following requirements: depth estimation
must take into account the uncertainty arising from the scene and the camera pose
and the estimation must be carried out on-line and updated sequentially. Bayesian
estimation offers a natural way to deal with measure uncertainty, to handle sequential
measurement updates and to reject unreliable estimations in an on-line fashion.

Depthmap from Multi View Stereo

We formulate the depth computation as a Bayesian estimation problem. Each obser-
vation provides a depth measurement by triangulating from the reference view and
the last acquired view. The depth of a pixel is described by a parametric model that is
updated on the basis of the current observation. Finally, smoothness on the resulting
depth map is enforced by minimizing a regularized energy functional.

Bayesian Estimation

Let the rigid body transformation Tk,w ∈ SE(3) describe the pose of the camera
acquiring the k-th view, i.e., Tk,w transforms scene points w p ∈ R3 from the world
frame to the frame of the k-th camera pose: kp = Tk,w wp.

We denote the intensity image collected from the k-th camera pose as Ik : Ω ⊂ R2 7→ R,
where Ω is the image domain. We denote by u ∈ Ω a point in image coordinates.

An observation is a pair {Ik, Tk,w}. A sequence of n observations is identified by
the sequence of time steps k = r, . . . , r + n, in which the r-th observation is taken
as reference. A depth hypothesis dk is generated from the observation {Ik, Tk,w} by
triangulating u from the views r and k.
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D.2. Monocular Dense Reconstruction

The sequence of dk for k = r, . . . , r + n denotes a set of noisy depth measurements. We
model the depth sensor as a distribution that mixes a good measurement (normally
distributed around the true depth d̂) and an outlier measurement (uniformly distributed
in an interval [dmin, dmax] which is known to contain the depth for the structure of
interest):

p(dk|d̂, ρ) = ρN (dk|d̂, τ2
k ) + (1− ρ)U (dk|dmin, dmax), (D.1)

where ρ and τ2
k are the probability and the variance of a good measurement, respectively.

Assuming independent observations, the Bayesian estimation for d̂ on the basis of the
measurements dr+1, . . . , dk is given by the posterior

p(d̂, ρ|dr+1, . . . , dk) ∝ p(d̂, ρ)∏
k

p(dk|d̂, ρ), (D.2)

with p(d̂, ρ) being a prior on the true depth and the ratio of good measurements
supporting it. A sequential update is implemented by using the estimation at time
step k− 1 as a prior to combine with the observation at time step k. To this purpose,
the authors of [Vogiatzis and Hernández, 2011] show that the posterior in (D.2) can
be approximated by the product of a Gaussian distribution for the depth and a Beta
distribution for the inlier ratio:

q(d̂, ρ|ak, bk, µk, σ2
k ) = Beta(ρ|ak, bk)N (d̂|µk, σ2

k ), (D.3)

where ak and bk are the parameters controlling the Beta distribution. The choice
is motivated by the fact that the Beta × Gaussian is the approximating distribution
minimizing the Kullback-Leibler divergence from the true posterior (D.2). Upon the
k-th observation, the update takes the form

p(d̂, ρ|dr+1, . . . , dk) ≈ q(d̂, ρ|ak−1, bk−1, µk−1, σ2
k−1) p(dk|d̂, ρ) const (D.4)

and the authors of [Vogiatzis and Hernández, 2011] approximated the true posterior
(D.4) with a Beta × Gaussian distribution by matching the first and second order
moments for d̂ and ρ. The updates formulas for ak, bk, µk and σ2

k are thus derived and
we refer to the original work in [Vogiatzis and Hernández, 2011] for the details on the
derivation.

Regularized Posterior

We now detail our solution to the problem of smoothing the depth map D(u). For
every pixel u ∈ Ω, the depth estimation and its confidence upon the k-th observation
are given, respectively, by µk and σ2

k in (D.3). We formulate the problem of computing
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a de-noised depth map F(u) as the following minimization:

min
F

∫
Ω
{G(u) ‖∇F(u)‖ε + λ ‖F(u)− D(u)‖1} du, (D.5)

where λ is a free parameter controlling the trade-off between the data term and
the regularizer, and G(u) is a weighting function related to the “G-Weighted Total
Variation”, introduced in [Bresson et al., 2007] in the context of image segmentation.
We penalize non-smooth surfaces by making use of a regularization term based on the
Huber norm of the gradient, defined as:

‖∇F(u)‖ε =

{ ||∇F(u)||22
2ε if ||∇F(u)||2 ≤ ε,

||∇F(u)||1 − ε
2 otherwise .

(D.6)

We chose the Huber norm because it allows smooth reconstruction while preserving
discontinuities at strong depth gradient locations ([Newcombe et al., 2011b]). The
weighting function G(u) influences the strength of the regularization and we propose
to compute it on the basis of the measure confidence for u:

G(u) = Eρ[q](u)
σ2(u)
σ2

max
+
{

1−Eρ[q](u)
}

, (D.7)

where we have extended the notation for the expected value of the inlier ratio Eρ[q] and
the variance σ2 in (D.3) to account for the specific pixel u. The weighting function (D.7)
affects the strength of the regularization term: for measurements with a high expected
value for the inlier ratio ρ the weight is controlled by the measurement variance σ2;
measurements characterized by a small variance (i.e. reliable measurements) will be
less affected by the regularization; differently, the contribution of the regularization
term will be heavier for measurements characterized by a small expected value for the
inlier ratio or higher measurement variance.

The solution to the minimization problem (D.5) is computed iteratively based on
the work in [Chambolle and Pock, 2011]. The algorithm exploits the primal dual
formulation of (D.5),

min
F

max
F∗
〈diag(G)∇F, F∗〉+ λ||C− D||1 − δF∗(F∗)− ε

2
||F∗||22,

and proceeds by alternating gradient descent and ascent steps in the primal and dual
variables, namely F and F∗. The indicator function δF∗(F∗) is such that, for each F∗,
δF∗(F∗) = 0 if ||F∗||1 ≤ 1, and otherwise ∞. Let t and t∗ be the time steps for the
gradient descent-ascent with respect to the primal and dual variable. The update steps
in the case of the Weighted-Huber de-noising model (D.5) take the form
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Figure D.2 – Computation of the measurement uncertainty. The camera poses acquiring the
views Ir and Ik are related by the transformation Tk,r. The camera centres Cr, Ck and the current
estimation of the scene point rp lie on the epipolar plane.The variance corresponding to one
pixel along the epipolar line passing through e′ and u′ is computed as τ2

k = (||rp+|| − ||rp||)2.

F∗n+1 = prox
(

F∗n + t∗(diag(G)∇)F̄
1 + t∗ε

)
,

Fn+1 = shrink
(

Fn − t
(
∇Tdiag(G)

)
F∗n+1

)
, (D.8)

F̄n+1 = 2Fn+1 − Fn,

where the resolvent operators are

prox( f̃ ∗) =
f̃ ∗

max(1, | f̃ ∗|) , shrink( f̃ ) =


f̃ − tλ if f̃ − d > tλ

f̃ + tλ if f̃ − d < −tλ

d if | f̃ − d| ≤ tλ

(D.9)

and d is the noisy depth value corresponding to a specific pixel.

Implementation Details

The monocular reconstruction pipeline is designed to run in real time on a commodity
laptop, using a CPU and a GPU. The proposed probabilistic depth map and convex
optimization lead to highly parallel algorithms and we based our implementation on
CUDA1.

1http://www.nvidia.com

139



Appendix D. Probabilistic, Monocular Dense Reconstruction

Camera pose estimation

At every time step k, the pose of the camera Tk,r in the depth map reference frame r is
computed by a visual odometry routine that is based on recent advancement on semi-
direct methods for camera localization [Forster et al., 2014b]. The algorithm operates
directly on the image intensity, eliminating the need for costly feature extraction and
resulting in sub-pixel accuracy at high frame-rates. Three-dimensional map points are
estimated making use of the probabilistic method described in Section D.2.2, which
proved at the same time highly robust, accurate and computationally efficient. Our
implementation is characterized by an average drift in pose of 0.0038 metres per second
for an average depth of 1 metre and a computing time of 3.3 milliseconds per acquired
image on the experimental platform detailed in Section D.4. The visual odometry
algorithm is run by the CPU, and its accuracy and efficiency support the simultaneous
execution of the monocular reconstruction pipeline.

Measurement update

The parametric model in (D.3) is a compact representation, as it stores our confidence
in the depth measurement corresponding to a pixel in only four parameters: a, b, µ

and σ. When a reference frame is taken, the estimation for every pixel is initialized and
updated with every subsequent view. We set the initial parameters a0 = 10, b0 = 10,
µ0 = 0.5(dmin + dmax) and σ0 = σmax, where σmax is such that 99% of the probability
mass lies in the interval [dmin, dmax]. Upon the acquisition of the k-th view, the update
introduced in [Vogiatzis and Hernández, 2011] is performed for every pixel of the
reference view. We perform the update until the depth estimation converges or diverges.
At this point, we can either consider the measurement reliable or discard it. We check
the convergence and divergence conditions by looking at the variance of the depth
posterior σ2

k and the estimated inlier ratio ρk. Let ηinlier and ηoutlier be thresholds on the
estimated inlier ratio and σthr be a threshold on the variance of the depth posterior. We
have three cases:

• if Eρ[q] > ηinlier and σ2
k < σ2

thr, then the estimation has converged;

• else if Eρ[q] < ηoutlier, then the estimation has diverged;

• otherwise, the estimation continues.

The parameters ηinlier, ηoutlier and σthr control the estimation convergence and can be
set according to the accuracy and robustness requirements for the application at hand.

In order to deal with higher depth ranges, we base our implementation on the inverse
depth [Civera et al., 2008] and use the currently estimated variance to limit the search
for correspondence on the epipolar line.
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Measurement uncertainty

When triangulating matched points to estimate the depth from multiple views, frames
taken from nearby vantage points are less affected by occlusions and allow high quality
matches. On the other hand, a large baseline enables a more reliable depth estimation
but with a higher chance to incur in occluded regions.

Referring to Figure D.2, let rp be the current estimation of the scene point corresponding
to the pixel u in the image Ir. The variance on the position of rp is obtained by back-
projecting a constant variance of one pixel in the image Ik. Let t be the translation
component of Tk,r and f = rp

||rp|| , then

a =r p− t, α = arccos
(

f · t
||t||

)
, β = arccos

(
− a · t
||a|| · ||t||

)
. (D.10)

Let f be the camera focal length. The angle spanning one pixel can be added to β in
order to compute γ and, thus, by applying the law of sines, recover the norm of rp+:

β+ = β + 2 tan−1
(

1
2 f

)
γ = π − α− β+ ||rp+|| = ||t||sin β+

sin γ
. (D.11)

Therefore, the measurement uncertainty is computed as

τ2
k =

(
||rp+|| − ||rp||

)2 . (D.12)

Experimental Evaluation

The platform we used for the experimental evaluation of the proposed monocular
reconstruction method is an Intel i7-3720QM based laptop, equipped with 15 GB of
RAM, and an NVIDIA Quadro K2000M GPU with 384 CUDA cores.

We chose the dataset presented in [Handa et al., 2012] in order to quantitatively evaluate
our approach. The dataset consists of views generated through ray-tracing from a
three-dimensional synthetic model. Along with each view, the related exact camera
pose and depth maps are made available. Table D.1 summarizes the details for the
sequences used in the evaluation.

Table D.1 – Datasets for comparison against ground truth.

Frames Range Mean Motion Speed
[m] [m] [m] [m/s]

Over table 200 0.827-2.84 1.531 4.576 0.686
Fast motion 900 0.971-6.802 2.015 21.6 1.61
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Figure D.3 – Quantitative evaluation on the over table sequence. In (a) the precision is plotted,
namely the percentage of converged estimations that are within a certain error from the ground
truth. In (b) the completeness is plotted, namely the percentage of ground truth measurements
that are within a certain error from the converged estimations.

0.0 0.1 0.2 0.3 0.4 0.5
Error [m]

0

20

40

60

80

100

P
re

ci
si

on
[%

]

Vogiatzis and Hernandez 2011

This paper

(a)

0.0 0.1 0.2 0.3 0.4 0.5
Error [m]

0

10

20

30

40

50

60

C
om

p
le

te
n

es
s

[%
]

Vogiatzis and Hernandez 2011

This paper

(b)

Figure D.4 – Quantitative evaluation on the fast motion sequence. In (a) the precision is plotted,
namely the percentage of converged estimations that are within a certain error from the ground
truth. In (b) the completeness is plotted, namely the percentage of ground truth measurements
that are within a certain error from the converged estimations.

Over table identifies a sequence of views collected down-looking on a desktop scenario.
The sequence is characterized by a frame rate of 30 frames per second and smooth
camera motion. The sequence identified as fast motion is a collection of views generated
at 60 frames per second with large and sudden changes of vantage point. The evalua-
tion is based on comparison with the ground truth depth map corresponding to the
view taken as reference in the reconstruction process. Two depth maps are compared
by computing the sum of the per-pixel absolute difference. Since we are interested in
evaluating the depth measurements that have been identified as reliable by our algo-
rithm, we only take into account those measurements that have converged according to
Section D.3.2. We therefore use the converged measurements to create the masks (e) in
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Figure D.8 and Figure D.9, which are used in the comparison. We define two evaluation
metrics: precision, namely the percentage of converged measurements that fall below
a certain error when compared to the relative ground truth, and completeness, namely
the percentage of ground truth depths that have been estimated by the proposed
method within a certain error. In order to show the effectiveness of our approach,
we compare our results with depth maps computed according to the state-of-the-art
method introduced in [Vogiatzis and Hernández, 2011]. This work is at the basis of
our probabilistic treatment and, so far, its applicability has been demonstrated only for
reconstruction of small objects. For our comparison using the ground truth sequences,
the parameters defining reliable measures have been set at ηinlier = 0.6, ηoutlier = 0.05
and σthr = σmax/103. The parameters governing the optimization were set at ε = 10−4

and λ = 0.3, and 200 iterations of the primal-dual update in (D.8) were run.

Figure D.3 reports the result of the evaluation on the over table sequence. Our approach
is capable to recover a number of erroneous depth estimations, thus yielding a sensible
improvement in terms of accuracy and completeness. To verify the robustness against
noisy camera pose estimation, we corrupted the camera position with Gaussian noise,
with zero mean and one centimetre standard deviation on each coordinate. The results
show that the completeness drops. This is inevitable due to the smaller number of
converged estimations. However, the computation of the depth map takes advantage
of the de-noising step. This trend is even more evident in the fast motion sequence,
depicted in Figure D.9. Here, according to the results in Figure D.4, the advantage
of our approach is clearly demonstrated in terms of both precision and completeness.
Handling measurement uncertainty, the probabilistic treatment of depth allows us
to select the optimal trade-off between precision and accuracy by varying the σthr

parameter. Figure D.5 shows how, for a given error tolerance, the completeness varies
as a function of the variance σ2 that characterizes a reliable measurement. We can see,
for instance, that using a threshold σthr = 6× 10−4, which is approximately 2× 103

times the initialization value σmax, more than 60% of the depth measurements computed
by our method are affected by an error up to 15 centimetres, that is approximately 2.6%
of the full depth range.

In order to demonstrate the effectiveness of the proposed approach on real time
reconstructions, we present our results on the City of Sights stage set [Gruber et al.,

Table D.2 – Computing time for the evaluation data

Update time [s] Optimization time [s]

Mean Variance Mean Variance

Over table 0.0382 0.0025 0.1107 0
Fast motion 0.0499 0.0035 0.1149 0
Live acquisition 0.0301 0.0011 0.1122 0.0044
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2010]. We computed a point cloud from different depth maps acquired by a single
hand-held camera. Our reconstruction pipeline was fed with images and camera poses
computed by the underlying visual odometry (cfr. Section D.3.1) at 30 frames per
second.
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Figure D.5 – The percentage of ground truth
measurements that are within an error of 5 and
15 centimetres is plotted as a function of the
measurement variance σ2.

Figure D.6 depicts the process of a live
depth map acquisition. During the re-
construction, the convergence and di-
vergence of estimations are displayed
as a live feedback for the user (blue and
red respectively in the figure), guiding
the motion of the camera to acquire por-
tions of the scene for which the estima-
tion has not yet converged or diverged.
A qualitative evaluation of the results
can be drawn from Figures D.6 and D.7.
The minimization in (E.3) imposes a
smoothness constraint on the resulting
surface and acts as a prior when the
estimation is uncertain. Wrong depth
computations, caused by shadows or
matching errors (see Figure D.6b), cause the respective estimations to diverge (red
points in Figure D.6d). The de-noising step propagates the depth value produced
by converged measurements to those neighbours yielding low confidence, which are
characterized by diverged measurements. The final result, in the form of a coloured
point cloud rendered from two different viewpoints, is depicted in Figure D.7.

Finally, the proposed method is suitable for real time execution, as can be seen in
Table D.2, where we have reported the computing time for the evaluation sequences.
The computational cost of the proposed method is dominated by the search for cor-
respondences on the epipolar line. When the motion of the camera is smooth, like in
the cases of the over table dataset and live acquisition, the region selected for the search
is small; when the camera motion forms large baselines, then the candidate search
area is wider, affecting the computing time as in the case of the fast motion dataset.
The depth range characterizing the volume of interest for the reconstruction also plays
an important role, as the measurement uncertainty is higher for distant points (cfr.
Section D.3.3). This causes the depth estimation to require a larger number of views
to converge. Nonetheless, the estimation update runs in real time on the live 30 fps
camera stream, for a camera resolution of 752× 480 pixels. The computational cost of
the optimization step depends only on the image size and number of iterations, and
is thus constant among an evaluation sequence. Optimization was run several times
during the live acquisition, triggered by the instantiation of new reference frames, while
for the ground truth sequences the single optimization step that is performed motivates
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(a) (b) (c) (d)

Figure D.6 – Depth map computation for the City of Sights stage set [Gruber et al., 2010]. Dark
points are close, bright points are far. Blue and red identify converged and diverged estimations,
respectively.

Figure D.7 – Reconstructed point clouds for the City of Sights stage set [Gruber et al., 2010].

the 0 variance entries in Table D.2.

A video demonstrating the reconstruction of scenes acquired by a hand-held camera
and a flying robot, is available at the website http://rpg.ifi.uzh.ch/research_dense.html.

Conclusion

In this paper we presented REMODE, a probabilistic approach to monocular dense
reconstruction for robot perception. Our method computes depth maps by combin-
ing Bayesian estimation and recent developments in convex optimization for image
processing. We showed how a probabilistic update scheme can produce a compact
and efficient representation of a depth map and its related uncertainty. In order to
achieve real time execution on a live camera stream, we parallelized the computation
of a depth map by considering each pixel independently. Afterwards, we introduced a
fast smoothing step that takes into account the measurement uncertainty to enforce
spatial regularity and mitigates the effect of noisy camera localization. We evaluated
our method in terms of accuracy and completeness, showing a sensible improvement
with respect to the current state-of-the-art. By handling measurement uncertainty,
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our method provides real time information about the progress and the reliability of
the ongoing reconstruction process. This information is highly valuable to drive the
reconstruction, that is, to determine what views are most informative for the task at
hand.
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Figure D.8 – The over table evaluation sequence. (a): the reference view. (b): ground truth depth
map. (c): depth map based on [Vogiatzis and Hernández, 2011]. (d): depth map computed by
the proposed method. (e): map of reliable measurement according to Section D.3.2. (f): error
for the proposed method.
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Figure D.9 – The fast motion evaluation sequence. (a): the reference view. (b): ground truth
depth map. (c): depth map based on [Vogiatzis and Hernández, 2011]. (d): depth map computed
by the proposed method. (e): map of reliable measurement according to Section D.3.2. (f): error
for the proposed method.
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Continuous On-Board
Monocular-Vision–based Elevation

Mapping Applied to Autonomous Landing
of Micro Aerial Vehicles

Christian Forster, Matthias Faessler, Flavio Fontana,
Manuel Werlberger, Davide Scaramuzza

Abstract — In this paper, we propose a resource-efficient system for
real-time 3D terrain reconstruction and landing-spot detection for
micro aerial vehicles. The system runs on an on-board smartphone
processor and requires only the input of a single downlooking camera
and an inertial measurement unit. We generate a two-dimensional
elevation map that is probabilistic, of fixed size, and robot-centric,
thus, always covering the area immediately underneath the robot.
The elevation map is continuously updated at a rate of 1 Hz with
depth maps that are triangulated from multiple views using recursive
Bayesian estimation. To highlight the usefulness of the proposed map-
ping framework for autonomous navigation of micro aerial vehicles,
we successfully demonstrate fully autonomous landing including
landing-spot detection in real-world experiments.

Introduction

Autonomous Micro Aerial Vehicles (MAVs) will soon play a major role in industrial in-
spection, agriculture, search and rescue and consumer goods delivery. For autonomous
operations in these fields, it is crucial that the vehicle is at all times fully aware of the
surface immediately underneath: First, during normal operation, the vehicle should
maintain a minimum distance to the ground surface to avoid crashing. Second, for
autonomous landing, the MAV needs to identify, approach and land at a safe site
without human intervention. Knowing the ground surface in previously-unknown
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Figure E.1 – Illustration of the local elevation map E. The two-dimensional probabilistic grid
map is of fixed size and centered below the MAV’s position. The MAV updates the map
continuously at a rate of 1 Hz using only the on-board smartphone processor and data from a
single down-looking camera. The map enables the robot to autonomously detect and approach
a landing spot S at any time (green trajectory).

environments is invaluable in case of forced landings due to emergencies like commu-
nication loss as well as for planned landings for, e.g., saving energy during monitoring
operations or for the delivery of goods.

Large-scale Unmanned Aerial Vehicles (UAVs) often use range sensors to detect hazards,
avoid obstacles or to land autonomously [Johnson et al., 2002, Scherer et al., 2012].
However, these active sensors are expensive, heavy and quickly drain the battery when
used on small MAVs. Instead, given efficient and robust computer vision algorithms,
active range sensors can be replaced by a single downward-looking camera. This setup
is lightweight, cost effective, and, as shown in previous works [Scaramuzza et al., 2014],
allows accurate localization and stabilization of the MAV in GPS denied environments,
such as indoors, close to buildings, or below bridges.

In contrast to stereo and RGBD-cameras with fixed baselines, a single moving camera
may be seen as a stereo setting that can dynamically adjust its baseline according to
the required measurement accuracy as well as the structure and texture of the scene.
Indeed, a single moving camera represents the most general setting for stereo vision.
This property was previously exploited for real-time 3D terrain reconstruction from
aerial images in order to detect landing spots [Johnson et al., 2005, Bosch et al., 2006,
Desaraju et al., 2014] or for visualization purposes [Weiss et al., 2011a, Wendel et al.,
2012, Pizzoli et al., 2014, Faessler et al., 2015].

In this paper, we propose a system for mapping the local ground environment un-
derneath an MAV equipped with a single camera. Detailed dense and textured
reconstructions are valuable for human operators and can be computed in real-time
but off-board by streaming images to a ground station as shown in [Wendel et al.,
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2012, Pizzoli et al., 2014, Faessler et al., 2015]. In order to work also for emergency
maneuvers or autonomous flying in remote areas without the availability of a ground
station, we restrict the system to solely use the computing capability on-board the
MAV. To achieve this objective we utilize a coarse two-dimensional elevation map
[Fankhauser et al., 2014] as on-board map representation, which is sufficient for many
autonomous maneuvers in outdoor environments. A further advantage compared to
other map representations, such as surface meshes [Weiss et al., 2011a], is the regular
sampling of the surface and the possibility to fuse multiple elevation measurements via
a probabilistic representation. The proposed system runs continuously on an on-board
smartphone processor and updates the robot-centric elevation map of fixed dimension
at a rate of 1 Hz. The system does not require any prior information of the scene or
external navigation aids such as GPS.

Related Work

Real-time dense reconstruction with a single camera has been previously demonstrated
in [Gallup et al., 2007, Stühmer et al., 2010, Newcombe et al., 2011b, Wendel et al., 2012,
Pizzoli et al., 2014]. However, all previous approaches rely on heavy GPU parallelization
and therefore can currently not be computed with the on-board computing power of an
MAV. In [Pizzoli et al., 2014] we presented the REMODE (regularized monocular depth
estimation) algorithm and demonstrated live but off-board dense mapping from an
MAV. Therefore, we streamed on-board pose estimates provided by an accurate visual
odometry algorithm [Forster et al., 2014b] together with images at a rate of 10 Hz to a
ground station that was equipped with a powerful laptop computer and was capable
to compute dense depth maps in real-time. In the current paper, we utilize REMODE
to build a 2D elevation map and present modifications to the algorithm to run it on a
smartphone CPU on-board the MAV.

Early works on vision-based autonomous landing for Unmanned Aerial Vehicles (UAV)
were based on detecting known planar shapes (e.g., helipads with “H” markings) in
images [Saripalli et al., 2002] or on the analysis of textures in single images [Garcia-
Pardo et al., 2002]. Later works (e.g., [Johnson et al., 2005, Bosch et al., 2006, Desaraju
et al., 2014]) assessed the risk of a landing spot by evaluating the roughness and
inclination of the surface using 3D terrain reconstruction from images.

The first demonstration of vision based autonomous landing in unknown and haz-
ardous terrain is described in [Johnson et al., 2005]. Similar to our work, structure-
from-motion was used to estimate the relative pose of two monocular images and
subsequently, a dense elevation map with a resolution of 19× 27 cells was computed
by matching and triangulating 600 regularly sampled features. The evaluation of the
roughness and slope of the computed terrain map resulted in a binary classification of
safe and hazardous landing areas. While this work detects the landing spot entirely
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Figure E.2 – Overview of the main components and connections in the proposed system. All
modules are running on-board the MAV.

based on two selected images, we continuously make depth measurements and fuse
them in a local elevation map.

In [Bosch et al., 2006], homography estimation was used to compute the motion of
the camera as well as to recover planar surfaces in the scene. Similar to our work, a
probabilistic two-dimensional grid was used as map representation. However, the grid
stored the probability of the cells being flat and not the actual elevation value as in our
approach, therefore, barring the possibility to use the map for obstacle avoidance.

While previously mentioned works were passive in the sense that the exploration flight
was pre-programmed, recent work [Desaraju et al., 2014] was actively choosing the best
trajectory to explore and verify a landing spot. Due to computational complexity, the
full system could not run entirely on-board in real-time. Thus, outdoor experiments
were processed on datasets. In contrast to our work, only two frames were used to
compute dense motion stereo, hence a criterion, based on the visibility of features and
the inter-frame baseline, was needed to select two images. The probabilistic depth
estimation in our work not only allows using every image for robust incremental
estimation but also provides a measure of uncertainty that can be used for planning
trajectories minimizing the uncertainty as fast as possible [Forster et al., 2014a].
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Contributions

The contribution of this work is a monocular-vision–based 3D terrain scanning system
that runs in real-time and continuously on a smartphone processor on-board an MAV.
Therefore, we introduce a novel robot-centric elevation map representation to the MAV
research community. To highlight the usefulness of the proposed elevation map, we
demonstrate both indoor and outdoor experiments of a fully integrated landing spot
detection and autonomous landing system for a lightweight quadrotor.

System Overview

Figure E.2 illustrates the proposed systems’ main components and their linkage:

We use our Semi-direct Visual Odometry (SVO) [Forster et al., 2014b] to estimate the
current MAV’s pose given the image stream from the single downward-looking camera.1

However, with a single camera we can obtain the relative camera motion only up to an
unknown scale factor.

Therefore, in order to align the pose correctly with the gravity vector, and to estimate
the scale of the trajectory, we fuse the output of SVO with the data coming from
the on-board inertial measurement unit (IMU). For integrating the IMU’s data, we
use the MSF (multi-sensor fusion) software package [Lynen et al., 2013], which utilizes
an extended Kalman filter.2 Next, we compute depth estimates with a modified
version of the REMODE (REgularized MOnocular Depth Estimation) [Pizzoli et al., 2014]
algorithm. Details on the modifications of the REMODE algorithm for computing
probabilistic depth maps purely relying on the on-board computing capability are
given in Section E.3.

The generated depth maps are then used to incrementally update a 2D robot-centric
elevation map [Fankhauser et al., 2014]. Since the elevation map is probabilistic, we
perform a Bayesian update step for the elevation values of the affected cells, whenever
a new depth map is available. In addition, the elevation map moves together with the
robot’s pose as it is local and robot-centric. More details on the update steps and how
to incorporate the depth measurements are given in Section E.4.

The flight trajectory of the MAV is provided by the path planning module which can be
implemented in different ways: For instance, it has a pre-programmed flight path, or it
obtains way-points from a remote operator, or it uses active vision in order to select
the next-best views to make the current depth map converge as fast as possible. For
further details on the active vision approach, we refer to [Forster et al., 2014a].

1Available at http://github.com/uzh-rpg/rpg_svo
2Available at https://github.com/ethz-asl/ethzasl_msf
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Figure E.3 – Overview of the monocular dense reconstruction system.

As an exemplar application of the given system, we show an autonomous landing
of the MAV. Therefore, an additional module for landing-spot detection based on the
elevation map is presented in Section E.5.

Monocular Dense Reconstruction

In the following, we summarize the REMODE (REgularized MOnocular Depth Estima-
tion) algorithm, which we introduced in [Pizzoli et al., 2014], and describe the necessary
modifications to run the algorithm in real-time on a smartphone processor on-board
the MAV.

An overview of the algorithm is given in Figure E.3. The algorithm computes a dense
depth map for selected reference views. The depth computation for a single pixel
is formalized as a Bayesian estimation problem. Therefore, a so called depth filter
is initialized for all pixels in every newly selected reference image Ir (see Figure
E.4). Every subsequent image Ik is used to perform a recursive Bayesian update step
of the depth estimates. The selection of reference frames — hence the amount of
generated depth maps given a sequence of images — is based on two criterions: a new
reference view is selected whenever (1) the uncertainties of the given depth estimates
are below a certain threshold (thus the depth map has converged), or (2) when the
spatial distance between the current camera pose and the reference view is larger than
a certain threshold. After the depth map converged, we enforce its smoothness by
applying a Total Variation (TV) based image filter.
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Figure E.4 – Probabilistic depth estimate ρ̂i for pixel i in the reference frame r. The point at the
true depth projects to similar image regions in both images (blue squares). Thus, the depth
estimate is updated with the triangulated depth ρ̃k

i computed from the point u′i of highest
correlation with the reference patch. The point of highest correlation lies always on the epipolar
line in the new image.

Depth Filter

Given a new reference frame Ir, a depth filter is initialized for every pixel with a high
uncertainty in depth and a mean that is derived from the sparse 3D reconstruction in
the visual odometry (see Section E.3.3). The depth filter is described by a parametric
model that is updated on the basis of every subsequent frame k.

Let the rigid body transformation TWr ∈ SE(3) describe the pose of a reference frame
r relative to the world frame W. Given a new observation {Ik, TWk}, we project the
95% depth-confidence interval [ρmin

i , ρmax
i ] of the depth filter corresponding to pixel i

into the image Ik and find a segment of the epipolar line l (see Figure E.4). Using the
zero-mean sum of squared differences (ZMSSD) score on a 8×8 patch, we search the
pixel u′i on the epipolar line segment l that has highest correlation with the reference
pixel ui. A depth measurement ρ̃k

i is generated from the observation by triangulating ui

and u′i from the views r and k respectively. As proposed in [Vogiatzis and Hernández,
2011], we can model the measurements with a model that mixes “good” measurements
(i.e., inliers) with “bad” ones (i.e., outliers). With probability ρi, the measurement is a
good one and is normally distributed around the correct depth ρi with a measurement
variance τk

i
2. With probability 1− ρi, the measurement is an outlier and is uniformly

distributed in an interval [ρmin
i , ρmax

i ]):

p(ρ̃k
i |ρi, ρi) = ρiN (ρ̃k

i |ρi, τk
i

2
) + (1− ρi)U (ρ̃k

i |ρmin
i , ρmax

i ), (E.1)

Assuming independent observations, the Bayesian estimation for ρi on the basis of all
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measurements ρ̃r+1
i , . . . , ρ̃k

i is given by the posterior

p(ρi, ρi|ρ̃r+1
i , . . . , ρ̃k

i ) ∝ p0(ρi, ρi)∏
k

p(ρ̃k
i |ρi, ρi), (E.2)

with p0(ρi, ρi) being a prior on the true depth and the ratio of good measurements
supporting it. A sequential update is implemented by using the estimation at time step
k− 1 as a prior to combine with the observation at time step k. We refer to [Vogiatzis
and Hernández, 2011] for the final formalization and in-depth discussion of the update
step.

Note that we consider the depth estimate that is modeled as a Gaussian ρi ∼ N (ρ̂i, σ̂2
i )

as converged when its estimated inlier probability ρ̂i is more than the threshold ηinlier

and the depth variance σ̂2
i is below σ2

thresh.

Depth Smoothing

The main goal is to filter coarse outliers in the depth estimate but keep the discon-
tinuities in the depth map intact. In [Pizzoli et al., 2014], we utilized a variant of
the weighted total variation, introduced by [Bresson et al., 2007] in the context of
image segmentation, in order to enforce spatial smoothness of the constructed depth
maps. Therefore, we utilize the given depth map D(u) with u ∈ R2 being the image
coordinates. For computing the smooth depth map F(u), we apply a variant of the
weighted Huber-L1 model as presented in [Pizzoli et al., 2014], that is defined as the
variational problem

min
F

∫
Ω

{
G(u) ‖∇F(u)‖ε + λ(u) ‖F(u)−D(u)‖1

}
du . (E.3)

Note that there are two modifications to the variant presented in [Pizzoli et al., 2014]: (1)
first, we use a weighted Huber regularizer that weights the Huber norm according to
the image gradient magnitude of the respective reference image by using the weighting
function

G(u) = exp
(
− α ||∇Ir (u)||q2

)
. (E.4)

This is based on the assumption that image edges of the reference image coincide
with depth discontinuities, hence prevents the regularization to smooth across object
boundaries. (2) Second, we define λ(u), the trade-off between regularization and
data fidelity, as a pointwise function depending on the estimated pixel-wise depth
uncertainty σ̂2(u) and inlier probability ρ̂(u) of the depth filters:

λ(u) = E[ρ̂(u)]
σ2

max − σ̂2(u)
σ2

max
, (E.5)
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where σ2
max is the maximal uncertainty that the depth filters are initialized with. The

confidence value λ(u) represents the quality of the convergence of the depth value
for each pixel. In the extreme case, if the expected value of the inlier probability ρ̂(u)
is zero or the variance is close to σ2

max, the confidence value λ(u) becomes zero and
solving (E.3) will perform inpainting for these regions.

For solving the optimization problem (E.3), we refer to [Pizzoli et al., 2014] where
we defined the primal-dual formulation of the weighted Huber-L1 model. Then, for
solving such primal-dual saddle-point problems we utilize the first-order primal-dual
algorithm proposed by Chambolle and Pock [Chambolle and Pock, 2011].

Implementation Details

On-board the MAV, only a coarse elevation map is necessary for autonomous maneu-
vers. This requirement allows us to lower the resolution of the reconstruction, which
drastically reduces the processing time for one depth map. In practice, we initialize
one depth filter for every 8×8 pixel block in the reference frame. We therefore obtain
dense depth maps of size 94×60, totalling 5820 depth filters for every reference image.
Given the computing capabilities of our platform, we can update the depth filters in
real-time; thus, we do not require to buffer any images and provide frequent updates
to the elevation map.

More accurate initialization of the depth filters further reduced the processing time.
Hence, we exploit that the visual odometry algorithm already computes a sparse
point-cloud of the scene (shown in Figure E.9(b)). We create a two-dimensional KD-Tree
of the sparse depth estimates in the reference frame and find for every depth-filter
the closest sparse depth estimate. The result is a mosaic of locally-constant depths
as shown in the leftmost image of Figure E.5. In case a depth estimate is very close
to the depth-filter, the initial depth uncertainty σ̂2

i is additionally reduced for faster
convergence. This approach relies on the fact that SVO has few outliers. However, in
case of an outlier, we find that the depth-filters do not converge and, thus, no erroneous
height measurement will be inserted in the elevation map. In Figure E.5, converged
depths are colored in blue and from visual inspection it can be seen that most obvious
outliers have not converged. Resulting holes in the elevation map are quickly filled by
subsequent updates.

Elevation Map

We make use of a recently developed robot-centric elevation mapping framework
proposed in [Fankhauser et al., 2014]. The goal of the original work was to develop a
local map representation that serves foot-step planning for walking robots over and
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Figure E.5 – Evolution of the depth map reconstruction process. The leftmost image shows the
depth map after initialization from the sparse point cloud. After some iterations, the depth
filters converge upon which their corresponding pixels are colored in blue. The final depth
map is integrated in the elevation map shown in Figure E.8(b). The rightmost image shows the
reference image of the depth map.

around obstacles. However, we find that the local two-dimensional elevation map
is an efficient on-board map representation for MAVs that are flying outdoors — it
allows us to keep a safe distance to the surface and to detect and approach suitable
landing spots. By tightly coupling the local map to the robot’s pose, the framework can
efficiently deal with drift in the pose estimate. The local map has a fixed size, thus, the
map can be implemented with a two-dimensional circular buffer that requires constant
memory. The two-dimensional buffer allows moving the map efficiently together with
the robot without copying any data but by shifting indices and by resetting the values
in the regions that move out of the map region. An open-source implementation of the
elevation mapping framework is provided by the authors of [Fankhauser et al., 2014].3

While the authors of [Fankhauser et al., 2014] used a depth camera, we will demonstrate
how the elevation map can be efficiently updated with depth maps computed from
aerial monocular views. Furthermore, we extended the framework with a system to
switch the map resolution – a requirement that is necessary when the MAV is operating
at different altitudes.

Preliminaries

We use three coordinate frames, the inertial world frame W is assumed fix, the map
frame M is attached to the elevation map, and C denotes the camera frame attached to
the MAV (see Figure E.6). Since the elevation map is robot centric, the translation part
of the rigid body transformation TMC(t) = {RMC(t), MtMC} ∈ SE(3) remains fixed at all
times. The MAV has an onboard vision-based state estimator that estimates the relative
transformation TWC(t) ∈ SE(3).

The elevation map is stored in a two-dimensional grid with a resolution s [m/cell] and
width w [m]. The height in each cell (i, j) is modeled as a normal distribution with
mean ĥ and variance σ̂2

h .

3Available at http://github.com/ethz-asl/grid_map
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Figure E.6 – Notation and coordinate frames used for the elevation map.

Map Update

In Section E.3, we described how to process data from a single camera to obtain a
probabilistic depth estimate d ∼ N (ρ̂, σ̂2

d ) corresponding to a pixel u in a selected
reference image Ir, where r = C(tr) denotes the camera frame C at a selected time
instant tr. Given the probabilistic depth estimate, we can follow the derivation in
[Fankhauser et al., 2014] to integrate a measurement in the elevation map. In the
following, we summarize the required steps.

Given the depth estimate ρ̂ of pixel u, we can find the corresponding 3D point ρ by
applying the camera model:

Cρ̄ = π−1(u) · ρ̂, (E.6)

where π−1 is the inverse camera projection model that can be obtained through camera
calibration. The prescript c denotes that the point cρ̄ is expressed in the camera frame of
reference and the bar indicates that the point is expressed in homogeneous coordinates.
We find the height measurement by transforming the point to map coordinates and
applying the projection matrix P = [0 0 1] that maps a 3D point to a scalar value:

h̃ = P TMC Cρ̄. (E.7)

To obtain the variance of the measurement, we need to compute the Jacobian of the
projection function (E.7):

JP =
∂h̃

∂Cρ
= P RMC, (E.8)

where RMC ∈ SO(3) is the rotational part of TMC. The variance of the measurement can
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then be written as:

σ̃2
h = JPΣρJ>P . (E.9)

Note that Equation (E.9) can be extended with the uncertainty corresponding to the
robot pose TCW as derived in [Fankhauser et al., 2014]. The uncertainty of the 3D point
Σρ is derived as follows:

Σρ = R diag(
ρ̂

f
σ2

p ,
ρ̂

f
σ2

p , σ2
d ) R>, (E.10)

where R is a rotation matrix that aligns the pixel bearing vector f with the z-axis of the
camera coordinate frame C. The fraction ρ̂

f projects the pixel uncertainty σ2
p (set fixed

to one pixel) to the 3D space, using the focal length f of the camera.

Given the height measurement mean h̃ and variance σ̃2
h , we can update the height

estimate in the corresponding cell (i, j) using a recursive Bayesian update step:

ĥ← σ̃2
h ĥ + σ̂2

h h̃
σ̃2

h + σ̂2
h

, σ̂2
h ←

σ̃2
h σ̂2

h
σ̃2

h + σ̂2
h

. (E.11)

Map-Resolution Switching

Given the height z of the robot above ground in meters, the focal length f in pixels,
and the fact that we initialize a depth-filter for every image block of 8 pixels size, we
can compute the optimal elevation map resolution:

sopt =
8
f
· z [m/cell]. (E.12)

For instance, when flying at a height of 5 meters with our camera that has a focal length
f = 420 pixels, the optimal resolution would be 0.1 meters per cell. We limit the size of
the map to have 100 by 100 cells; thus, depending on the resolution, a larger or smaller
area is covered by the elevation map.

During operation, we maintain an estimate of the optimal resolution sopt and compare
it with the currently-set resolution scur. If the MAV is ascending and the optimal
resolution increases by a factor αup = 1.8 compared to the current resolution, we
double the resolution. Similarly, if the optimal resolution reduces by a factor of
αdown = 0.6, i.e., the MAV is approaching the surface, we reduce the resolution by half.
Additionally, we limit the minimal resolution to 5 cm per cell to avoid changing the
resolution too often during the landing procedure. When the resolution changes, we
down or up-sample all values in the map using bilinear interpolation.
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Landing Spot Detection

To motivate the usefulness of the proposed local elevation map, we implemented a
basic landing-spot detection and landing system that is described in the following.

Let us define a 3D point ρ located on the surface of the terrain and within the range of
the local elevation map. The point has discrete coordinates (i, j) in the two-dimensional
elevation map and is located at height h(i, j).

We define a safe landing spot to have a local neighborhood of radius r in which the
surface is flat. The radius r is related to the size of the MAV. We formalize this criterion
with the cost function:

C(i, j) = ∑
(u,v)∈R(i,j,r)

||h(u, v)− h(i, j)||2, (E.13)

where R(i, j, r) is the set of cells around coordinate (i, j) that are located within a radius
r.

Experimentally, we find a threshold Cmax that defines the acceptable cost to be a safe
landing spot. We compute a binary mask of all cells in the elevation mask, which have
a cost lower than Cmax. Subsequently, we apply the distance transform to the binary
mask in order to find the coordinates (i, j) that have a cost lower than the threshold
and are farthest from all cells that do not satisfy the criterion. Thus, the final landing
spot should be as far as possible from any obstacles.

From the construction of the elevation map, it may well be that a cell does not have
an elevation value. This is the case in regions that have not been measured before or
in which the depth filters did not converge, e.g., due to lack of texture, reflections, or
due to moving objects. Therefore, before applying the kernel in Equation (E.13) to the
elevation map, we set all cells without an elevation value to Cmax. Thereby, assuring to
land in regions where depth computation is feasible, thus, landing is more likely to be
safe.

Experiments

We performed experiments of the elevation-mapping and landing system both indoors
in a quadrotor testbed as well as outdoors. Videos of the experiments can be viewed at:
http://rpg.ifi.uzh.ch

The quadrotor used for all experiments is shown in Figure E.7. It is equipped with
a MatrixVision mvBlueFOX-MLC200w 752× 480-pixel monochrome global shutter
camera, an 1.7 GHz quad-core smartphone processor running Ubuntu, and an PX4FMU
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Figure E.7 – Experimental platform with (1) down-looking camera, (2) on-board computer, and
(3) inertial measurement unit.

autopilot board from Pixhawk that houses an Inertial Measurement Unit (IMU). In
total the quadrotor weights less than 450 grams and has a frame diameter of 35 cm.
More details about the experimental platform are given in [Faessler et al., 2015].

Timing Measurements

All processing during the experiments was done on the on-board computer using the
ROS4 middleware. During operation, the elevation-mapping and landing module uses,
on average, one processing core, SVO and MSF together another two cores, and the
fourth core is reserved for the camera driver, communication, and control.

Table E.1 lists the timing measurements. On average, the depth map requires 6 to 10
images for convergence. However, this depends greatly on the motion of the camera
as well as the depth and the texture of the scene [Forster et al., 2014a]. For the listed
measurements, we were flying at a speed of approximately 1.5 m/s and at a height
of 1.8 meters. Updating all depth estimates with a new image requires on average
150 milliseconds. Once 50% of the depth filters in the depth map have converged, we
filter the resultand depth map by solving the gradient-weighted Huber-L1 model (E.3)
(130 milliseconds) and integrate the smoothed depth map in the elevation map (10
milliseconds).

Summarizing, the mapping module receives images from the camera at 10 Hz and
integrates approximately 6-10 images to output one depth map per second.

Once it is necessary to detect a landing spot, it requires approximately 268 milliseconds
to compute the landing cost (E.13) for all 10,000 grid cells and to find the best landing-
spot in the current elevation map.

4http://www.ros.org
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Mean Median Std. Dev.
[ms] [ms] [ms]

Depthmap update 150 143 40

Regularization (10 iterations) 133 129 19
Elevation map update 10 10 2

Total time for one depthmap: 1098 999 503

Landing spot detection 268 268 19

Table E.1 – On-board timing measurements.

Outdoor mapping experiment

For the outdoor elevation-mapping experiment, the quadrotor was commanded by
a remote operator under assistance of the on-board vision-based controller, i.e., the
operator could command the quadrotor directly in x-y-z-yaw space. On average, the
quadrotor was flying 4-5 meters above the surface and used an elevation map of size
10 by 10 meters with a resolution of 10 centimeters per cell. The terrain consisted of
a teared-down house, rubble, asphalt, and grass. Figure E.8(a) gives an overview of
the scenario and indicates the location of the MAV for the elevation maps shown in
Figures E.8(b) to E.8(d). The complete mapping process can be viewed in the video
attachment of this work.

An update rate of 1 Hz is sufficient to always maintain a dense elevation map below
the MAV. However, when moving in a straight line, the local elevation map behind the
MAV is more populated than in the front. In the future, we will modify the MAV to
have a slightly forward facing camera in order to have a more even distribution.

The system can cope with drastic elevation changes as well as challenging surfaces
such as grass and asphalt that are characterized by high-frequency texture. Due to the
probabilistic approach to depth estimation, which uses multiple measurements until
convergence, we observe very few outliers in the elevation map. Note that we only
insert depth estimates in the elevation map that have actually converged. In untextured
regions, paths with of dynamic motion or zones with reflecting surfaces, such as water,
the depth filter does not converge and, thus, the elevation map remains empty. As
visible in Figure E.8(b), the elevation map remains also empty in occluded areas.

Landing experiment

We performed autonomous landing experiments both indoors and outdoors as demon-
strated in the supplemental video. Figure E.9(a) shows the indoor testbed that contains
textured boxes as artificial obstacles. The elevation map after a short exploration is
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(a) Scenario overview (b) Viewpoint 1

(c) Viewpoint 2 (d) Viewpoint 3

Figure E.8 – Excerpts from the video attachment. The quadrotor is flying over a destroyed
building. Figures E.8(b) to E.8(d) show the elevation map at three different times. The
corresponding viewpoints are marked in the scenario overview in Figure E.8(a). Note that the
elevation map is local and of fixed size. Its center lies always below the quadrotor’s current
position.

displayed in Figure E.9(b). Once the MAV receives a command to land autonomously,
it computes the landing score for the current elevation map and selects the best spot as
described in Section E.5. In Figure E.9(c), the elevation map is colored with the landing
cost that is formalized in Equation (E.13). Blue means that the area is flat and, thus,
safe for landing. The algorithm selects the point that is farthest from any dangerous
area (colored red) and marks it with a green cube. The MAV then autonomously
approaches a way-point vertically above the detected landing spot and then slowly
descends until vision-based tracking is lost, which is typically at less than 30 cm above
ground. Subsequently, the MAV continues blindly to descend until impact is detected
and the motors turn off.

Conclusion

In this paper, we proposed a system for mapping the local ground environment
underneath an MAV using only a single camera and on-board processing resources.

165



Appendix E. Dense Elevation Mapping

(a) Scenario (b) Elevation map

(c) Landing procedure

Figure E.9 – Excerpts from the video attachment. Figure E.9(a) shows the indoor flying arena
with textured obstacles. The MAV first explores the arena and creates an elevation map of
the surface that is shown in Figure E.9(b). The pink points illustrate the sparse map built by
the on-board visual odometry system and which are used to initialize dense depth estimation.
Figure E.9(c) shows the detected landing spot that is marked as green cube and the MAV that is
shortly before impact. The blue line is the trajectory that the MAV flew to approach the landing
spot.

We advocate the use of a local, robot-centric, and two-dimensional elevation map since
it is efficient to compute on-board, ideal to accumulate measurements from different
observations, and is less affected by drifting pose estimates. The elevation map is
updated at a rate of 1 Hz with probabilistic depth maps computed from multiple
monocular views. The probabilistic approach results in precise elevation estimates
with very few outliers even for challenging surfaces with high frequency texture, e.g.,
asphalt. To highlight the usefulness of the proposed mapping system, we successfully
demonstrated autonomous landing-spot detection and landing.
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Appendix F. Air-Ground Localization Using Dense Reconstruction

Air-Ground Localization and Map
Augmentation Using Monocular Dense

Reconstruction

Christian Forster, Matia Pizzoli, Davide Scaramuzza

Abstract — We propose a new method for the localization of a Micro
Aerial Vehicle (MAV) with respect to a ground robot. We solve the
problem of registering the 3D maps computed by the robots using
different sensors: a dense 3D reconstruction from the MAV monocu-
lar camera is aligned with the map computed from the depth sensor
on the ground robot. Once aligned, the dense reconstruction from
the MAV is used to augment the map computed by the ground robot,
by extending it with the information conveyed by the aerial views.
The overall approach is novel, as it builds on recent developments
in live dense reconstruction from moving cameras to address the
problem of air-ground localization. The core of our contribution is
constituted by a novel algorithm integrating dense reconstructions
from monocular views, Monte Carlo localization, and an iterative
pose refinement. In spite of the radically different vantage points
from which the maps are acquired, the proposed method achieves
high accuracy whereas appearance-based, state-of-the-art approaches
fail. Experimental validation in indoor and outdoor scenarios re-
ported an accuracy in position estimation of 0.08 meters and real
time performance. This demonstrates that our new approach effec-
tively overcomes the limitations imposed by the difference in sensors
and vantage points that negatively affect previous techniques relying
on matching visual features.
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F.1. Introduction

Figure F.1 – The flying robot operating in close range to the ground robot provides a different
vantage point for human tele-operators in a search-and-rescue scenario. We address the problem
of autonomously localizing the aerial robot with respect to the ground-robot based on the
structure of the scene.

Introduction

A heterogeneous robotic system consistent of both, ground and aerial robots of different
sizes, shapes and with different sense-act capabilities could greatly assist professional
rescuers in a search and rescue scenario. However, it is difficult for the same human
operator to concurrently monitor and navigate multiple robots while coordinating
with other operators. Therefore, the necessary technologies must be developed to
allow heterogeneous robots to autonomously localize and move with respect to each
other and thereby ease the task of the operator and provide the best possible situation
awareness.

In this work we consider a single MAV that acts as a “flying external eye” for a ground
robot. The MAV operates in close range to the ground robot and offers the ability to
hover and move in complex three dimensional space and observe the scene from a
vantage point inaccessible to the ground robot (see Figure F.1). The use of very small
and lightweight MAVs reduces safety concerns, costs, and increases the agility of the
platform. However, active ranging devices such as laser rangefinders or RGBD sensors
cannot currently be used due to payload and power consumption restrictions. The
ground robot, on the other hand, can carry more payload such as active depth sensors,
processors and may be equipped with a manipulator arm. The usefulness of such a
heterogeneous robot team in a disaster scenario has recently been demonstrated in
[Michael et al., 2012].

In this paper, we address the problem of localizing the MAV with respect to the ground
robot in close range. This capability will allow the robots to execute collaborative tasks
and to present the teleoperator with a ground map which is augmented with aerial
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views from the MAV.

Due to payload restrictions, the MAV is equipped with a single downward-looking
camera. On the other hand, the ground robot has a range sensor (either a laser or
an RGBD camera) and further carries the main processing unit. Our experimental
platforms are depicted in Figure F.13.

Given the available sensory capabilities, there are two possible strategies to mutually
localize the robots: (i) by leveraging relative observations between the MAV and the
ground robot [Rudol et al., 2008], (ii) or by matching and aligning maps computed by
the MAV and the ground robot. The second option offers the advantage that the robots
do not need to remain in the field of view of each other. However, the main challenge
in the second strategy is the drastically different view points of the two robots (see
Figure F.2).

In this paper we propose a novel solution to this problem by leveraging the 3D
surface computed from different view points and heterogeneous sensors. Through the
alignment of both maps, the relative pose of the robots can be recovered. Computing
a dense 3D surface from monocular cameras in real-time has only recently become
feasible with the use of GPGPU computing [Newcombe et al., 2011b, Rhemann et al.,
2011]. Therefore, we propose to distribute the processing between the robots. The MAV
computes its relative motion onboard using the downward looking camera [Weiss et al.,
2011b] and, additionally, streams the video to the ground robot where a dense 3D
model is computed and aligned with the ground robot’s 3D map. Thereby, the relative
pose of the robots is recovered.

We propose a solution for global alignment of the aerial and ground maps based on
Monte Carlo Localization on the height-maps. Subsequently, the estimated transfor-
mation is refined through an Iterative Closest Point (ICP) algorithm. In experimental
results we show that in a cluttered environment with sufficient 3D structure, we can
compute the relative position with a precision of 0.078 m. Furthermore, we illustrate
how the ground-based map can be augmented with the aerial view.

The outline of the paper is the following. In Section F.2 we compare our approach to
related works in the literature, while Section F.3 provides an overview of the proposed
method. In Section F.4 we present the SLAM methods operating on the MAV and the
ground robot, while in Section F.5 the dense reconstruction method is detailed. In
Section F.6, our Monte Carlo approach to global localization is described and in Section
F.7 we present the iterative pose refinement. Section F.8 reports about the experimental
validation and in Section F.9 the conclusion is drawn.
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F.2. Related Work

Figure F.2 – Outdoor (left) and indoor (right) scenes observed from aerial and ground point of
views. Robot poses are expressed by the arrows: yellow for the ground robot and green for the
MAV.

Figure F.3 – Image feature matching results of the indoor scene using ASIFT [Morel and Yu,
2009]. Matches were found on planar textured surfaces. No matches were found in the outdoor
scene depicted on the left of Figure F.2.

Related Work

Very little research has addressed close-range relative localization of aerial and ground-
robots. In most related works, the aerial robot flies outdoors higher than 20 meters,
and can be localized using GPS [Hsieh et al., 2007, Stentz et al., 2002, Vidal-Calleja
et al., 2011]. To the best of our knowledge, the work in [Michael et al., 2012] is the
first to demonstrate how a MAV could assist a ground robot in close collaboration
in mapping a damaged building indoors. In their configuration, the ground-robot is
equipped with a laser rangefinder and the flying robot with both a laser rangefinder
and a RGBD sensor. The computed maps are aligned under the assumption that
the ground robot does not move during the flight of the MAV. It is not mentioned
whether the global map computation is executed onboard or in an offline stage and
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no processing times are reported. In our work, we investigate the relative localization,
which is a precondition to the mapping task. Furthermore, we do not require that the
ground-robot remains still while the flying robot is mapping and provide continuous
relative position information in real-time.

Photorealistic modeling of urban scenes addresses a registration problem related to ours
[Ding et al., 2008, Liu and Stamos, 2006]. Similar to our work, the one described in [Zhao
et al., 2005] addresses the computation of a 3D point-cloud from aerial video using
dense motion stereo and the alignment with a ground-based map. Wendel [Wendel
et al., 2011] proposes to align a 3D reconstruction created by a MAV with a Digital
Surface Model (DSM), where an initial alignment is provided by GPS information and
a refined alignment is computed by evaluating the correlation between a height map
computed from the reconstruction and the DSM. The time for alignment takes about 10
minutes, depending on the number of points and resolution. Our work advances the
state of the art in two important aspects: (i) dense monocular maps are effectively used
for MAV localisation and (ii) the integrated system can operate in real time, which is a
desirable feature in most robotic perception tasks.

Registration methods based on image appearance require finding matches between
the visual features in the aerial and ground views. Recently, advancements have been
made in the field of wide-baseline image matching [Morel and Yu, 2009, Donoser and
Bischof, 2006, Wu et al., 2008]. Many state-of-the-art approaches are grounded on the
method described in [Morel and Yu, 2009] and aim at providing affine invariance by
computing feature descriptors after a set of pre-defined warping transformations have
been applied to the images to be matched. These methods implicitly rely on a piecewise
planarity assumption, which is satisfied in many man made scenarios but does not
hold in general. An example is provided in Figure F.2. The aerial and ground views are
shown from our validation dataset in case of indoor and outdoor scenarios. Figure F.3
displays the results for a feature matching algorithm based on the work in [Morel and
Yu, 2009] on the images corresponding to the ground and aerial views. Noticeably,
the method managed to find few correct matchings on the planar box surfaces. The
same method, applied to the views in the left column of Figure F.2, returned no correct
matches. The required processing time (about 6 seconds for feature extraction and
27 for matching) constitutes another important limitation to the application of robust
approaches for visual feature matching to the problem of real time localisation.

To overcome these limitations, instead of relying on visual feature matching between
the views from the MAV and the ground robot, our new approach exploits the 3D
structure, which is computed by the MAV through monocular dense reconstruction
and by the ground robot making use of its range sensor. This approach is novel and
constitutes the actual contribution of this paper.
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Figure F.4 – Illustration of the localization and mapping pipeline. Each building block is
described in detail in Sections F.4 to F.7.

System Overview

Figure F.4 provides an overview of the proposed system. The MAV is equipped with a
single downward-looking camera and an IMU. A monocular SLAM algorithm runs
onboard the MAV to estimate its egomotion. The absolute scale is recovered by a
Kalman Filter [Nuetzi et al., 2011]. The MAV streams the video to the ground robot
together with relative-pose estimates for every frame.

On the ground robot, a set of subsequent frames received from the MAV are used to
compute a dense map through leveraging all information in the monocular images—
not only salient corner points. Real-time performance is achieved through a highly
parallelized GPU implementation. The ground-robot is further equipped with a Kinect
sensor to create a second—ground-based—3D map by means of an RGBD SLAM
system.

For the alignment of the aerial and ground maps, we propose two solutions: If an a
priori guess is available for the relative pose of the two robots, their maps are aligned
using ICP. Otherwise, we propose a Monte Carlo Localization (MCL) based method to
globally localize the MAV with respect to the ground robot. The MCL method relies on
correlating the height-maps computed from the two vantage points.

The proposed pipeline requires an overlap between the aerial and ground maps and
a 3D structure in the scene. In a completely flat environment, the algorithm does
not converge. Hence, the proposed method is a strong complement to image feature
based methods which fail to match in cluttered environments at such radically diffent
viewpoints.
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Figure F.5 – Air-ground localization and map augmentation.The trajectories of the aerial and
ground robots are displayed in blue and green respectively. The map computed by the ground
robot (displayed in red) is augmented with the dense reconstruction from the aerial views
(displayed in greyscale).

SLAM on the MAV and the Ground Robot

The SLAM system on the flying robot implements the keyframe-based monocular Visual
Odometry (VO) pipeline by Kneip et. al [Kneip et al., 2011a]. It is boosted in terms of
robustness and efficiency by including incremental relative rotation priors obtained
from the onboard IMU.

On the ground robot, an RGBD sensor is used to create the map. Our RGBD SLAM
system is a modification of the monocular SLAM algorithm described above. Notably,
we are able to speed-up triangulation using the depth provided by the sensor as a prior.
Additionally, the depth measurements are used to initialize map-points in case of pure
rotation of the camera.

Both SLAM systems could also be replaced with state-of-the-art algorithms such as
[Klein and Murray, 2007, Strasdat et al., 2011, Engelhard et al., 2011, Pomerleau et al.,
2011].
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F.5. Dense Monocular Reconstruction

(a) (b ) (c ) d [m ](d) (e)

(f) (g ) (h ) (i)

Figure F.6 – Point clouds computed by monocular dense reconstruction for one indoor evalua-
tion dataset. Depth maps are also shown in insets. In (a) the reference view is shown. Figures
(b)-(d) correspond to different depth computations, fused into the depth map of Figure (e)
through the algorithm presented in Section F.5. Figures (f)-(i) show several results from the
fusion algorithm computed as the MAV flies over the experimental scenario. The color code
refers to the distance d from the camera acquiring the reference view.

Dense Monocular Reconstruction

In this section we describe a method to estimate the dense point cloud from the images
collected by the MAV as it flies over an area of interest. Timestamped views and camera
poses are streamed to the ground robot, where the computation can take advantage of
the multi-cores architecture offered by the onboard GPU, an Nvidia Quadro K2000M
in our experiments.

The solution we propose to estimate a dense point cloud from monocular views
with known camera motion derives from Multi View Stereo methods [Furukawa and
Ponce, 2010] and is motivated by the following facts: i) assuming constant brightness,
frames taken from close viewpoints allow high quality matching; ii) a large baseline
among views enables a more reliable depth estimation and outlier rejection. Therefore,
similarly to [Newcombe et al., 2011b], we propose to compute depth maps from a
large number of highly overlapping views, yielding a coarse, but very fast estimation.
Filtering and regularization have been proposed to improve the accuracy of the depth
maps computed from aggregation of the photometric error in stereo [Rhemann et al.,
2011, Newcombe et al., 2011b]. Being computed from close views, these depth maps
may still contain wrong estimations. For this reason, we chose to integrate several depth
maps, which are computed as the MAV flies over the area of interest. This is due to the
fact that—differently from those previous works mainly concerned with the recovery
of visually appealing reconstructions—we are interested in accurate maps, useful
for localization. Thus, we aim at rejecting wrong estimations that would negatively
affect the alignment performance. Further, the use of the recovered structure for the
air-ground localization imposes severe constraints in computing time (cfr. Table F.1
for average computing times). We chose to rely on the range-image fusion algorithm
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introduced in [Zach, 2008]. The algorithm is robust against wrong estimations; it is
reported to be accurate and it is highly parallelizable, which makes it suitable for
computation on a modern graphics card.
The depth maps are converted into distance fields fi : Ω→ [−1, 1] defined on a voxel
space Ω ⊂ R3 specifying the volume of interest, and compressed into a histogram
representation to reduce the memory footprint. At every voxel v, the values of fi

encodes the distance to the surface according to the i-th depth map and is approximated
by evenly-spaced bin centers cj.
Let n(v, j) denote the histogram count of bin j at voxel v. The depth map fusion
consists in estimating the distance field φ given the hypotheses represented by fi and is
computed by the following minimization of an energy functional:

min
φ

∫
Ω

{
|∇φ|+ λ ∑

j
n(v, j)|φ(v)− cj|

}
dv. (F.1)

The data term ∑j n(v, j)|φ(v)− cj| approximates the distance of the solution from the
distance fields, while the regularization term |∇φ| penalizes the surface area, removing
errors due to outliers and approximating the surface in case of missing depth data.
λ is a tunable parameter weighting the data term. The minimization in Equation F.1
follows an iterative approach based on gradient descent.

The integrated surface is implicitly defined by the zero level set of the φ function and a
point cloud is then computed through ray casting (see, for example, [Izadi et al., 2011]
Listing 3). Figure F.6 depicts the process of fusing 3 dense structure estimations by the
MAV (subfigures (b)-(d)) into one regularized structure (subfigure (e)). The algorithm
effectively rejects erroneous estimations that are not supported by the majority of
the depth maps. Different examples of dense reconstructions from the MAV views
are reported in the second row of Figure F.6. Once computed, the structure is made
available for localization, as explained in the following sections.

Global Localization

In this section, we describe a method to globally localize the MAV with respect to the
ground robot based on 3D point-clouds computed from the two perspectives. Since the
MAV operates in close range to the ground robot, we assume the global search region
to be approximately 3m around the ground robot position.

The standard method to align two image-based maps is to find corresponding features
(points, lines, edges, planes) either in the 2D images or the 3D pointcloud [Leung et al.,
2008, Rusu and Cousins, 2011]. However, we want to make no assumption on any
regularity in the scene such as piecewise planarity. Additionally, both the aerial and
ground based map can contain missing data and may not be fully overlapping.
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F.6. Global Localization

We solve the problem through searching for the highest correlation between height-
maps computed from the two pointclouds. In order to deal with local minima of the
alignment, the procedure is extended with a Monte Carlo Localization method that
verifies many hypotheses over the course of multiple pointclouds computed by the
MAV. This extension is described thereafter.

Height-Map Alignment

In our setting, both the MAV and ground robot are equipped with an IMU. This
provides the gravity vector, which can be used to project their maps to the ground
plane (see Figure F.7). This results in the height maps that we denote with Ha and
Hg respectively. The height maps are defined on discrete 2D grids Ωa and Ωg with a
resolution of 50 cells per meter. If multiple points project on to the same grid cell, the
highest point is selected. Furthermore, we apply a morphological dilation operator on
the height-maps of 3×3 cells in order to fill holes. Holes denote cells of the height-map
with missing height data.

The best alignment of the two height maps in the predefined search region is found by
searching for the relative pose u with the minimum Zero Mean Sum of Squared Differences
(ZMSSD) of the two maps:

C(u) = η ∑
x∈Ω̄(u)

{
[Ha(x)− Ĥa]− [Hg(x + u)− Ĥg(u)]

}2
, (F.2)

where Ĥg(u) and Ĥa are the mean of the height maps in the overlapping area at
the relative position u and η = 1/(2|Ω̄(u)|) is a normalization factor. Furthermore,
|Ω̄(u)| = |Ωa(u) ∩Ωg| denotes the number of cells on which a height is defined for
both, the translated aerial height-map Ha(u) and the ground-based height-map Hg.
The final relative position ũ corresponds to the minimum ZMSSD:

ũ = arg min
u

C(u) (F.3)

The advantage of the ZMSSD cost is that the local normalization makes the alignment
independent of the z location, whereas the final alignment in the vertical z axis can
easily be recovered with ∆z = Ĥg(ũ)− Ĥa. However, the ZMSSD cost does not equalize
the average relative heights between the two height-maps which is in contrast to the
correlation cost which is applied in [Wendel et al., 2011].

The search is done over u = [x, y] ∈ R2 since in the experiments the magnetic north
direction could be recovered from the IMU. Depending on the environment, this
measurement can be less reliable which would require to add the heading direction
to u. This extension is straightforward but has the drawback that the computation
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Figure F.7 – The height maps of an aerial and a ground-based map are illustrated in Figures
(a) and (b) respectively. The red dotted square in (b) shows the best alignment of the two
height-maps. The costmap in (c) illustrates the ZMSSD cost for every possible relative position
u of the two maps. A global minima is located at the dark spot.

time increases exponentially and there can be more local minima in the cost which can
however be recovered with the filter described in the next section.

Furthermore, the search space is limited by a minimum overlap between the two
height-maps |Ω̄(u)| > θoverlap. We set the threshold to 50% of the area of the aerial
height-map |Ωa|. This is the reason for the curvy boarder in the costmap illustrated in
Figure F.7c.

Monte Carlo-based Alignment

Due to self-similarities in the environment, the costmap computed in the previous sec-
tion may contain multiple local minima. We propose to apply Monte Carlo Localization
with mixture proposal distribution [Thrun et al., 2005, p. 262]. This allows us to track
multiple hypotheses over the course of several height-maps computed from the MAV
in order to identify the true relative position. We represent the belief of the relative
position with a set U of M particles:

U = u[1], u[2], . . . , u[M]. (F.4)

For the first height-map from the MAV the cost for each relative position is computed
within the search region which results in the costmap of Figure F.7c. M particles are
then sampled from the costmap with probability

p(u) ∼ exp
{
−C(u)

σ

}
, (F.5)
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Figure F.8 – Evolution of the particles in the Monte-Carlo–based global alignment. The costmap
in the background is computed with Eq. (F.2) for all possible relative positions of three aerial
maps. Dark values mean low ZMSSD. The white ellipse shows the covariance of the 200 green
particles. The true position is marked with a black cross.

where σ depends on the resolution of the costmap and has been set to 0.08 in our
experiments. This results in an initial distribution of the particles that spreads them
among the local minima. When a new height-map is available from the MAV, the
particles are propagated with the following motion model:

u[n]
t = u[n]

t−1 + ∆u + ε, where ε ∼ N (0, Σ). (F.6)

The relative motion ∆u is provided by the SLAM on the MAV (Section F.4).

Using the cost from Equation (F.2), the propagated particles are weighted and resam-
pled. Hence, the full cost map of the search region is only required for the first aerial
map to guarantee a good initial distribution of the particles. In each subsequent step,
the cost is only computed at the M particle locations.

In the experiments we found that the particles converge to the true location after
maximally three to four iterations (see Figure F.10(a)).

Pose Refinement

Given an initial guess of the relative pose between the MAV and the ground robot,
the relative pose can be refined through alignment of the respective pointclouds using
ICP [Besl and McKay, 1992]. In order to assure convergence to the global minima, ICP
needs to be initialized close to the solution; hence, the global alignment in the section
above. Furthermore, the structure of the two pointclouds must be such that their
relative movement is constrained (e.g., through both horizontal and vertical structures).
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We use the modular ICP algorithm libpointmatcher [Pomerleau et al., 2011] that is
provided as open-source software. To find the nearest-neighbour points, we apply a kd-
tree which is provided by libpointmatcher. As an error metric, we use the point-to-plane
distance.

In the experimental-results section, we demonstrate that the pointclouds computed
from the dense reconstruction can be aligned with the ground-based map using ICP
with an accuracy of 8 cm. Furthermore, we show that the alignment result from the
previous section can be refined through ICP.

Experimental Results

We validated the proposed system on four datasets, three were collected indoors and
one outdoors. The datasets consist of video and IMU recordings from both, the aerial
and ground robot’s point of view. The indoor environments were created out of
cardboard boxes to resemble a disaster scenario (see Figure F.2). Additionally, the
ground-truth robot trajectories were recorded indoors with a motion-capture system. A
video of the experimental results is available at http://rpg.ifi.uzh.ch.

SLAM Results

Figure F.9(a) and F.9(b) illustrate exemplary the translation error of the SLAM algo-
rithms on the MAV and the RGBD ground robot respectively. Notice that the trajectory
of the MAV does not drift. This is because the MAV flies several loops contrary to the
ground robot. The Root-Mean-Square (RMS) error of the Monocular SLAM trajectory is
1.2 cm and for the ground robot 3.8 cm. Average timings of the algorithm are provided
in Table F.1. The RGBD SLAM algorithm is slightly slower because on average more
map-points were triangulated and tracked.

Dense Reconstruction

The map computed by the monocular SLAM of Section F.4 provides sparse information
on the scene observed by the MAV and is conveniently used to determine the extent
of the current volume of interest. The set of consecutive views that are aggregated to
form a depth map is simply characterised by the distance from the reference camera
pose, and controlled by a tuneable threshold parameter set to 12 cm in our experiments.
Similarly, a threshold on the distance from which the first depth map has been acquired
characterises the set of depth maps to be fused. This distance was set to 70 cm for the
experimental validation. Despite the basic view selection strategy controlling depth
map creation and fusion, the proposed approach proved highly effective in computing
dense and accurate data for the air-ground registration. The λ parameter was set to
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F.8. Experimental Results
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Figure F.9 – (a) Translation error of the Monocular SLAM on the MAV. The trajectory is 23.0
meters long and the RMS error is 1.2 cm. There is no visible drift because the trajectory contains
many loops. (b) Translation error of the RGBD SLAM on the ground robot. The trajectory is 7.7
meters and the RMS error is 3.8 cm.

0.26, while 8 iterations proved a good tradeoff between speed and accuracy for the
minimisation in Equation F.1.

Global Localization

The Monte-Carlo–based localization algorithm was tested on 41 sequences of 12 sub-
sequent depth-maps from three different indoor environments. In Figure F.10(a) the
distribution of the localization error is reported for all 12 iterations. In 65% of the
experiments, the distance between the mean of the particle distribution at the first
iteration and the true position is less than 0.5 meters. Hence, the global minima of
the costmap could attract most of the particles. After 4 iterations, the particle means
of 89% of the 41 experiments have moved closer than 0.25m to the ground truth. At
this range, the ICP algorithm can further refine the pose. Note that the accuracy of the
alignment could be further improved by increasing the resolution of the height-maps
at the cost of higher computation times. The processing time (Table F.1) for the first
frame is approximately 9 seconds for the 4×5 meters search area on a single CPU.
Furthermore, for every subsequent iteration, the ZMSSD cost must only be computed
at the particle locations. We selected M = 200 particles which resulted in a processing
time of approximately 38 ms on the CPU. Note that the processing time depends on
the size of the depth-map, the search radius, and the number of particles. Furthermore,
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Figure F.10 – (a) Distribution of the translation error over 12 iterations of the Monte-Carlo–based
localization illustrated with boxplots. The central mark on the box is the median, the edges of
the box are the 25th and 75th percentiles. Results are from 41 experiments. (b) Distribution
of the standard deviation of the particles (see ellipses in Figure F.8) over 12 iterations of the
Monte-Carlo–based localization illustrated with boxplots. Results are from 41 experiments.
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Figure F.11 – (a) Distribution of the translation error before and after ICP pose refinement. The
data originates from 67 experiments in 3 different environments. The median error is 0.076 m.
(b) Distribution of the angular error before and after ICP pose refinement. The provided angle
derives from the angle-axis representation of the orientation error. The data originates from 67
experiments. The median error is 3.0 deg.

it was not necessary to inject new particles after the initial sampling. In order to detect
whether the particles have converged, the covariance of the particle distribution can
be considered, which is illustrated in Figure F.10(b). One can observe, that with the
convergence of the error also the variance decreases.

Pose Refinement

The pose refinement was tested with 67 depth-maps computed from the dense recon-
struction in the three indoor environments. The translation and orientation errors
before and after the alignement are reported in Figure F.11(a) and F.11(b). Since the
monocular SLAM algorithm of the MAV is too accurate to illustrate the performance
of the ICP algorithm, we artificially added Gaussian noise with σang = 3deg to the
orientation, and σtrans = 0.2m to the position. The experiments show that the dense map
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F.8. Experimental Results

Figure F.12 – Results from the outdoor experiment. Figure (a) shows the aligned maps from
the viewpoint of the ground robot (yellow triangle) and Figure (b) the same two maps from the
aerial viewpoint (green triangle). The red pointcloud is computed from the ground robot and
the dense greyscale pointcloud originates from the reconstruction of the aerial views. Refer to
Figure F.2 for two images from the dataset.

computed by the monocular reconstruction is accurate and dense enough to succeed in
the alignment with an accuracy of 8 cm and of 3 deg. There are two reasons why the
error is not smaller: the ground map by the RGBD SLAM drifts (see Figure F.9(b)) or
the error source could come from inaccuracies in the dense reconstruction. The ICP
algorithm requires on average 0.5 seconds to align the maps. Note that all depth-maps
contained 3D structures, which is a requirement for the ICP algorithm to converge to
the global minima, as discussed above. As soon as a map is available from the MAV,
pose refinement is run on a dedicated thread. Given an acquisition rate of 30 frames
per second, a new augmented map is available approximately every 300 frames.

Remarkably, the complete pipeline is capable of real-time performance on multi-core
machines, and the timing for the complete execution is reported in Table F.1.

Outdoor Experiment

Figure F.12 illustrates a result of the outdoor experiment. The same environment is
also depicted in Figure F.2. The dense reconstruction algorithm produced qualita-
tively highly accurate reconstructions due to the naturally very textured surface. The
proposed pipeline succeeded in finding the correct alignment of the two maps. The
accuracy cannot be reported as no groundtruth is available. Note that in this scenario
state-of-the-art algorithms for wide-baseline visual feature maching normally fail as
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Runtime [ms]

Egomotion Estimation:
Monocular SLAM: Avg. time per frame 14
RGB-D SLAM: Avg. time per frame 15

Dense Reconstruction:
Add frame to depth map
(200 depth hypotheses) 5
Compute distance field from depth map
(376× 240× 150 voxels) 21
Depth map fusion (8 iterations) 800
Ray casting 15

Global Localization:
Full costmap computation (first depth-map) 9143
ZMSSD for M = 200 particles: 38

Pose Refinement:
ICP alignment 462

Table F.1 – Average runtimes of the algorithms in the pipeline. The timings were measured on
an 8 core i7 laptop, 2.4 GHz. The used GPU is a Nvidia Quadro K2000M with 384 CUDA cores.

reported in Section F.2.

Conclusion

In this paper, we introduced a method to register the 3D structure computed by a
MAV with that computed by a ground robot operating in close range. The MAV is
equipped with a monocular camera while the ground robot relies on a range sensor.
Building on the recent development of real-time, monocular dense mapping techniques,
the proposed method allows the integration of structures computed from radically
different viewpoints, i.e. from the aerial and the ground robot. Therefore, this paper
contributes a novel approach to the fusion of visual maps with the ones computed from
different depth-sensor modalities. Thereby, we prove how dense structure computation
from monocular moving cameras is highly valuable in robot perception tasks. We
demonstrated the effectiveness of the presented approach in augmenting the three-
dimensional structure from the ground robot with an aerial dense map, in two different
scenarios: three indoor, experimental setups, and one outdoor, where state-of-the-art
alignment methods based on appearance normally fail.
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F.9. Conclusion

Figure F.13 – The NanoQuad MAV, equipped with a down-looking camera and an onboard
computer, is hovering above the Kuka YouBot ground robot, equipped with an RGBD camera.
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Appearance-based Active, Monocular,
Dense Reconstruction for Micro Aerial

Vehicles

Christian Forster, Matia Pizzoli, Davide Scaramuzza

Abstract — In this paper, we investigate the following problem: given
the image of a scene, what is the trajectory that a robot-mounted
camera should follow to allow optimal dense depth estimation?
The solution we propose is based on maximizing the information
gain over a set of candidate trajectories. In order to estimate the
information that we expect from a camera pose, we introduce a novel
formulation of the measurement uncertainty that accounts for the
scene appearance (i.e., texture in the reference view), the scene depth
and the vehicle pose. We successfully demonstrate our approach in
the case of real-time, monocular reconstruction from a micro aerial
vehicle and validate the effectiveness of our solution in both synthetic
and real experiments. To the best of our knowledge, this is the first
work on active, monocular dense reconstruction, which chooses motion
trajectories that minimize perceptual ambiguities inferred by the
texture in the scene.

Introduction

Recent advances in Structure-from-Motion and Visual SLAM made real-time, dense
reconstruction from multiple views a viable alternative to laser range finders in robot
perception tasks. Impressive results have been demonstrated in the context of Multi-
View Stereo (MVS) [Newcombe et al., 2011b, Stühmer et al., 2010, Vogiatzis and
Hernández, 2011], where the knowledge of the camera motion is used to estimate depth
from different vantage points. Nonetheless, depending on the scene, camera motion
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plays a fundamental role in the quality of the obtained reconstruction.

When observing demonstrations of monocular dense reconstruction from hand-held
cameras, such as [Newcombe et al., 2011b, Pizzoli et al., 2014], one can notice the
commonly used pattern of moving the camera in a circular trajectory around a reference
view.1 Intuitively, a circular trajectory constitutes a reasonable approach, as the gen-
erated epipolar lines span uniformly the images and increase the chances of reliable
stereo matches. Now, suppose that monocular vision is used by a robot to estimate
the depth. What radius should we use for the circular camera trajectory? Or more
generally, what is the camera trajectory that provides the best depth measurements?

In practice, the best trajectory depends on different factors: (i) the depth estimate of the
scene; (ii) the uncertainty of the current estimate; (iii) the appearance (texture) of the
scene; (iv) the current robot pose. Based on the aforementioned considerations, in this
paper we introduce a Bayesian formulation to estimate dense depth maps from a Micro
Aerial Vehicle (MAV). The next best poses are computed as a function of the robot’s
current pose and motion as well as the expected depth uncertainty reduction due to
predicted future measurements.

A video demonstrating the system is available on the author’s website: http://rpg.ifi.
uzh.ch.

Related Work

The problem of computing the optimal views to reconstruct an object or a scene has
been studied for more than two decades and is known in the computer vision literature
as active vision, View Path Planning (VPP), or Next-Best-View (NBV) [Aloimonos et al.,
1988, Bajcsy, 1988, Blake and Yuille, 1988, Chen et al., 2011, Scott et al., 2003]. Often, the
sensor motion is restricted to a sphere and it is assumed that the object of interest is at
all times located completely in the sensor frustum. Proposed algorithms reason about
voxel occupancy, occlusion edges, and surface coverage [Huang et al., 2012, Kriegel
et al., 2013]. Schmid et al. [Schmid et al., 2012] addressed view planning with an
MAV. Similarly to our work, the authors compute a set of aerial views to be used in
a multi-view stereo pipeline. However, differently from our approach, their system
assumes an a-priori model of the scene of interest. Viewpoints are, thus, computed
off-line on the pre-computed object hull and the most informative ones are selected on
the basis of heuristics that aim at providing full scene coverage. In contrast, we provide
an active depth estimation method operating in real-time and on-line.

In the robotics community, a related field to view planning is known as exploration.
The first to close the loop between view planning and 3D reconstruction were Whaite

1http://youtu.be/Df9WhgibCQA, http://youtu.be/QTKd5UWCG0Q
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and Ferrie [Whaite and Ferrie, 1997]. The exploration of a depth-sensor attached to
a robot arm was driven by uncertainty reduction of a probabilistic surface model.
Feder et al. [Feder et al., 1999] proposed the first work on active SLAM that seeks
to minimizes both vehicle and landmark uncertainties. Bourgault et al. [Bourgault
et al., 2002] proposed to complement the sparse feature-based SLAM approach with
an occupancy grid to provide means of integrating dense range measurements. The
proposed exploration policy uses the entropy in the occupancy grid map to stimulate
exploration while the uncertainty in the SLAM assures localization accuracy. This
approach was extended to particle-filter SLAM [Stachniss et al., 2005] and recently to
pose-graph SLAM [Valencia et al., 2012].

While the previous works relied on depth sensors, Davison and Murray [Davison and
Murray, 2002] were the first to take into account the effects of actions during visual
SLAM. The goal was to select a fixation-point of a moving stereo head attached to
a mobile robot in order to minimize the motion drift along a predefined trajectory.
Vidal Calleja et al. [Vidal-Calleja et al., 2010] demonstrated an active feature-based
visual SLAM framework that provides real-time user-feedback to minimize both map
and camera pose uncertainty. Bryson and Sukkarieh [Bryson and Sukkarieh, 2008]
demonstrated a similar visual and inertial EKF-SLAM formulation for active control of
flying vehicles. The goal was to cover a predefined area with a camera sensor while
maintaining an accurate estimation of both the map and the vehicle state. Extensive
simulation results were provided of a MAV that is restricted to fly on a plane. Similar to
[Vidal-Calleja et al., 2010, Bryson and Sukkarieh, 2008] the exploration in our algorithm
is driven by a set of states (i.e., dense depth estimates in the reference view) that are
initialized with high uncertainty at the start of the exploration. Our resulting map is
spatially smaller but denser and exhibits more detail, which is crucial e.g., for path
planning in cluttered environments. Furthermore, in [Vidal-Calleja et al., 2010, Bryson
and Sukkarieh, 2008] the image is only used to extract features and subsequently
neglected. On the other hand, our proposed approach is direct [Irani and Anandan,
1999]—the intensity values in the image are directly used to reason about the next best
view.

In [Soatto, 2009], Soatto introduces the notion of Actionable Information that is the portion
of data that is useful towards the accomplishment of a task and after discounting
nuisance factors. In [Soatto, 2011, Chapter 8], he describes a hypothetic greedy explorer
that tries at every time instant to maximize the Actionable Information Increment (AIN).
He argues that such an explorer can get stuck in a local minima where no control action
yields any information and, therefore, suggests two improvements: firstly, to plan a
trajectory that maximizes the AIN over a finite horizon. Secondly, to use the memory of
past observations to build a representation of the environment and to plan the trajectory
so as to minimize the uncertainty in this representation. Soatto recognizes that it is
trivial to design an explorer that achieves complete exploration of a static environment
as, for instance, a random explorer (Brownian motion) would asymptotically do so.
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However, the goal is to do so efficiently. In this work we present an implementation of
such an explorer for monocular, dense depth estimation.

Contributions and Outline

State-of-the-art approaches to active mapping [Kriegel et al., 2013, Bourgault et al.,
2002, Davison and Murray, 2002, Stachniss et al., 2005, Valencia et al., 2012, Sim and
Roy, 2005] retain only geometric information while discarding the scene appearance.
As a result, a robot trying to perceive the depth of a white wall, would generate
different camera trajectories in vain, eventually failing to reduce the uncertainty in the
depth measurement [Soatto, 2009]. By contrast, we propose a method to compute the
measurement uncertainty and, thus, the expected information gain, on the basis of
scene structure and appearance (i.e., texture). By doing so, surfaces characterized by
uniform intensity yield high uncertainty in stereo computation, thus encoding the fact
that there is no information to obtain from staring at white walls.

The contributions introduced by this paper can be summarized as follows.

• We propose a formulation of the uncertainty characterizing a depth measurement
from multi-view stereo that takes into account the appearance of the scene, the
motion of the camera, and the structure of the scene currently available. This
formulation is used to evaluate candidate camera poses on the basis of the
expected information gain.

• For applications to dense reconstruction from MAVs, we provide a strategy to
compute a candidate sequence of viewpoints that lie on a feasible trajectory and
that maximize the expected information gain.

• We detail both synthetic and experimental validation of the proposed system
in closed loop and compare against four different control strategies: a random
strategy, a circular motion, a greedy strategy and a Next-Best-View (NBV) strategy
that iteratively selects the globally optimal view points.

The outline of the paper follows. In Section G.2 we detail our method to compute
probabilistic depth maps from a moving camera, introduce our evaluation method
and optimality criterion. Section G.3 presents different strategies for the generation of
candidate trajectories and Section G.4 is dedicated to the discussion on the experimental
evaluation. Finally, in Section G.5, we summarize our contribution and draw the
conclusions.
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Probabilistic Monocular Depth Estimation

In this section, we formalize the recursive Bayesian estimation of depth from multi-
view stereo, focusing on the measurement uncertainty, which is the crucial factor for
planning informative trajectories.

We denote the intensity image collected at time step k as Ik : Ω ⊂ R2 → R, where Ω is
the image domain. Let the rigid-body transformation Tw,k ∈ SE(3) describe the pose of
the camera acquiring Ik in the world reference frame. The inverse depth d̂u of a pixel
u in the reference camera pose Tw,r is a latent variable we infer from observations. An
observation is a pair {Ik, Tw,k}, where we assume that Tw,k is computed by an accurate
visual odometry algorithm [Forster et al., 2014b]. A measurement du,k of pixel u is
obtained by the k-th observation by triangulating from Tr,k = T−1

w,r · Tw,k and we assume
it normally distributed with mean µu,k and variance τ2

u,k:

p(du,k|d̂u) = N (du,k|µu,k, τ2
u,k). (G.1)

Given a prior p(d̂u) and assuming independent and identically distributed measure-
ments, the estimation proceeds recursively from the observations k ∈ {r + 1, . . . , n}:

p(d̂u|du,r+1, . . . , du,n) ∝ p(d̂u)
n

∏
k=r+1

p(du,k|d̂u). (G.2)

Upon the k-th observation, the posterior (G.2) is normally distributed with parameters
computed from the estimation at time k− 1:

p(d̂u|du,r+1, . . . , du,k) = N (d̂u|µu,k, σ2
u,k), with

µu,k =
σ2

u,k−1du,k + τ2
u,kµu,k−1

σ2
u,k−1 + τ2

u,k
, σ2

u,k =
σ2

u,k−1τ2
u,k

σ2
u,k−1 + τ2

u,k
. (G.3)

A similar model to estimate the depth of a pixel is used in [Pizzoli et al., 2014, Vogiatzis
and Hernández, 2011]. To increase the robustness of this approach, it is proposed in
[Vogiatzis and Hernández, 2011] to explicitly model outliers. Furthermore, in [Pizzoli
et al., 2014], we showed how regularity in the depth map can be enforced by making
use of a smoothness prior in regions characterized by high uncertainty.

Measurement uncertainty

A camera is a passive sensor and the measurement uncertainty is a function of the depth,
the camera motion, and the scene texture. In this section, we detail how to compute
the measurement uncertainty τk related to a candidate camera motion Tr,k, starting

192



G.2. Probabilistic Monocular Depth Estimation

f

l

S

l

Σ σp

σp

Ir

τ

θ = π
2

θ = 0

Figure G.1 – Disparity uncertainty. Depending on the image gradient, the camera motion influ-
ences the reliability of stereo matching and, thus, the uncertainty in the disparity computation
σ2

p .

from estimating the photometric disparity uncertainty σp,k, which accounts for possible
ambiguities in epipolar matching (e.g., due to uniform texture), and propagating it
through triangulation to the depth uncertainty τk.

The disparity error accounts for uncertainty in disparity measurement given the ref-
erence image appearance Ir and the camera motion Tr,k. It encapsulates the fact that
some motions are better than others to compute the disparity related to a pixel. Indeed,
the camera motion determines the direction of the epipolar line l and the disparity
measurement relies on comparison of intensity patches. Intuitively, matching is reliable
for image patches characterized by strong intensity gradients; in the context of active
vision, this means that the direction of the gradient in a region must be considered in
order to select a motion that is suitable for the disparity estimation. For instance, when
reconstructing regions characterized by a dominant gradient direction (see Figure G.1),
a camera motion resulting into epipolar lines that are parallel to the dominant gradient
direction in the intensity image (e.g., motion to the right in Figure G.1) will result in
less reliable epipolar matches and, thus, higher uncertainty in the disparity σp and
subsequently in depth τ.

More precisely, when the sum of squared differences (SSD) between image patches is used
for stereo matching, the probability of a correct match in the neighbourhood of a pixel
can be expressed by a zero mean bivariate normal distribution [Matthies et al., 1988],
with covariance matrix

Σ = 2σ2
i (JJ>)−1, (G.4)

where we denote by σ2
i the variance of the image noise and by J = ∑P (∂I/∂x, ∂I/∂y)

the sum of the image gradients over a patch P, centered at the pixel of interest.
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Figure G.2 – The uncertainty in depth measurement, τ2
k , is computed by projecting the disparity

uncertainty σp in image Ik on the pixel bearing-vector f.

We now take into account the camera motion and derive the uncertainty of disparity
computation when matching is performed along the epipolar line generating from Tr,k.
Let θ be the angle formed by the epipolar line and the image x axis. We can transform
the probability of a correct match to a reference system that has the x axis aligned with
the epipolar line, which results in a covariance matrix

Σ′ =
(

R>Σ−1R
)−1

, R =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
. (G.5)

The disparity error along the epipolar line follows the conditional distribution p(x|y =

0), which is Gaussian and characterized by the variance (cfr. [Bishop, 2006, p.87])

σ2
p = Σ′xx − Σ′xyΣ′−1

yy Σ′yx, (G.6)

where Σ′xx, Σ′xy and Σ′yy are the entries of Σ′.

Thus, the disparity error is normally distributed along the epipolar line with variance

σ2
p =

|Σ|
Σxx sin2(θ) + 2Σxy sin(θ) cos(θ) + Σyy cos2(θ)

, (G.7)

where Σxx, Σxy and Σyy correspond to entries of Σ and |Σ| is the determinant of Σ.

In the active vision context, we cannot compute the disparity error on the new image,
as the image is not available at the time we predict the measurement uncertainty.
Therefore, we consider the epipolar line in the reference image and compute the
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disparity error therein. The assumption that the patch appearance can be predicted by
the reference patch is valid for small viewpoint changes (i.e., neglecting distortions and
occlusions).

The measurement variance of the depth at pixel u in the image Ik is obtained by back-
projecting the variance of the photometric disparity error σ2

p . Referring to Figure G.2,
let d̂ be the current depth estimation of pixel u, the corresponding unit bearing vector
is denoted as f and t denotes the translation component of the relative position Tr,k. As
proposed in [Pizzoli et al., 2014], we can transform the measurement uncertainty σ2

p in
the image to the depth uncertainty τ2

k as follows:

a = d̂ · f− t, α = arccos
(

f · t
||t||

)
, β = arccos

(
− a · t
||a|| · ||t||

)
. (G.8)

Let f be the camera focal length. The angle spanning σp pixels can be added to β in
order to compute γ+ and, thus, by applying the law of sines, recover d+:

β+ = β + 2 tan−1
(

σp

2 f

)
, γ+ = π − α− β+, d+ = ||t|| sin β+

sin γ+
. (G.9)

Therefore, the measurement uncertainty is computed as:

τ2
k =

(
d+ − d̂

)2
. (G.10)

The derivation of the depth uncertainty reported in Equations (G.8) - (G.10) is similar
to the one presented in [Pizzoli et al., 2014], however with one critical difference that
occurs in Equation (G.9). In the present paper, the disparity uncertainty σp is a function
of the appearance (i.e., texture) in the scene. In contrast, in [Pizzoli et al., 2014] this was
simply set to 1, meaning that the uncertainty was assumed independent of the scene
appearance.

The Information Gain of a Measurement

We now demonstrate how the proposed probabilistic depth map representation and
update method can be applied to the problem of selecting the next best placements for
the camera.

Suppose that we are computing the depth map for a given reference image Ir. We
describe the uncertainty in the depth map estimate at time k with the entropy Hk.
In such a way, the treatment is independent on the actual model and the parametric
formulation described in Section G.2 might be replaced in order to take into account,
for instance, multiple depth hypotheses [Wendel et al., 2012].
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Since, for every pixel u ∈ Ω, the depth estimation proceeds independently, Hk can be
computed as (see, for instance, [Bishop, 2006])

Hk =
1
2 ∑

u∈Ω
ln(2πe σ2

u,k), (G.11)

where σ2
u,k) denotes the depth uncertainty of pixel u at time k (see Eq. (G.3)).

Upon the acquisition of a measurement from the (k + 1)-th camera pose Tr,k+1, the
variance of the estimated depth for the pixel u is updated to take into account the
measurement uncertainty τ2

u,k+1.

We define the information gain as the difference

Ik,k+1 = Hk −Hk+1, (G.12)

which, plugging (G.3) into (G.11), yields

Ik,k+1 =
1
2 ∑

u∈Ω
ln

{
τ2

u,k+1 + σ2
u,k

τ2
u,k+1

}
. (G.13)

Solution Strategies

In this section, we describe five different control strategies for the active depth-map
estimation problem. The control strategies range from random, heuristic, and greedy
methods to a model-predictive control approach that optimizes the next N views to
maximize the information gain. In Section G.4, we will evaluate the proposed methods
in synthetic and real-world experiments.

We simplify the problem by assuming that the camera moves at constant speed and
takes measurements at fixed frame rate. This results in equidistant measurements with
a relative distance ∆t ∈ R3 that is fixed a priori. The proposed system can be extended
to incorporate the inertia, controllability, and the dynamics of the camera-equipped
robot.

One can obtain more precise, thus more informative, measurements closer to the surface.
Therefore, an optimal control strategy eventually would make the robot approach the
surface (see Figure G.3 (b)). To avoid collisions in our envisioned MAV application, we
additionally restrict the motion to the horizontal plane Z at the height of the reference
view. Nevertheless, all proposed solution strategies can be extended to the 3D space
with increased computational cost that comes with the enlarged action space.

With these assumptions we can formalize the problem as follows: given the current
pose relative to the reference view Tr,k and the proposed method to measure the
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information gain of a measurement at the next pose Ik,k+1 = Ik,k+1(Tk,k+1), which next
pose Tr,k+1 ∈ Ak should be selected? The action space at time k is defined such that
equidistant camera poses in the horizontal plane are selected:

Ak =
{
T
∣∣∣ ||T−1

r,k · T||2 = ∆t ∧ T ∈ Z
}

. (G.14)

Random Walk Control

Similar to [Soatto, 2009], we use as a baseline a random walk strategy that at every
measurement k selects randomly the next pose from the action space Ak. This approach
is completely blind, hence should perform worse than all of the following strategies.

Circular Heuristic Control

A circular trajectory guarantees that the epipolar line sweeps over all directions. Thereby,
depth uncertainties that arise from the aperture problem during triangulation can be
disambiguated. For this reason, a circular trajectory is intuitively a good heuristic and
typically used in demonstrations of monocular multi-view stereo systems [Newcombe
et al., 2011b]. However, the radius of the circle must be tuned to the depth of the scene.
The radius should trade off accuracy through increased base-line versus visibility of the
reconstructed surface area S . In the synthetic experiments we selected the radius to give
the best results in the first scene and kept the radius fixed for the other experiments.

Greedy Control

A greedy controller tries to take control actions so as to maximize the expected infor-
mation gain of the next measurement [Feder et al., 1999]. The greedy control can then
be written as follows:

Tr,k+1 = arg max
T∈Ak

I∗k,k+1(T). (G.15)

This control law is equal to a gradient descent algorithm with fixed step size. Unless the
underlying functional is convex or the cost is extended with an additional curiosity-term
that promotes exploration of unknown areas [Bourgault et al., 2002], this approach is
prone to get stuck in local minima.

Next-Best-View Control

Since the information gain proposed in Section G.2.2 can be evaluated not only in the
neighbourhood of the current pose but also for all feasible positions and orientations,

197



Appendix G. Appearance-based Active Dense Reconstruction

Figure G.3 – Information gain for the NBV strategy. The distributions are visualized as heat-
maps (red means high information gain, blue low). Figure (a) shows the information gain
before the first measurement in an environment of isotropic gravel texture. Figure (b) shows
the information gain after the 10th measurement in the same scene. Figure (c) shows the
information gain in an environment with a dominant gradient direction in the texture.

the NBV control always selects the viewpoint in the horizontal plane Z that provides
the highest information gain, independently of the current pose:

Tr,k+1 = arg max
T∈Z

I∗k,k+1(T). (G.16)

Thus, the translation between poses is not limited to ∆t anymore. Since there is no
guarantee that subsequent measurements are spatially close, the travel distance of this
approach between two measurements will be high.

Receding-Horizon Control

Let us assume that the position of the next N poses {Tr,k+1, . . . , Tr,k+N} can be parametrized
by the parameter vector φk such that each pose lies in the action space of the previous
pose: Tr,k+i ∈ Ak+i−1. We can improve the greedy control strategy by considering the
information gain over the finite horizon N as proposed in [Huang et al., 2005, Soatto,
2011]. Given the current frame k, the receding-horizon control maximizes the expected
information gain over the course of the next N views:

φk = arg max
φ

k+N

∑
i=k
I∗i,i+1(φ). (G.17)

One can predict the probability of a measurement at time k + 1 based on the uncertainty
in the current depth-map. To compute the expected measurement at time k + 2 would
require to integrate over all possible depth-maps that can result from the update at
k + 1. This problem can be formulated with a partially observable Markov decision
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process (POMDP [Pack Kaelbling et al., 1998]) which becomes intractable with high
state- and action-spaces.

However, as proposed in [Huang et al., 2005], we can make the assumption that the
next measurements do not provide any new evidence, meaning that the prediction
coincides with the measurement and thus, the mean of the estimate does not change.
With this assumption it is straightforward to compute the information gain over the
next N measurements:

I∗k,k+N = Hk −H∗k+N(σ
∗2

k+N), with
1

σ∗2
k+N

=
1
σ2

k
+

1
τ∗k+1

2(φk)
+ . . . +

1
τ∗k+N

2(φk)
,

(G.18)

where τ∗k+i
2(φk) is the predicted measurement uncertainty at pose Tr,k+i that is a

function of the trajectory parameters φk.

Increasing the prediction horizon N in this formulation makes sense only when the
depth uncertainty is not too high, since this approach is based on the assumption that
the mean of the current depth estimate does not change over the next N measurements.
Further, note that similarly to the greedy approach, there is no guarantee that this
approach does not fall into a local minima.

A heuristic that we apply in order to increase the prediction accuracy in uncertain
depth maps and to avoid local minima is to start with a short prediction horizon N = 3
when the map is uncertain and to increase the prediction horizon when the predicted
information gain I∗k,k+N falls below some threshold in order to escape local minima.
Furthermore, since the depth estimate changes as soon as the (k + 1)-th measurement
is acquired, the trajectory until measurement N + 1 is replanned immediately.

The computational demand of the prediction grows exponentially with the degrees of
freedom of the trajectory parameters φ and linearly with the prediction horizon N.

Implementation Details

In this section, we provide more details on our implementation of the receding-horizon
control strategy and the information gain computation.

To favor the dynamics of the MAV, we reduce the dimensionality of the action space
by enforcing the continuity of the trajectory and by setting the tangent at the current
position to the current direction of motion. Additionally, we prohibit yaw camera
rotations in order to minimize motion blur. We chose to parametrize the trajectory
with a B-spline [de Boor, 2001] of third-order with three control points (see Figure G.4).
B-splines are piecewise polynomial functions with local support and simple derivatives.
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P1

P2

P3

Predicted observations
Spline Control Points

Z

x

y

Figure G.4 – B-Spline trajectory parametrization. P1, P2 and P3 are the control points. The
candidate camera poses are visualized in green.

However, any other temporal basis function could be used. The first control point P1 of
the B-spline is set fixed to the current position of the camera, the second control point
P2 has one degree of freedom (P2y) along the current direction of motion of the MAV
and the third control point P3 has two degrees of freedom in the horizontal plane Z
(P3x and P3y, see Figure G.4). In total the trajectory parametrization has three degrees
of freedom φ = {P2y, P3x, P3y}. By setting constraints on the position of {P1, P2}, it is
possible to enforce the dynamic constraints of the MAV on the trajectory. The predicted
observations are located along the trajectory with equal distance ∆t. The optimal
trajectory in the three dimensional space can be found by a global optimization routine
with the condition that the spline parameters φ must remain in the range ±2N∆t.

The computation of the depth-map entropy, which is evaluated multiple times in every
control iteration according to (G.11), requires summation over all pixels in the image.
To maintain real-time performance, we were required to select a subset of pixels for
which the information gain is computed. In practice we compute the information
gain, thus, the trajectory, based on 400 uniformly distributed pixels with high gradient
magnitude.

Experimental Evaluation

Simulation Experiments

We evaluated the proposed control strategies in three different synthetic environments
(Figure G.6(a) to G.7). The scenes vary in both the texture and shape of the surface.
Scenes 1 and 2 contain isotropic gravel texture while the texture of Scene 3 exhibits a
dominant gradient direction. The surface in Scene 1 and 3 is planar and in Scene 3
there is a step.

200



G.4. Experimental Evaluation

To give an intuition of the information distribution, we sampled the information gain
regularly in a cube around the reference view and display the results in Figure G.3. The
information density before the first measurement in Scene 1 is displayed in Figure G.3
(a) and after the 10th measurement in Figure G.3 (b). The coordinate frame displayed
in the center of the figures illustrates the position of the downward-looking reference
view. Hot (red) colors indicate relative positions with high expected information gain
and cold (blue) colors positions with low potential. Neglecting the restriction of the
motion to a horizontal plane for now, one can observe that for the first measurement a
horizontal and vertical motion would be optimal. Moving horizontally increases the
baseline and moving vertically ensures that the whole surface remains within the field
of view. This illustrates intuitvely why planning multiple steps ahead is superior to
next-best-view planning: rather than moving upwards and ensuring that the whole
depth-map is within the field of view, two close measurements—each updating one
side of the depth-map—would result in higher uncertainty reduction. Figure G.3 (b)
shows that after a 10 measurements, the information-gain is generally lower and that
it is advantageous to move closer to the surface. Figure G.3 (c) shows the initial cost
in the horizontal plane of Scene 3. Scenes with isotropic texture exhibit a circular
region around the reference view with high information gain. However, since Scene
3 is textured with a dominant gradient direction, the photometric disparity error is
higher for motions along the gradient direction (aperture problem). This reflects in the
information gain computation and thus motions rectangular to the gradient directions
are favoured.

Figure G.8 shows the information gain in the horizontal plane centered two meters
above a horizontally striped surface. When neglecting the texture (i.e., σ2

p = 1), the
robot would prefer a horizontal motion since less pixels move out of the field of view.
However, when considering the appearance, a motion in x direction does not provide
any information due to the aperture problem.

The plots in Figures G.6(a) to G.7 compare the proposed control strategies for each
of the synthetic environments. The simulation of all control strategies was run until
an accuracy of less than 1 mm in the depth-map was reached. The red plane in each
rendering illustrates the altitude to which the camera was resticted to move. The
reference view is acquired in the center of each red plane with a downward-looking
camera. Plot (b) in each figure shows the resulting trajectories on the horizontal plane
for all control strategies while Plot (c) shows the entropy reduction over travelled
distance. When comparing the information gain over the travelled distance in Plot (c),
the greedy approach performs similar to the spline-based method in terms of entropy
reduction over travelled distance in the first environment. However, in the second
and third environment, the greedy approach gets stuck in a local minimum. The
spline-based receding-horizon control requires in all environments the least motion to
achieve the predefined accuracy level. The results of the random strategy are averaged
over 100 measurements of which we display only one in the trajectory plots.
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In Figure G.7 (b) it is clearly visible how the photometric disparity uncertainty drives
the receding-horizon control to select views which do not suffer from the aperture
problem. After moving in positive y direction, the MAV seems to get stuck in a local
minimum, however, by increasing the prediction horizon it finds the path towards the
other side of the map.

Real-World Experiments

In Figure G.5(a), we show the setup of the real experiments. The MAV is equipped
with a downward-looking camera and embedded processor. A vision-based SLAM
algorithm [Forster et al., 2014b] runs onboard to estimate the egomotion and stabilize
the vehicle. To achieve real-time performance, we run the dense reconstruction and
path planning off-board on an Intel i7 laptop. Therefore, the MAV streams video
and estimated poses to a ground-station where the proposed algorithms compute and
return in real time the trajectory commands. A video of the experiment can be viewed
on the author’s website: http://rpg.ifi.uzh.ch.

We compared the three best performing control strategies and report the results Figure
G.5(e). In Figure G.5(d), the resulting trajectories are shown, where we additionally
display the B-splines that are computed at every iteration. The final depth-map of the
spline strategy is shown in Figures G.5(b) and G.5(c).

A comparison of the control strategies in real experiments is more challenging than in
simulation since the reference view must be taken exactly at the same location, which
is almost impossible. For this reason, the comparison of the convergence speed must
be analyzed with caution. The greedy method fell in a local minimum and approached
a wall when the experiment had to be stopped. For the circle strategy we tuned the
radius to give best performance in this scenario. Indeed, it converges slightly faster than
the receding-horizon (spline) strategy. The advantage of the spline strategy, however, is
that it must not be adapted to the environment height, shape and appearance.

Conclusion and Future Work

In this paper, we proposed an approach to actively acquire informative views for monoc-
ular dense depth estimation. In evaluating a candidate camera trajectory, we proposed
to take into account the texture of the scene, and we contributed a novel formulation
of the depth measurement uncertainty based on propagating the uncertainty in pho-
tometric stereo disparity to triangulation. We evaluated different strategies in both
simulation and real scenarios and we showed how the camera trajectories emerging
from the information maximization problem are, at the same time, informative, in terms
of depth estimation, and parsimonious, in terms of traveled distance. For applications to
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G.5. Conclusion and Future Work

Micro Aerial Vehicle (MAV) perception, we reduced the dimensionality of the search
space by enforcing continuity on the trajectory. To the best of our knowledge, this is
the first work on active, monocular dense reconstruction demonstrated on a robot.
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(a) Experiment Setup (b) Reconstruction result

(c) Reconstruction result
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Figure G.5 – Real world experiment and reconstruction results.
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Figure G.7 – Synthetic scene 3.
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(a) Horizontally striped texture.
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Figure G.8 – Influence of striped texture on the information gain.
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