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Fig. 1: A quadrotor flies a time-optimal trajectory with top speeds of 15m s−1. We automatically find a controller configuration that can
fly such a high-speed maneuver with a novel sampling-based method called AutoTune. To get a better sense of the speed achieved by the
quadrotor, please watch the supplementary movie.

Abstract— Due to noisy actuation and external disturbances,
tuning controllers for high-speed flight is very challenging. In
this paper, we ask the following questions: How sensitive are
controllers to tuning when tracking high-speed maneuvers?
What algorithms can we use to automatically tune them? To
answer the first question, we study the relationship between
parameters and performance and find out that the faster
the maneuver, the more sensitive a controller becomes to
its parameters. To answer the second question, we review
existing methods for controller tuning and discover that prior
works often perform poorly on the task of high-speed flight.
Therefore, we propose AutoTune, a sampling-based tuning
algorithm specifically tailored to high-speed flight. In contrast
to previous work, our algorithm does not assume any prior
knowledge of the drone or its optimization function and can
deal with the multi-modal characteristics of the parameters’
optimization space. We thoroughly evaluate AutoTune both
in simulation and in the physical world. In our experiments,
we outperform existing tuning algorithms by up to 90% in
trajectory completion. The resulting controllers are tested in
the AirSim Game of Drones competition, where we outperform
the winner by up to 25% in lap-time. Finally, we show that
AutoTune improves tracking error when flying a physical
platform with respect to parameters tuned by a human expert.

SUPPLEMENTARY MATERIAL

A video showing qualitative results in the real world
is available at https://youtu.be/Y 1fYkW3-8. Code can be
found at https://github.com/uzh-rpg/mh autotune.

I. INTRODUCTION

Flying high-speed trajectories with a quadrotor requires
the platform’s controller to be meticulously tuned. The
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Fig. 2: Trajectory completion (%) as a function of two parameters
of a model-predictive controller. The high speed and high angular
accelerations required by time-optimal trajectories make the con-
troller extremely sensitive to its parameters.

complex relationship between parameters and performance,
empirically shown in Fig. 2, is caused by unavoidable factors
such as noisy actuation, imperfect modeling, and external
disturbances. This work is motivated by the following ques-
tions: What are the characteristics of this optimization space?
How can we automatically find controller parameters for
high-speed flight?

Tuning controller parameters to fly high-speed maneuvers
is difficult due to three main challenges: (i) the objective
function (i.e. the relationship between controller parameters
and performance) is highly non-convex (See Fig. 2); (ii)
the tuning process only relies on noisy evaluations1 of
the objective function at adaptively chosen parameters, but
not to the function itself or its gradients; (iii) different
parts of the trajectory, e.g. a sharp turn or a straight-line
acceleration, generally require different controller behaviors,
hence dynamically changing parameters.

The traditional approach for automatic tuning and adaptive

1Due to noise the same controller parameters can yield different perfor-
mance on multiple runs.

https://youtu.be/Y__1fYkW3-8
https://github.com/uzh-rpg/mh_autotune


control, generally known as MIT rule [1], requires to express
the desired performance metric, e.g. the average tracking
error over the entire maneuver, as a quadratic function of
controller parameters, and then optimizes the controller with
gradient-based optimization [2], [3], [4]. However, express-
ing the long-term performance on a high-speed maneuver
with respect to the parameters of a receding horizon con-
troller (i.e. the optimization function depicted in Fig. 2) is
generally intractable. Indeed, it requires to know a priori the
exact model of the quadrotor and the disturbances acting on it
during flight, e.g. noisy actuation and aerodynamic effects.
Instead of analytically computing it, another line of work
proposes to iteratively estimate the optimization function,
and use the estimate to find optimal parameters [5], [6], [7].
However, these methods make over-simplifying assumptions
on the objective function, e.g. convexity or relative Gaussian-
ity between observations. Such assumptions are generally not
suited for controller tuning to high-speed flight, where the
function is highly non-convex (c.f. Fig. 2). To remove any
assumption, model-free methods propose to directly search
for optimal parameters using sampling. Such methods are
however built on heuristics not necessarily suited to high-
speed flight and generally require thousands of iterations to
converge [8].

In this paper, we propose a novel sampling-based algo-
rithm specifically tailored to the problem of high-speed flight,
rooted in statistical theory: AutoTune. Given an initial, low-
performance controller, AutoTune optimizes its parameters
to maximize a user-defined metric, e.g. track completion. In
contrast to traditional adaptive control, e.g. the MIT rule,
it does not require to analytically express the optimiza-
tion function with respect to the controller parameters, nor
assumptions about the optimization function. Similarly to
model-free sampling-based methods, AutoTune does neither
require prior knowledge of the platform model and external
disturbances. However, to make sampling computationally
tractable, our approach uses Metropolis-Hastings sampling
(M-H) [9] and several strategies specifically tailored to
the problem of high-speed flight. Specifically, motivated by
the observation that different parts of a trajectory require
different controller behaviors, we propose a strategy to break
down a trajectory into components with different behaviors,
e.g. sharp descent or planar acceleration. Despite controller
parameters being different for each component, they are
all optimized jointly to favor optimality over the entire
trajectory. In addition, to speed up convergence, we train
a regressor to predict good initialization parameters.

We perform an extensive evaluation in two simulators and
in the physical world. In these experiments, we find out
two interesting characteristics of the relationship between
controller parameters and flight performance during high-
speed flight: (i) the faster a maneuver is, the more sen-
sitive a controller becomes to its parameters, and (ii) the
optimization function is multi-modal, i.e. multiple controller
configurations lead to the desired performance. We empir-
ically show that our approach can tune controllers up to
90 percentage points better than previous work in terms of

trajectory completion. In the 2019 AirSim Game of Drones
competition [10], our approach decreases lap-time by up
to 25% with respect to the winner. We then validate the
controller parameters found by AutoTune in simulation on a
physical platform. These parameters decrease the tracking
error with respect to the ones tuned by a human expert.
Overall, our work makes the following contributions:
• We present a novel sampling-based method for tuning

quadrotor controllers on the task of high-speed flight.
• We show that our method outperforms existing methods

for automatic controller tuning and enables quadrotors
to fly time-optimal trajectories both in simulation and
in the physical world.

• We provide interesting insights into the relationship
between the parameters of a receding horizon controller
and its flight performance on high-speed maneuvers.

II. RELATED WORK

The simplest option available to robotic researchers for
controller tuning is to use domain knowledge, i.e. experience,
to tune controllers’ parameters. However, tuning by hand
often translates in a tedious and time-consuming trial-and-
error process, difficult even for the simplest maneuvers.
Besides, human intuition often provides an inherent bias to
the experiments, which results in sub-optimal performance
and calls for a more principled parameter tuning approach.

In line with adaptive control, the classic approach for
controller tuning analytically finds the relationship between
a performance metric, e.g. tracking error or trajectory com-
pletion, and optimizes the parameters with gradient-based
optimization [1], [2], [3], [4]. However, doing so requires
to analytically derive the performance of a receding-horizon
controller over a possibly long maneuver, which is in-
tractable given the model errors, the noisy actuation, and
other perturbations possibly acting on the platform during
flight, e.g. aerodynamics effects. Approximating these effects
numerically is possible for short maneuvers [11], [12], [13],
but the more complex the maneuver or the system is,
the more difficult the identification becomes, making these
methods impractical for tuning controllers to fly time-optimal
maneuvers.

Motivated by this difficulty, another family of approaches
estimates the relationship between the controller’s perfor-
mance and its parameters directly from data [14], [6], [5].
Through multiple experiments, both the estimate and the
parameters are iteratively updated. However, doing so re-
quires making additional assumptions on the shape of the
function. The assumptions commonly used in the literature
are: (i) relative normality between all observations according
to some pre-defined kernel, as in Bayesian Optimization [6],
[14], [7], and (ii) the function can be described by a
parametric distribution, e.g. a Gaussian, as typical in inverse
optimal control [5]. When the relationship between param-
eters and performance is very complex, as it is the case
for time-optimal trajectories, these assumptions generally
cause a poor fitting of the function, which results in sub-
optimal tuning performance. If demonstrations by a human



expert are available, another option consists of using inverse
reinforcement learning [15], but this is generally not the case
with time-optimal trajectories, which can be faster than the
trajectories flown by the best human pilots [16].

To relax the assumptions required by the previous meth-
ods, another family of algorithms proposes to directly search
for the optimal controller parameters by sampling. The
main advantage of these algorithms is that they can deal
with highly non-convex functions, like the one between
parameters and performance in time-optimal trajectories.
However, these algorithms generally define the sampling
distribution through heuristics [8]. Building such heuristics
to properly fit the problem while minimizing the number of
sampling iterations is a major challenge in itself, which lim-
ited the success of these methods in quadrotors applications
to relatively simple problems, e.g. hovering [17]. Instead
of heuristically defining the proposal distribution, we use
Metropolis-Hastings [9] to sample the controller parameters.
In addition, we propose a strategy specifically tailored to the
problem of high-speed flight to reduce the sample complexity
of the approach.

III. PRELIMINARIES AND OVERVIEW

We define the task of high-speed flight through a series
of waypoints as finding a policy minimizing the following
cost:

min
π
J(π) = Eρ(π) [t(π)] , (1)

subject to ‖u[k]‖ ≤ uc (2)
s[k + 1] = f(s[k], Bu[k]), (3)

where s[k] is the quadrotor’s state at time k, u[k] is the
input, ρ(π) is the distribution of possible trajectories induced
by the controller π, and t(π) is the time required to fly
through all waypoints. The solution of Eq. (1) is a policy
that minimizes the time to pass through all waypoints by
respecting the platform dynamics (Eq. (3)) and actuation
constraints (Eq. (2)). Given the series of waypoints and the
platform’s specifics, we approximate a solution to Eq. (1)
with non-convex optimization [16], and then track the re-
sulting trajectory τ r with a receding-horizon controller.

Analytical controllers, e.g. the Linear Quadratic Regulator
(LQR), aim to solve the tracking problem directly. However,
they disregard the platform dynamics and actuation con-
straints, resulting in poor controller performance when the
system operates close to its physical limits [18]. Therefore,
model predictive controllers (MPC) propose to solve a finite
horizon version of the tracking problem in a receding horizon
fashion:

π(x[t0]) = min
U

[
t0+th∑
k=t0

x[k]>Qx[k] + u[k]>Ru[k]

]
(4)

subject to ‖u[k]‖ ≤ uc
x[k + 1] = f(x[k], Bu[k]),

where x[k] = τ r[k] − s[k] denotes the difference between
the state of the platform and the corresponding reference

at time k, Q and R are the state and input cost matrices,
and th is the horizon length, generally much smaller than
the entire trajectory duration t. In contrast to the LQR, the
platform constraints and dynamics are directly taken into
account by the controller. This approach, however, requires
to tune the controller parameters Q, R, and th to minimize
a user-defined metric, e.g. the tracking error, over the entire
trajectory 2. Tuning these parameters is challenging since it
is not possible to analytically find the relationship between
them and the long-horizon cost, as required for example
by the traditional MIT rule [1]. This difficulty arises from
the fact that the available model f is generally inaccurate
and does not represent noise in the actuation and other
disturbances, e.g. drag.

Since time-optimal trajectories push quadrotors to their
physical limits, we track them with an MPC controller and
tune the controller parameters through a specifically designed
sampling-based technique. To improve performance, we pro-
pose a strategy to split a trajectory into parts that require
different controller behavior, hence different parameters. The
parameters are optimized jointly to favor global optimization.
Additionally, we initialize the search from a good guess of
parameters to reduce sampling time. These parameters are
predicted by a regressor trained on previously optimized
tracks. Fig. 3 shows a summary of the proposed approach
to tune controllers for high-speed flight. The next section
presents each aspect of our method in detail.

IV. METHOD

A. Metropolis-Hastings Sampling

In statistics, the Metropolis-Hastings (M-H) algorithm [19]
is used to obtain a sequence of random samples from a
desired distribution P (w) which can’t be directly accessed.
To generate the samples, the M-H algorithm requires a
score function d(w) which is proportional to the density
P (w). Samples are produced in an iterative fashion: the next
sample wt+1 comes from a distribution t(wt+1|wt), referred
to as transition model, which only depends on the current
sample wt. The transition model t(wt+1|wt) is generally
a parametric distribution, e.g. a Gaussian. The next sample
wt+1 is then accepted and used for the next iteration, or it is
rejected, discarded, and the current sample wt is re-used for
the next iteration. Specifically, the sample is accepted with
probability equal to

α = min(1,
d(wt+1)

d(wt)
) = min(1,

P (wt+1)

P (wt)
). (5)

Therefore, M-H always accepts a sample with a higher score.
However, the move to a sample with a smaller score will
sometimes be rejected, and the higher the drop in score 1

α ,
the smaller the probability of acceptance. Therefore, many
samples come from the high-density regions of P (w), while
relatively few from the low-density regions. Intuitively, this
is why the empirical sample distribution P̂ (w) approximates
the target distribution P (w).

2Parameters are equivalent up to scale. To account for this effect, we keep
the cost on inputs R constant



Fig. 3: We compute a minimum-time trajectory passing through all waypoints [16]. The trajectory is then segmented in parts that require
different controller behaviors, and initial parameters for each segment are predicted with a regressor. The parameters are then jointly
optimized with M-H sampling over multiple rollouts.

In this work, we use the M-H algorithm to find the
parameters of a controller flying time-optimal trajectories.
In this case, a sample w represents the MPC’s parameters,
and the score function is defined as:

d(w) = exp(−m(w)), (6)

where m(w) is a metric measuring the performance (e.g.
time) the controller accumulates over the entire trajectory.
However, in the task of controller tuning, we are not inter-
ested in approximating the distribution of controller param-
eters P̂ (w), but to find, with as few samples as possible,
a parameter configuration that enables to track a given
trajectory accurately. Therefore, we continue the sampling
procedure up to when we find a solution satisfying some
user-defined performance metrics, e.g. in terms of tracking
error or trajectory completion.

It is important to note that this setup makes the use
of Metropolis-Hasting sampling equivalent to simulated an-
nealing with constant temperature [20]. Despite varying-
temperature simulated annealing providing the asymptotic
guarantee of global optimality, it generally requires a signifi-
cantly larger number of samples with respect to its constant-
temperature counterpart [21] and a specifically designed
heuristic to define the cooling function [20]. Therefore, since
we are not interested in the global optimum but only in
a controller configuration satisfying a user-defined perfor-
mance metric, we keep the temperature to a constant value.
However, in contrast to fixed-temperature simulated anneal-
ing, the use of Metropolis-Hastings additionally provides
the possibility to approximate the distribution of controller
parameters (c.f. Fig. 2), which can be used to study the
characteristics of the optimization space.

B. Scoring Performance with Time

According to Eq. (1), we define the metric m(w) in Eq. (6)
to be the time t to pass all waypoints, i.e. m(w) = J(π(w)).
However, it is not clear how to define this metric when
the drone misses a waypoint or crashes before the end of
the trajectory. To solve this problem, we propose to stop
the experiment whenever the drone misses a waypoint by
more than 1.3m or crashes. In this case, a penalty equal to
the shortest path between the drone position and all further
waypoints is added to the time. In such a way, it is possible
to distinguish between parameters w that make the drone
crash in the early stage of a trajectory and the ones that
can complete the trajectory to the end. As soon as we find

Fig. 4: Before starting the sampling, AutoTune segments a trajectory
according to the gradient of z. The above maneuver was split into
flat (blue), ascent (red), drop (green, steep descent), and descent
(purple).

a controller configuration able to track the entire trajectory
without crashing or missing any waypoint by more than
1.3m, we stop the sampling procedure.

C. Trajectory Segmentation

Complex high-speed trajectories require different con-
troller behaviors along the track. For example, consider the
reference trajectory illustrated in Fig. 4. The initial segment,
depicted in blue, is approximately planar but has a large
curvature in the x-y plane. In contrast, the drop segment,
depicted in green in Fig. 4, has a large gradient in height,
but little motion in the x-y plane. Clearly, these two segments
need different controller behaviors to be successfully tracked.
The blue planar segment requires the controller to be very
precise on x-y tracking, but less controller authority is needed
on the z-plane. Conversely, the large drop in altitude of
the green segment necessitates very accurate tracking of the
reference on the z plane, but less on the x-y one. Accounting
for this behavior is particularly important for time-optimal
trajectories, where the drone is always close to its physical
limits. Therefore, global parameters are likely to fail to
track the entire trajectory, no matter how many samples are
generated.

Motivated by this observation, we split the trajectory into
multiple segments according to the height gradient of the
reference. In each segment different parameters are assigned
to the controller. Specifically, we assign each point to the
class flat, ascent, or descent if the difference in height
gz = z[k] − z[k + 1] with its successor is |gz| < 1m, gz ≥
1m, gz ≤ −1m, respectively. The resulting segments are
then clustered such that the minimum segment duration is



Track Max Vel [ms−1] Random Search Bayesian Optimization AutoTune (Ours)
Mat LocalPer RQ SQ Per

Circle 20 100 100 100 100 100 100 100
Circle 34 65 80 65 60 60 30 100
Drop 20 40 100 50 50 50 40 100
Flip 16 80 80 80 80 80 80 100

Spiral 53 0 10 0 0 10 0 100
Qualifier 20 50 75 60 60 60 30 100

Final 22 10 40 40 30 30 25 100

TABLE I: Comparison of AutoTune with the baselines. All approaches have a maximum budget of 200 iterations to tune the controller.
Random search and Bayesian optimization perform well on easy maneuvers, but their performance drops when the speed and angular
acceleration required by the trajectory increases. Conversely, AutoTune can always find parameters to fly the entire trajectory.

2 seconds. Eventually, all the descent and ascent segments
with a slope higher than 45◦ are recursively split into two
equal parts, where the first is assigned to the class steep
and the second remains assigned to the original class. Fig. 4
shows the result of the segmentation algorithm in one of
our testing maneuvers. To account for the strong correlations
between segments and keep the optimization global over
the trajectory, the controller parameters associated with each
segment are updated jointly. More details about the joint
optimization process and other segmentation examples are
available in the appendix.

D. Sampler Initialization

The Metropolis-Hastings algorithm requires an initial pa-
rameter configuration w0 to initialize the sampling. Instead of
using a random initialization, we propose to use an informed
guess for w0. Specifically, we use a Gradient Boosting
regressor [22] to predict initial controller parameters for
each trajectory segment. The training data for this regressor
are controller parameters found to be optimal on 5 training
trajectories different in layout from the testing ones. A
different regressor is trained for each type of trajectory
segment, i.e. flat, ascent, descent, and steep. Five features
including information about the reference trajectory are used
for prediction: the number of points in the segment, the slope
of the line connecting the first and last point of the segment,
as well as their height difference, and the mean velocity and
acceleration. These features have been selected with a cross-
validation procedure.

Overall, the idea of predicting an initial guess w0 with a re-
gressor trained on previously seen trajectory experimentally
shows to drastically reduce the number of iterations (up to
88%) to find controller parameters for flying a time-optimal
trajectory. More details about the training data, the training
procedure, and an ablation study of the features are available
in the supplementary material.

V. EXPERIMENTS

We design our evaluation procedure to address the fol-
lowing questions: Can AutoTune find controller parameters
to fly high-speed trajectories? What are the characteristics
of the optimization space of controller parameters for the
task of high-speed flight? Do the tuned controllers improve
performance on a physical platform? Furthermore, we vali-
date our design choices with ablation studies. We encourage

the reader to watch the supplementary video for qualitative
results.

A. Experimental Setup

We use for our experiments two simulators known for
their physical and visual realism: Microsoft AirSim [10],
and Flightmare [23]. We test AutoTune on six trajectories
selected to evaluate controller performance under strong
accelerations and high-speed on all axes.

For comparison, we use two baselines for controller
tuning. A naive one (Random Sampling) which randomly
samples parameters independently and uniformly on all axis
with a variance of 5. Besides, we compare to the strong
baseline of Bayesian Optimization [7] with multiple choices
of the Gaussian kernel. All baselines start tuning from the
same point as ours: the trajectory is divided into parts
and the regressor predicts initial parameters. All approaches
have a budget of 200 iterations to complete the task. Note
that the traditional tuning methods based on gradient-based
optimization [13], [12], [1] are impractical for this task, given
the difficulty to explicitly find the relationship between the
parameters of our receding-horizon MPC controller and the
tracking performance over the entire maneuver.

We define the metric of Trajectory Completion (TC) to
compare the different approaches. Formally, this metric is
defined as:

TC =

∑
i∈waypoints 1[i]∑
i∈waypoints 1

, (7)

where the indicator function for waypoint i is

1[i] =

{
1 if drone at 1.3m distance from i at tr(i),
0 otherwise,

and tr(i) is the time when the reference τr predicts the
quadrotor to pass the waypoint i. Whenever a waypoint
is missed by more than 1.3m or the drone crashes, the
experiment is stopped and the metric calculated. We use this
metric in our experiment since it is easy to interpret and can
be compared across different experiments.

B. Tracking Minimum-Time Trajectories

We first evaluate the performance of AutoTune compared
to the baselines. The results are summarized in Table I.
AutoTune is consistently the best across all maneuvers. For
easy maneuvers, e.g. the slow circle or the flip, almost



Team Qualification Round Final Round

Lap Time [s] Max Vel [m/s] Avg Vel [m/s] Lap Time [s] Max Vel [m/s] Avg Vel [m/s]

QuetzalC++ 42.01 17.20 8.13 53.52 28.19 9.82
Chuchichaschtli 37.58 18.96 9.11 53.49 18.70 9.54

Dedale 30.11 16.49 11.33 39.78 20.02 12.88
AutoTune 24.05 21.68 14.06 38.09 19.83 14.01

TABLE II: Game of Drones 2019 leaderboards. AutoTune outperforms the winner of the competition in both qualification and final round.
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Fig. 5: Comparison between AutoTune and a human expert in
tuning the controller for flying the Qualifier track (Fig. 4) in
simulation. After 20 attempts, the human expert does not find the
controller parameters to successfully fly the entire maneuvers and
terminates tuning. Conversely, in 21 iterations AutoTune finds the
parameters to fly the entire track.

any controller configurations can complete the track, and
all methods can find a viable solution. However, for more
difficult maneuvers, the gap between our approach and the
strong Bayesian Optimization baseline widens, reaching up
to 90% in the Spiral track. One of the main reasons for
this performance gap is the fact that the Bayesian baseline
has difficulties fitting the optimization function. Another
interesting result of Table I is that Bayesian Optimization
is strongly sensitive to the choice of the kernel.

Fig. 5 shows the comparison between the tuning perfor-
mance of AutoTune and a human expert over time. The
results show that the task of tuning parameters by hand is
extremely challenging for humans, given the non-intuitive
relationship between parameters and performance. Indeed,
while the human expert could not tune the controller to fly
the entire trajectory, AutoTune finds a feasible controller
configuration after only 21 iterations.

To validate the importance of tuning parameters for flying
faster trajectories, we compare our approach to the top three
methods in the 2019 AirSim Game of Drones competition.
We compare the methods both on the qualification and final
round of the competition. The results of this experiment
are summarized in Table II. On the qualifier track flying
AutoTune achieves a lap-time of 24.05 s, while the winner
only reaches the goal in 30.11 s, with a lap-time 25% longer
than ours. Also in the final round, AutoTune outperforms the
winner of the competition with a 1.7 s margin, completing
the track in approximately 5% less time. Interestingly, our
approach converges to a policy with a maximum speed
not necessarily higher than others. However, we achieve
an average velocity higher than baselines, and therefore a

faster lap-time. This experiment shows that tuning controller
parameters with an automated procedure allow quadrotors to
fly faster trajectories.

C. Application in the Real World

In this section, we show that AutoTune can be used to
tune the controller of a physical platform. To do so, we
compute a minimum-time trajectory double Split-S trajectory
of 21 waypoints [16]. This trajectory is used to tune the con-
troller in the Flightmare simulator. The resulting controller
is then evaluated on a physical platform, and its tracking
performance is compared with parameters tuned by a human
expert. Figure 6 shows the results of this experiment. Auto-
Tune improves average tracking error by 6% and decreases
the maximum displacement from the reference by 12%. In
addition, the controller parameters found by our approach
give more consistent performance over multiple runs than
the baseline.

D. Robustness to Changes in Mass, Velocity, and Track
Layout

In this section, we study the robustness of the parameters
found by AutoTune to changes in drone’s mass, flight speed,
and track layout. All experiments are made on the Qualifier
track. Figure 7 show the results of these experiments. The pa-
rameters are overall robust to changes in the quadrotor mass
and can complete the task even for very different settings.
When changing the maximum speed achieved during flight
(Fig. 7-b), we observe that a faster trajectory requires more
precise tuning. Finally, we test whether parameters generalize
between different maneuvers. To favor generalization, we
copy parameters for each segment independently. The results
(Fig. 7-c) show that, when the maneuver used for tuning
is different from the testing one, the performance generally
drops. One possible solution to this problem is to explicitly
tune the controller on multiple motion primitives, in a
procedure similar to domain randomization [24]. At the cost
of a larger sample complexity, such procedure could make
the parameters not only robust to changes in track layout,
but also favour simulation-to-reality transfer.

E. Robustness to Initial Conditions

In this section, we study the evolution of the controller
parameters during optimization for different initialization
conditions. Specifically, we start the sampling procedure
from 3 random initializations and tune the controller with
our approach in the Flightmare simulator on the Qualifier
track (Fig. 4). Figure 8 shows the results of this experiment.
AutoTune finds parameters to reach 100% of trajectory
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Fig. 6: Results in the real world. After tuning the parameters in simulation, we evaluate the best configuration found by AutoTune on a
physical platform. We compare the performance with the parameters tuned by a human. We perform three runs for each parameter set.
We also report the error as a function of time (c) for the best run of each approach.
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Fig. 7: Performance analysis when parameters used for tuning (Training) is different to the one used during execution (Testing). Overall,
the parameters are robust to imperfect identification of the mass, and the faster the maneuver, the more sensitive the controller is to
the parameters. However, the controllers require to be tuned specifically to the maneuver. When the training and testing maneuvers are
different, performance generally drops.
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all runs. AutoTune converges to a configuration with 100% trajectory completion for all initial conditions. Initialization strongly affects
the converge speed. All runs converge to a different optimum, demonstrating the multi-modal characteristic of the optimization function.

completion for all initial conditions. However, while some
require as little as 50 iterations, others require up to 1K
to converge. Interestingly, the approach follows different
paths in the optimization space for every initialization. In
addition, the sampling converges to a different local optimum
for each initial condition. This behavior empirically shows
that the relationship between parameters and performance at
high-speed is multi-modal, i.e. different controller parameters
have the same performance. These characteristics of the
optimization function represent a challenge for gradient-
based and Bayesian methods [4], [6], [6], which tend to

converge to the mean between different optima. Conversely,
since Metropolis-Hastings sampling can approximate any
probability distribution under relatively mild assumptions,
our approach does not suffer from the multi-modal nature
of the function between performance and controller config-
urations.

F. Ablation Studies

AutoTune is based on several components to reduce the
sample complexity of Metropolis-Hastings sampling. We
now validate our design with an ablation study. In particular,
we ablate the following components: (i) the use of a regressor



Trajectory Completion [%] Iterations

AutoTune 100 21
– Regressor 100 172
– Segmentation 65 300

TABLE III: Ablation Study of the system’s component on the
Qualifier trajectory.

for predicting an initial controller to initialize sampling, (ii)
the segmentation of the trajectory in different parts. The
results in Table III show that all components are important,
but some have a larger impact than others. The initial guess
produced by the regressor drastically reduces the number of
iterations to convergence, making the sampler find a solution
in 88% less time. However, the most important contribution
comes from the trajectory segmentation. Without this com-
ponent, the sampler cannot find parameters to complete more
than 65% of the trajectory in less than 300 iterations. This
is because global parameters do not allow the controller to
dynamically adapt to different parts of the trajectory.

VI. DISCUSSION AND CONCLUSIONS

This paper shows the importance of an automated tuning
procedure of controller parameters to fly high-speed maneu-
vers. While the effect of tuning is less prominent at low
speeds, it acquires a fundamental role when the quadrotor
flies a minimum-time trajectory at the limits of handling. In
such cases, the relation between the parameters of a finite-
horizon controller and the flight performance over the entire
trajectory (measured, for example, in terms of trajectory
completion or tracking error) is non-convex, not injective,
and multi-modal. This complex relation, caused by noisy
actuation, disturbances, or imperfect modeling, makes tuning
challenging even to human experts. In this paper, we propose
a sampling-based approach specifically tailored to the task of
high-speed flight. This approach achieves very good tuning
performance both in simulation and in the physical world.

One limitation of the proposed approach is that it does
not consider closed-loop stability during optimization. While
prior work proposed a series of techniques to guarantee
stability during tuning [6], [7], [4], such techniques are
generally suited to hovering or low-speed flight, and they are
generally too conservative for time-optimal flight. Similar to
previous work on agile flight [25], we have addressed this
problem by tuning the controller exclusively in simulation
and directly using the tuned controller on a physical platform.
However, such a strategy strongly depends on the quality of
the simulation environment. Therefore, combining existing
techniques for safe tuning with our approach, to either tune
from scratch or only finetune the controller on the physical
platform, is a very exciting venue for future work. Such
considerations will potentially open the door to faster flight
on physical quadrotors than what is possible today [26].
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VII. SUPPLEMENTARY

A. Tracks
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Fig. 9: Circle track.
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Fig. 10: Drop track.
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Fig. 11: Flip track.
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Fig. 12: Spiral track.
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Fig. 13: Qualifier track.
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Fig. 14: Final track.
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Fig. 15: SplitS track.

Specifically, we select the following maneuvers:

• Circle: 2D maneuver with a radius of r = 16m.
Consists of 12 waypoints at an average of 9m distance.

• Drop: Ascent of 21m in z over 50m length followed
by a steep descent of 16m in height. Ends with a semi-
circle with radius r = 16m. Consists of 12 waypoints
at an average of 10m distance.

• Flip: Ascent of 25m in z over 117m length, with an
half-loop in z of 14m radius. Ends with a steep descent
of r = 20m over 28m length. Consists of 12 waypoints
at an average of 13m distance.

• Spiral: Ascent of 6m followed by a spiral made of three
planar circles of 30, 22, and 16 meters in the clockwise
direction followed by a half a circle with radius r =
6m. Then the drone follows two planar circles of 30
and 38 meters in a counter-clockwise direction. Consists
of 17 waypoints at an average of 13m distance.

• Qualifier: Track used for the qualification round of the
2019 AirSim Game of Drones competition. Made of
an ascending circle of 160m, a 23m drop in height
over 25m length and a long straight descent of 148m
length. Consists of 20 waypoints at an average of 16m
distance.

• Final: Track used for the final round of the 2019
AirSim Game of Drones competition. Made of a 209m
long segment with a hairpin and loop, followed by a
40m ascent over approximately 296m. Consists of 22
waypoints at an average of 22m distance.

Eventually, in the real world we fly an aggressive trajectory,
that we call SplitS, composed of 21 waypoints with abrupt
changes in the flight direction and speeds in the range
8− 15m s−1. The SplitS trajectory consists of a sequence of
ascents and drops of 3m in height repeated three times. The
trajectories of these maneuvers are illustrated in Section VII-
A. All maneuvers start and end in the hover condition.

B. Training Data and Feature Selection

The training data consists of 14 time-optimal trajectories,
each annotated with a set of parameters that allows the
controller to successfully track the trajectory. In total, the
training trajectories are divided into 73 segments: 13 flat,
22 ascent, 23 descent, and 15 steep. For each segment
type, we train a Gradient Boosting regressor on the relative
data. We extract five features from each segment, namely
the number of points in the segment, the slope of the line
connecting the first and last point of the segment, as well
as their difference in height, and the mean velocity and
acceleration. These features were selected with a cross-
validation procedure over a wider set of features. Specifically,
during the selection process we considered the following
features: the number of points in the segment, the slope of
the line connecting the first and last point of the segment, as
well as their difference in height, velocity and acceleration,
and the minimum, the mean and the maximum velocity
and acceleration. We evaluated each feature combination by
predicting the controller initial parameters on the qualifier
track and then by computing the root-mean-square error
(RMSE) of the predicted parameters with respect to the
optimal parameters in the training data. Finally, we selected
the feature combination that minimized the RMSE.

C. Implementation Choices

We use the MPC formulation of Falanga [27], without
perception constraints, and the time-optimal planner de-



scribed by Foehn [16]. We use the AirSim SimpleFlight
quadrotor configuration. The quadrotor weights 1.0 kg and
can generate thrust to weight ratio up to 4.179. We choose
the MPC control frequency to be 200 Hz with horizon
step 0.05. Rather than optimize over the entire optimization
landscape, we fix some parameters of the controller to obtain
a reduced, but representative, subspace. In particular, we
tune the MPC state costs (Q pos xy, Q pos z, Q attitude,
Q velocity) and the horizon length, while we fix the MPC
input costs (R thrust, R pitchroll, R yaw) to 1.0, which we
experimentally saw to be not very important to performance.
Moreover, we bound the inputs to match the limits of the
simulator, by fixing the maximum pitch-roll to 10.0 rad/s,
the maximum yaw to 3.0 rad/s and the maximum thrust to
20.0 N. The same drone specifics are also used by the time-
optimal planner.

We use a Gaussian distribution as proposal function for
Metropolis-Hastings algorithm. The distribution is centered
on the last set of parameters accepted and has variance
5. At each iteration, the M-H algorithm proposes a new
set of parameters by sampling them from the Gaussian
distribution. When updating the parameters of a segment,
the variance of the preceding segments is reduced by 25%.
This maintains global optimality but makes the controller
close to the previous solution in the preceding segments. We
use e−2

√
t, where t is the lap time with added penalty for

missed waypoints, as cost function for the M-H algorithm.
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