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Online Weight-adaptive Nonlinear Model Predictive Control

Dimche Kostadinov and Davide Scaramuzza

Abstract— Nonlinear Model Predictive Control (NMPC) is
a powerful and widely used technique for nonlinear dynamic
process control under constraints. In NMPC, the state and
control weights of the corresponding state and control costs are
commonly selected based on human-expert knowledge, which
usually reflects the acceptable stability in practice. Although
broadly used, this approach might not be optimal for the
execution of a trajectory with the lowest positional error
and sufficiently "smooth" changes in the predicted controls.
Furthermore, NMPC with an online weight update strategy
for fast, agile, and precise unmanned aerial vehicle navigation,
has not been studied extensively. To this end, we propose a
novel control problem formulation that allows online updates
of the state and control weights. As a solution, we present
an algorithm that consists of two alternating stages: (i) state
and command variable prediction and (ii) weights update. We
present a numerical evaluation with a comparison and analysis
of different trade-offs for the problem of quadrotor navigation.
Our computer simulation results show improvements of up to
70% in the accuracy of the executed trajectory compared to
the standard solution of NMPC with fixed weights.

I. INTRODUCTION

In the past, diverse approaches have been used for robust,
accurate and fast control [8], [3], [4] and [7]. Applied across
a wide range of domains, from chemicals to aerospace
industries, one of the most powerful and practically useful
approaches is NMPC [1]. Its main advantage is that it allows
making predictions about the immediate future point under
constraints while considering all predicted future points over
a given horizon. In recent years, several efficient solutions to
NMPC and improvements have been proposed [11]. One of
the most prominent methods for solving NMPC problem is
the real-time iteration (RTI) scheme [6]. The advantage of
RTI is that it allows "on-the-fly" prediction updates: as new
estimates become available, an iterative solution using only
a small number of iteration steps gives the new predictions.

In the NMPC problem, the state and control weights
for the corresponding costs significantly impact the control
performance. Usually, fixed weights are carefully selected
based on human expert knowledge (platform and trajectory
wise tuning) for unmanned aerial vehicle navigation. Under
many scenarios, this strategy is preferable. Such weight
selection takes into account stability-related properties and
exploits the strengths of NMPC. However, whether this
approach uses the advantages of the NMPC to the full extent
remains an open question.
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Fig. 1. A) The blue line represents the reference trajectory, B) The red
line represents executed trajectory using the standard solution for NMPC
with fixed weights, and C) The green line represents the executed trajectory
using the algorithm that solves the proposed online weight-adaptive NMPC.

Additionally, weight tuning might not allow good gener-
alization across a set1 of diverse trajectories. On the other
hand, online and data-adaptive strategies for updating the
cost weights during trajectory execution were not studied
extensively. In this line, besides the link between NMPC and
online learning [16], other connections to known machine
learning paradigms with emphasis on the weigh estimation
remain not explored.

To utilize the full control potential of NMPC, we present
online weight-adaptive approach. We introduce a novel control
problem formulation, where, contrary to using predefined and
fixed weights for the state cost, we include the weights of the
state cost as a variable in our control problem. This allows
us to propose an algorithm that can improve the state and
control prediction by optimally updating the weights in an
online fashion. Moreover, in our approach, we provide a
generalization for a class of weight cost priors and function
approximations (including but not limited to neural networks).
Also, we give connections of our approach to online learning
[13], reinforcement learning [14], and metric learning [9].

A. Contributions

In the following, we summarize our main contributions.
• We introduce a novel variant of the very well known

NMPC control problem, where we address joint predic-
tion of state and control variables and the estimate of
the corresponding state and control weights.

• We propose a two-stage alternating RTI algorithm. It
consists of (i) state and commands variable prediction

1In a sense that a single choice of weights might not allow tracking with
the lowest positional error and "smooth" change over the predicted controls.
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and (ii) optimal update of the control weights.
• We validate our approach by numerical simulation for

the task of quadrotor navigation. We demonstrate that
our approach reduces the error in the trajectory tracking
while predicting controls that have "smooth" change over
the executed trajectory. Compared to the solution of the
commonly used NMPC, we show improvements of up
to 70% in the accuracy of the executed trajectory.

B. Related Work

Adaptive Model Predictive Control (MPC) was studied in
[2], [15], [17], [18] and [16]. In [2], the authors proposed an
adaptive multi-variable zone controller and gave robustness
guarantees for the controlled process. As an adaptive compo-
nent, they added weighted slack coefficients to the nominal
weight coefficients. In [15], the authors were focused on
an analytical approach for tuning the control horizon. Their
idea consists of computing the value for the optimal control
horizon that ensures numerical stability. At the same time,
their interest was on a wide set of linear controllable single-
input single-output processes. In [18], the authors developed
an adaptive cruise control system for vehicles. The authors
utilized a hierarchical control architecture in which a low-
level controller compensated for the nonlinear longitudinal
vehicle dynamics. Their design enabled tracking of the
desired acceleration. They solved a multi-objective control
problem by a real-time weight tuning strategy by adjusting
each objective’s weight for different operating conditions.
The authors in [17], proposed an adaptive stochastic model
predictive control strategy. They considered multi-input multi-
output systems that can be expressed by a finite impulse
response model. In [16], a close connection between MPC
and online learning was shown. The authors have proposed
a new algorithm based on dynamic mirror descent. By doing
so, they presented a general family of MPC algorithms that
include many existing techniques as special instances. The
same authors also provided different MPC perspectives and
suggested principled schemes for the design of new MPC
algorithms.

In contrast to the past work, as our main novelty, we
consider cost-related weights as an additional variable in
the NMPC problem. In this regard, our problem formulation
extends the common NMPC problem. We propose a novel
algorithm as a solution, while along the way, we also give
connections to machine learning paradigms with a focus on
metric learning.

C. Paper Organization

The rest of the paper is organized as follows. In Section
II, we present the continuous control problem and its
approximate discrete version. In Section III, we first present
the approximate control problem formulation for our NMPC
with online weight adaptation. Then, we propose our RTI
solution in the form of a two-stage alternating algorithm
and discuss the solution. We also give connections to known
learning paradigms. While, we devote Section IV to numerical
evaluation, and with Section V, we conclude the paper.

II. ROBOT CONTROL

In this section, we first present the continuous problem
formulation for robot control and then give its discrete version.

We assume that the dynamics are described by a set of
differential equations f(x,u), where x ∈ <Mx and u : <×Mu

denote state and control variables. Furthermore, we assume
that an action objective is given, which defines the action
cost La(x,u) : <Mx×Mu → <+. The task of taking action
can be expressed by the following optimization problem:

{x̂, û} = arg min
x,u

∫ th

t0

La(x,u)dt,

subject to f(x,u) = 0, h(x,u) ≤ 0,

(1)

where f(x,u) and h(x,u) represent equality and inequality
constraints that the solution should satisfy when we take
action. In order to solve (1), first, a cost function for taking
action is defined. Then (1) is discretized, transcribed, and
linearized. In the following text, we go through these steps,
which will allow us to present the discretized version of (1).

A. The Discrete Control Problem

As a common practice, the system dynamics (1) are
discretized into N system points by using a time step δt over
fixed time horizon tN . This results in N state vectors xk and
N control vectors uk for k ∈ {1, ..., N}. We assume that we
have a reference state xr,k and reference controls ur,k. While,
we denote the state errors as ∆xk = xk−xr,k and the control
errors as ∆uk = uk − ur,k. We define our discrete objective
as
∑N
k=1 ∆xTkQk∆xk+

∑N
k=1 ∆uTkRk∆uk, where Qk and

Rk denote the state and control weight matrices.
In (1), the equality constraints represents the model

for the robot dynamics ∂xk

∂t = ẋk = f(xk,uk). While
the inequality constraints h(xk,uk) represent the physical
limitations of the robot platform. As a common practice,
problem (1) is transcribed using multiple shooting technique.
Moreover, having the discrete dynamics and constraints over
the coarse grid [t1, ..., tN ] for each time interval [tk, tk+1],
δt = tk+1 − tk, a boundary value problem is solved, where
additional continuity variables are imposed. In addition, an
explicit integrator is applied to forward simulate the system
dynamics along each interval [tk, tk+1].

Under the above considerations, usually (1) is sequentially
approximated by quadratic problems (QPs). The solution of
the QPs are used as an gradient directions ∆xk and ∆uk
in order to take steps that minimize the original continuous
problem. Starting from the available guess (predictions) xprk
and uprk , the iterations are repeated by taking (not necessarily
full) Newton steps in the form

[
xpr

upr

]
=
[

xpr

upr

]
+ α [ ∆x

∆u ],

where ∆x =

[
∆x1
.
.

∆xN+1

]
,∆u =

[
∆u1
.
.

∆uN

]
and α is the step

size which guarantees that the update is in the decent direction.
As an example, in the sequential QP approach, given a state
estimate xm1 , a prediction about the state xprk and the control
uprk , the usual approximation of (1) with respect to ∆xk and



∆uk is the following QP:[
∆x̂,∆û

]
=arg min

∆x,∆u

N∑
k=1

([
∆xk

∆uk

]T
Hk

[
∆xk

∆uk

]
+αwT

k

[
∆xk

∆uk

])
,

subject to ∆x1 = xm1 − xpr1 , (2)

∆xk+1 = ∆rk +
[

Ak,0
0,Bk

] [
∆xk

∆uk

]
,

∆hk +
[

Ck,0
0,Dk

] [
∆xk

∆uk

]
≤ 0,

where ∆rk = f(xprk ,u
pr
k ) − xprk+1, ∆hk = h(xprk ,u

pr
k ).

While Ak = ∂f(xk,uk)
∂xk

|{xpr
k ,upr

k },Bk = ∂f(xk,uk)
∂uk

|{xpr
k ,upr

k },
Ck = ∂h(xk,uk)

∂xk
|{xpr

k ,upr
k } and Dk = ∂h(xk,uk)

∂uk
|{xpr

k ,upr
k }.

Where ∂f(xk,uk)
∂xk

|{xpr
k ,upr

k } denoted the partial derivative
of f(xk,uk) with respect to xk, which is evaluated at
{xprk ,u

pr
k }, Hk is the Hessian of the Lagrangian for (1)

and wk =
[

Qk,0
0,Rk

]
lk =

[
Qk,0
0,Rk

] [
xpr
k −xr,k

upr
k −ur,k

]
. One popular

approximation to the Hessian Hk is Hk =
[

Qk,0
0,Rk

]
[12]. We

note that in order to simplify the problem description (2),
we omitted the cost related to the last state prediction, but
nonetheless, we are taking it into account.

III. ONLINE WEIGHT-ADAPTIVE NMPC

In this section, we present the problem formulation for
our online weight-adaptive NMPC. Then, we present our
two-stage alternating algorithm. Afterward, we explain and
discuss the related problems at each stage. Finally, we give
connections to known learning principles.

A. Min-Max Approximate Control Problem

We propose to jointly (i) predict the control, and state
variables and (ii) estimate the weight matrix. To that end, we
present the following problem formulation:[

∆x̂,∆û, Q̂
]

=arg max
Q

{
− λg(Q,θ)+

min
∆x,∆u

N∑
k=1

([
∆xk

∆uk

]
+ αlk

)T [Qk,0
0,Rk

] [
∆xk

∆uk

]}
,

subject to ∆x1 = xm1 − xpr1 ,

∆xk+1 = ∆rk +
[

Ak,0
0,Bk

] [
∆xk

∆uk

]
,

∆hk +
[

Ck,0
0,Dk

] [
∆xk

∆uk

]
≤ 0,

(3)

where ∆x and ∆u together with Q = [Q1, ...,QN ] are
problem variables that we would like to optimally estimate,
while λ is the Lagrangian variable. In general, g(Q,θ) could
be any weighs related cost function, and θ is its corresponding
parameter. In the simplest form, we consider diagonal Qk,
and we define g(Q,θ) = (Q1)T (Q1), where 1 is one vector.

Our proposed formulation is a min-max problem with
quadratic and bilinear cost functions. If we fix the weights,
the reduced problem over the remaining state and control
variables is convex. On the other hand, if we fix the state and
control variables then the reduced problem over the weight
variables can be converted again into a convex problem.

B. The Algorithm

To solve (3), we propose an alternating algorithm, which
consists of two stages. In stage one, we fix the weights and
predict the state and control variables. In stage two, we fix
the state and control variables and estimate the weights. In
the following, we describe the corresponding problems for
the two stages and discuss on their solution.

1) State and Control Prediction: Let the weights be fixed,
then problem (3) reduces to the following QP:[
∆x̂,∆û

]
=arg min

∆x,∆u

N∑
k=1

([
∆xk

∆uk

]
+αlk

)T[Qk,0
0,Rk

][
∆xk

∆uk

]
,

subject to ∆x1 = xm1 − xpr1 ,

∆xk+1 = rk +
[

Ak

Bk

] [
∆xk

∆sk

]
,

∆hk +
[

Ck

Dk

] [
∆xk

∆uk

]
≤ 0.

(4)

Since we have quadratic losses, and linear equality and
inequality constraints, problem (4) represents a convex
quadratic program with linear constraints. Problem (4) is
well known and explored [5], while for a possible solver, we
refer to [5], [12]. After (4) is solved, as a prediction for the
state we use xpr = xpr + α∆x̂, while as as a prediction for
the control we use upr = upr + α∆û.

2) Weights Update: This stage enables us to adapt our
cost function for taking actions by adjusting and updating
the weigh. In turn, this allows us to penalize future errors
based on the error between the reference and the currently
predicted state. To do so, we fix the control and state variables
in (3) and let q = Q11 = ... = QN1. In the simplest form,
we define g(Q) as g(Q,θ) = (Q1)T (Q1)2. By denoting
vk = (∆xk + αlk) � ∆xk, (3) reduces to the following
quadratic problem:

q̂ = arg min
q
λqTq−

Ns∑
k=1

vTk q. (5)

where Ns, Ns ≤ N , is the sub-horizon for the weight update.
The main advantage of (5) is that it has a closed form solution,
i.e., q̂ = 1

2λ+γ

(∑Ns

k=1 vk

)
. Having the estimated q̂, we

update Q as Q = diag(q̂).
We point out that the vector 1

2λ+γ

∑Ns

k=1 vk is with non-
negative values as long as

∑Ns

k=1 ∆xk ≥
∑Ns

k=1 α(xprk −xr,k).
Therefore, under bounded variations (xprk − xr,k), we can
ensure that our weight matrix Q is positive definite. While,
under arbitrarily variations a non-negativity3 constraint in (5)
could be used to ensure that Q is positive definite.

C. Connection to Known Learning Paradigms

Our online weight update approach also represents a
special case of metric learning [9], wherein our case, the
loss La(xk,uk) represents the metric, which is included in

2It is worthwhile to mention that with g(Q,θ) we can consider a wide
range of parametric function. Meaning that given data, we could also offline
learn and estimate the parameters θ in our function g(Q,θ).

3Note that if we include non-negativity constraint in (5), the closed from
solution for q reads as q̂ = max

(
1

2λ+γ

(∑Ns
k=1 vk

)
,0
)

.



  

Fig. 2. Schematic diagram for the execution stages in our algorithm. In the
first stage, we predict the state and control variables. In the second stage,
we update the weights. After a number of alternating steps between the two
stages, we take action by applying the first control prediction.

Algorithm 1 Online Weight-Adaptive NMPC
repeat

Execute Stage 1
Execute Stage 2

until convergence
Stage 1

Input xm1 ,xr, xpr, ur, upr and Q
[ ∆x
∆u ]← updateDirection(xm1 ,xr, xpr,ur,u

pr,Q)[
xpr

upr

]
=
[

xpr

upr

]
+ α [ ∆x

∆u ]
Output xpr and upr

Stage 2
Input xpr,upr,xr and ur

Q← updateWeight(xr,ur, xpr,upr)
Output Q

(3). In the following, we give connections to metric learning,
online learning, and reinforcement learning.

1) Metric Learning: The defined cost function for predict-
ing the state is is the general Mahalanobis distance metric
(x− xr)

T
Q (x− xr). The online update of our distance

metric under Q = LTL with L is equivalent to learning a
linear mapping (given by x→ Lx) that transforms the data
in the space of L. After projecting the data onto the new
space through the linear map L, the corresponding distance
metric is the usual Euclidean distance.

2) Online Learning: Our algorithm can be viewed as an
extension of the online learning approach to model predictive
control [16]. Online learning concerns iterative interactions
between a learner and an environment over several rounds
N . At round (or time instance) t, the learner picks one
out of the set of decisions. The environment then evaluates
a loss function based on the learner’s decision, and the
learner suffers a cost. The learner’s goal is to minimize
the accumulated costs. As shown in [16], at time t (i.e.,
round t), an MPC algorithm optimizes a controller (i.e.,
the decision) over some cost function (i.e., the per-round
loss). In this regard, we highlight the following connection
to online adaptation and learning. Our alternating algorithm,
observes the cost of the initial controller and then improves
the controller by updating the cost and the controller, and
only then executes a control based on the improved controller.

TABLE I
THE TOTAL POSITION ERROR e AND THE CUMULATIVE TOTAL VARIATION

TV OVER THE PREDICTED CONTROLS IN THE EXECUTION OF THE

TRAJECTORIES UNDER VARYING λ.

λ
0.01 0.67 1.67 3.00

e[m] | TV e[m] | TV e[m] | TV e[m] | TV

T1

[7] 0.44 | 1.57 0.66 | 1.29 1.9 | 1.21 0.87 | 1.19
N2 0.76 | 2.25 0.95 | 1.58 1.55 | 1.56 1.93 | 1.58
N8 0.78 | 2.26 1.19 | 1.52 1.36 | 1.43 1.70 | 1.38
N12 0.79 | 1.89 1.39 | 1.48 1.58 | 1.43 1.82 | 1.41

T2

[7] 0.37 | 0.72 0.64 | 0.67 1.16 | 0.64 1.85 | 0.63
N2 0.49 | 0.77 0.58 | 0.75 0.68 | 0.69 0.80 | 0.67
N8 0.5 | 0.73 0.60 | 0.73 0.72 | 0.68 0.84 | 0.66
N12 0.52 | 0.72 0.62 | 0.72 0.75 | 0.68 0.88 | 0.65

T3

[7] 0.34 | 0.03 0.60 | 0.02 2.11 | 0.02 4.49 | 0.02
N2 1.22 | 0.38 0.98 | 0.04 1.89 | 0.04 3.87 | 0.03
N8 0.94 | 0.20 0.73 | 0.04 1.82 | 0.03 3.81 | 0.03
N12 0.68 | 0.86 0.57 | 0.04 1.76 | 0.03 3.72 | 0.03

T4

[7] 0.27 | 0.08 4.63 | 0.05 14.6 | 0.05 28.7 | 0.04
N2 0.38 | 0.21 2.56 | 0.12 6.42 | 0.11 12.4 | 0.28
N8 0.29 | 0.11 2.43 | 0.08 6.33 | 0.12 12.2 | 0.19
N12 0.27 | 0.46 2.03 | 0.46 5.87 | 0.14 11.9 | 0.31

3) Reinforcement Learning: Regarding the connection of
our algorithm to the core principle behind reinforcement learn-
ing, we have the following. Upon observing a measurement, in
the first stage of our algorithm, we generate state and control
prediction. In light of reinforcement learning, we consider this
as a sample from some underlining control policy. Afterward,
in stage two, we update the weights. Thus our cost metric
translates into updating the policy after observing the error
between the predicted and reference state.

IV. NUMERICAL EVALUATION
In this section, we evaluate our approach. Our numerical

experiments consider trajectory execution for a quadrotor.
Therefore, in the following subsection, we first present the
used dynamical model for quadrotor control. Afterward, we
describe the experimental setup and discuss the results.

A. Used Model
In the following, we describe the used dynamical model.
1) Quadrotor Dynamics: Our state x and control u vectors

of the quadrotor are defined as x =
[ pWB

vWB
qWB

]
and u =

[ c
ωB

], where pWB = [px, py, pz]
T and qWB =

[qw, qx, qy, qz]
T denote the position and the orientation of the

body frame B with respect to the world frame W , expressed
in world frame, respectively. While vWB = [vx, vy, vz]

T

denotes the linear velocity of the body, expressed in world
frame, and ωB = [ωx, ωy, ωz]

T its angular velocity, expressed
in the body frame. The vector c = [0, 0, c]T is the mass-
normalized thrust vector, where c = (f1 + f2 + f3 + f4)/m,
fi is the thrust produced by the i-th motor, and m is the
mass of the vehicle. We define the dynamical model for the

quadrotor as ∂x
∂t = f(x,u) =

[ ∂pWB
∂t

∂vWB
∂t

∂qWB
∂t

]
=

[
vWB

W g+qWB�c
1
2Λ(ωB)qWB

]
,



Aggressive T1 Aggressive T2 Circle T3 Diamond T4

Fig. 3. Visualization of the used trajectories.

TABLE II
THE TOTAL POSITION ERROR e AND THE CUMULATIVE TOTAL VARIATION

TV OVER THE PREDICTED CONTROLS IN THE EXECUTION OF THE

TRAJECTORIES OVER VARYING HORIZON LENGTH N .

N
8 14 19 24

e[m] | TV e[m] | TV e[m] | TV e[m] | TV

T1

[7] 12.0 | 1.24 2.22 | 1.38 0.98 | 1.29 0.64 | 1.34
N8 1.49 | 1.38 1.38 | 1.49 1.13 | 1.56 1.22 | 1.55
N14 0 | 0 1.61 | 1.58 1.45 | 1.53 1.22 | 1.55
N18 0 | 0 0 | 0 1.28 | 1.55 1.00 | 1.56

T2

[7] 3.03 | 0.64 1.19 | 0.66 0.71 | 0.67 0.47 | 0.68
N8 0.97 | 0.69 0.73 | 0.71 0.62 | 0.72 0.53 | 0.74
N14 0 | 0 0.75 | 0.70 0.64 | 0.72 0.55 | 0.73
N18 0 | 0 0 | 0 0.65 | 0.72 0.56 | 0.73

T3

[7] 12.75 | 0.03 2.73 | 0.02 0.72 | 0.02 0.45 | 0.02
N8 4.05 | 0.05 1.79 | 0.04 0.86 | 0.04 0.52 | 0.04
N14 0 | 0 1.17 | 0.07 0.66 | 0.04 0.50 | 0.04
N18 0 | 0 0 | 0 0.61 | 0.92 0.51 | 0.10

T4

[7] 59.62 | 0.06 15.7 | 0.05 5.73 | 0.05 2.07 | 0.05
N8 24.69 | 0.07 6.90 | 0.08 2.94 | 0.08 1.44 | 0.08
N14 0 | 0 5.48 | 0.08 2.27 | 0.56 1.19 | 0.42
N18 0 | 0 0 | 0 1.95 | 0.74 1.15 | 0.73

where ∂pWB

∂t , ∂vWB

∂t and ∂qWB

∂t are the time derivatives
of the position, liner velocity and the quaternion, while
Wg = [0, 0,−g] is the gravity vector, with g = 9.81m/s. The
operator � denotes the multiplication between a quaternion
and a vector, Λ(ωB)qWB denotes the time derivative of a
quaternion qWB , while Λ(ωB) is the the skew-symmetric
matrix of the vector ωB .

2) Quadrotor Physical Constraints: By the inequality
constraint h(x,u), we model the physical limitations of
the drone platform in order to attain feasible solutions. In
our case it is the minimum and maximum thrust cmin and
cmax, as well as minimum and maximum angular velocities
ωmin and ωmax, respectively, which we compactly express
as umin = [ cmin

ωmin
] and umax = [ cmax

ωmax
].

B. Setup, Error Measures and Comparative Analysis

We generated four different trajectories, which were
computed as proposed in [10]. As shown in Figure 3, the
trajectories have different geometries. The first and the second
trajectory are aggressive and are denoted as T1 and T2. The
third trajectory T3 is circle and the fourth trajectory T4 is
diamond.

We validated our approach under different setups. We
experimented with different strength for the state costs in the
control problem. As well as we experimented with different

TABLE III
THE TOTAL POSITION ERROR e AND THE CUMULATIVE TOTAL VARIATION

TV OVER THE PREDICTED CONTROLS IN THE EXECUTION OF THE

TRAJECTORIES UNDER NOISE PERTURBATION WITH NOISE LEVEL σ.

σ
0.5 2.0 3.5 5.0

er[m] er[m] er[m] er[m]

T1
[7] 1.32 4.48 8.04 12.32
N8 1.65 4.55 7.58 11.58

T2
[7] 1.25 4.79 8.23 12.48
N8 1.13 4.31 7.46 11.21

T3
[7] 1.77 5.38 9.04 12.87
N8 1.44 4.87 8.95 12.57

T4
[7] 3.95 5.07 8.72 12.74
N8 1.3 4.8 8.85 12.18

lengths of the fixed horizon and different lengths of the sub
horizon, which were used to update the weight in the cost.
In addition, we validated our approach under additive white
Gaussian noise perturbation in the available state estimate.
In summary, we present simulation results under:
(i) Different strength λ of the state cost,

(ii) Different length of the prediction horizon N and
(iii) Noise perturbation with different noise levels σ in the

available (measured) state.
Over all trajectory points, we measure and report the

total accumulation of error as e =
∑L
i=1 di, where di =

‖
[ px
py
pz

]
−
[ pr,x
pr,y
pr,z

]
‖2 represents the error between the sim-

ulated position
[ px
py
pz

]
after applying the predicted control

and the reference position
[ pr,x
pr,y
pr,z

]
. In addition, we also

measure the total variation over commands, i.e., TV =
1
L

∑L−1
i=1

(
|Ti − Ti+1|+

∑3
j=1 |ωj,i − ωj,i+1|

)
and consider

it as an indicator for "smooth" changes in the predicted
commands during trajectory execution.

In the first two series of experiments for different strength
λ of the state cost, and for different lengths of the prediction
horizon N , we also experimented with different sub-horizon
lengths Ns. Regarding the noise corruption protocol for the
third set of experiments, we implement it as follows. We
randomly selected the index τ ∈ {1, ..., L} for one point from
the trajectory. Then, during execution, at the corresponding
index τ , we corrupted the available state with Additive White
Gaussian Noise (AWGN) ν as follows p

′

τ = pτ + σν, while
we ensured that ‖pτ‖2 = ‖ν‖2. In the same experiment,
we compute average error as er = 1

K

∑K
k=1 ek for K = 15



runs of this procedure. We compare our algorithm with the
standard solution to NMPC with fixed weights, which we
implemented using [7].

In the standard NMPC, the hole weight matrix Q has
to be tuned. In contrast, in our approach the only tuning
parameter is λ. During simulation, we also found out that
q̂ = exp

(
1

2λ+γ

(∑Ns

k=1 vk

))
, has better performance then

q̂ = 1
2λ+γ

(∑Ns

k=1 vk

)
. Therefore, in all of the experiments,

we update the weights as q̂ = exp
(

1
2λ+γ

(∑Ns

k=1 vk

))
.

C. Results Discussion
In Tables I, II and III, we present the results of our computer

simulation. We show the resulting trajectory tracking errors
and total variation errors of our algorithm and the comparing
method (the standard NMPC, with fixed weights).

As we can see in Table I, the total error in position is
reduced as a result of a small increase in the total variation
of the command prediction when compared to the common
solution [7] of the NMPC. Moreover, as shown in Table I,
for very small values of the λ parameter, the accuracy for
the trajectory tracking of our algorithm is lower than the
accuracy of the comparing algorithm [7]. However, we note
that at such small values for λ, the changes in the predicted
controls during the trajectory execution are not "smooth". In
practice, very small λ might lead to potentially non-stable
behavior. On the other hand for λ values above .5, i.e., λ > .5,
the changes in the predicted controls are more "smooth". At
the same λ values, we report improved performance. Our
approach achieves lower total error compared to the common
solution of the standard NMPC. When the sub-horizon Ns4

has larger length, the results error is lower, but the TV is
also high.

Table II shows that the total error in position is consistently
lower compared to [7] over different horizon lengths. It is
interesting to highlight that even for low horizon length like
N = 8, the algorithm achieves high tracking accuracy. While,
both of the comparing algorithms have the lowest errors for
horizons between 16 and 24.

In Table III, we can see that for a noise level in the range of
.5 to 5, the average positional error er of the our algorithm is
lower compared to the same error er for the standard NMPC
[7].

As a summary, the simulation results demonstrated that by
our approach, which is without manual weight tuning, we
could archive accurate and stable quadrotor navigation. The
execution of smooth as well as fast and rapidly changing
reference trajectories benefits from online weigh adaptation.
The results also show that we can have relatively good
tracking performance even under a small horizon length.
It is essential to point out that not all online weight update
configurations are useful. In other words, not all algorithm
setups (for different λ and Ns) provide improved accuracy
with "smooth" changes in the predicted controls over the
executed trajectories in the simulation.

4Our results are computed for sub-horizon length Ns smaller then the
horizon length N , Ns ≤ N .

V. CONCLUSIONS

In this paper, we presented a novel control problem
formulation for NMPC with an online update of the cost
weights. As a solution, we proposed a two-stage alternating
algorithm. It consists of: (i) state and commands variable
prediction and (ii) optimal weights update. Our evaluation by
computer simulation demonstrated not only high accuracy for
trajectory tracking but also robustness to noise perturbation.
Comparing the solution of our approach to the solution of the
common NMPC with fixed weights, we demonstrated lower
tracking error for the used reference trajectories. Our next
steps are to test the performance on a real drone platform.
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