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Beyond Point Clouds:
Fisher Information Field for Active Visual Localization

Zichao Zhang, Davide Scaramuzza

Abstract— For mobile robots to localize robustly, actively
considering the perception requirement at the planning stage is
essential. In this paper, we propose a novel representation for
active visual localization. By formulating the Fisher information
and sensor visibility carefully, we are able to summarize the
localization information into a discrete grid, namely the Fisher
information field. The information for arbitrary poses can then
be computed from the field in constant time, without the need
of costly iterating all the 3D landmarks. Experimental results
on simulated and real-world data show the great potential
of our method in efficient active localization and perception-
aware planning. To benefit related research, we release our
implementation of the information field to the public.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/q3YqIyaFUVE
Code: https://github.com/uzh-rpg/rpg information field

I. INTRODUCTION

On-board visual sensing and computing permits robots
to operate autonomously, but brings additional constraints
to motion planning algorithms. Specifically, the robot mo-
tion impacts the information that will be captured by the
cameras and thus influences the performance of perception
algorithms. Therefore, the requirement of visual perception
has to be taken into consideration in motion planning. This is
known as active vision [1]. In this paper, we are particularly
interested in the problem of active localization, which aims
to planning the sensor motion to maximize the localization
accuracy with respect to a given map.

Active localization, or more generally active simultaneous
localization and mapping (SLAM), is still an open research
problem, and one major paradigm is to plan the sensor
motion based on the information/covariance that can be
achieved. To analyze the attainable information for cameras,
the environment is usually represented as a point cloud,
in which each point stands for a 3D landmark. We argue
that, using a point cloud to represent 3D landmarks is a
convenient choice, but not necessarily the most efficient for
active localization. First, to evaluate the localization quality
of a single pose, one needs to evaluate the information for
all the points (see Section II-B), the complexity of which
increases linearly with the number of landmarks. Second,
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Fig. 1: Illustration of the proposed Fisher information field. The gray
cloud denotes the 3D landmarks in the environment. For each voxel
(black cubes), the building process summarizes the rotation-independent
information kernels (19) or (21) (blue squares). Then the information of an
arbitrary pose T can be computed in constant time without accessing the
original 3D landmarks.

this process has to be repeated many times in both sampling-
based (i.e., evaluating motion samples) and optimization-
based methods (i.e., optimization iterations), which intro-
duces redundant computation, especially when the planning
is performed multiple times in the same environment.

Using a volumetric representation which stores the quan-
tities of interest as a function of 3D positions is a potential
solution to the aforementioned problems. For example, the
distance field summarizes the distance from obstacles and,
without extra knowledge, contains sufficient information for
collision avoidance (e.g., [2]). However, applying the similar
idea to active localization exhibits one major difficulty:
the localization quality additionally depends on the sensor
orientation due to the fact that the visibility of landmarks
can vary drastically with orientations. The naive solution
of discretizing the rotation space would lead to the ex-
plosion of required storage. In this work, we propose a
novel volumetric representation for localization information,
namely the Fisher information field (or information field
for short), which overcomes this difficulty. The key idea is
that, for each discrete spatial unit (namely a voxel) in the
field, we summarize a rotation-independent component of
the Fisher information, which is a valuable tool to quantify
parameter estimation quality (see Section II-A), from all
the 3D landmarks and store it in the voxel. We can then
recover the information (under some approximation) of an
arbitrary 6 degree-of-freedom (DoF) pose by applying a
linear transformation to the stored information in the field,
which is of constant time complexity instead of linear,
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as illustrated in Fig. 1. Moreover, the information field
can be reused for multiple planning sessions and easily
updated when landmarks are added to or deleted from the
environment.

To demonstrate the practical value of our proposal, we
show that the information field can be built in a batch pro-
cessing fashion or incrementally (e.g., from the continuous
output of a SLAM system). Furthermore, we show that it
can be used to determine the optimal orientation efficiently.

A. Related Work

Considering perception performance in planning has been
extensively studied in different contexts. Early works include
maximizing the Fisher information (or equally minimizing
the covariance) about the robot state and the map in nav-
igation tasks [3], [4], minimizing the entropy of the robot
state in known environments [5], [6], and actively searching
features in SLAM systems [7]. Recently, with the advance of
drones, several works have been done to couple perception,
planning and control on agile aerial platforms [8]–[14].

Despite the extreme diversity of the research in this topic,
related work can be categorized based on the method to
generate motion profiles. One paradigm used sampling-based
methods, which discretize the space of possible motions and
find the optimal one in a discrete set. Roy et al. [6] used the
Dijkstra’s algorithm to find the path on a grid that minimizes
a combined cost of collision and localization. Papachristos et
al. [11] and Costante et al. [15] adapted the rapidly-exploring
random tree (RRT) algorithms to incorporate the perception
cost, and the latter additionally considered the photometric
property of the environment. Zhang et al. [12] proposed to
evaluate motion primitives against multiple costs, including
the localization uncertainty, in a receding horizon fashion.
Instead of a combined cost, as in most of previous works,
Ichter et al. [16] used multi-objective search for perception-
aware planning.

Alternatively, researchers have explored to plan in the
continuous motion space. Indelman et al. [17] considered
optimizing the motion within a finite horizon to minimize
a joint cost including the final pose covariance, which was
later extended to visual-inertial sensing and self-calibration
in [18]. Watterson et al. [13] studied the general problem
of trajectory optimization on manifolds and applied their
method to planning under the field-of-view (FoV) constraint
of the camera. Falanga et al. [14] tackled the problem at
the controller level by incorporating related costs in model
predictive control (MPC).

In the above methods, calculating the perception related
cost/metric is a crucial part and often the computational
bottleneck (e.g., [4]). Unfortunately, little work has been
done in developing dedicated representations for efficient
computation. Roy et al. [6] pre-computed and stored the
information in a 2D grid, but their method was limited to
360◦ FoV sensors. Specifically, the visual information (e.g.,
visibility) are invariant regardless of the camera orientation
for omnidirectional sensors, and thus their map did not need
to consider the impact of orientations, which is not true for

cameras with limited FoVs. More recently, Ichter et al. [16]
trained a neural network to predict the state estimation error
and generated a map of perception cost using the network
prediction. However, their map only contains the averaged
cost of different orientations and, therefore, cannot be used
to evaluate the cost of an arbitrary 6 DoF pose. In contrast,
our method explicitly models the FoV constraint and can
represent the information of 6 DoF poses efficiently.

B. Contributions and Outline

The contribution of this work is twofold:
• We propose a novel representation for the information of

6 DoF visual localization, which enables efficient com-
putation of the Fisher information compared with the
standard method of using a point cloud. To the best of
our knowledge, this is the first dedicated representation
for such tasks.

• We make our implementation of the Fisher information
field open source to benefit the research community.

The rest of this paper is structured as follows. In Section II,
we briefly introduce the Fisher information matrix and its
application in active localization, from which we identify
the computational bottleneck of using a point cloud. In Sec-
tion III, we show the separation of the rotation-independent
kernels from the approximated Fisher information matrix,
which enables a volumetric representation. In Section IV,
we describe the method to build and update the proposed
information field and introduce an alternative formulation to
reduce the memory usage. Finally, we show experimental
results from simulated and real-world data in Section V.

II. FISHER INFORMATION AND ACTIVE LOCALIZATION

A. Fisher Information Matrix

For a general parameter estimation problem, the Fisher in-
formation matrix (FIM) summarizes the information that the
observations carry about the parameters to be estimated. To
put it formally, if the measurement process can be described
as a conditional probability density function p(z|x), where
z is the measurement and x the parameters, one definition1

of the Fisher information is

Ix(z) = (
∂

∂x
log p(z|x))>( ∂

∂x
log p(z|x)). (1)

With identical and independent zero-mean Gaussian noise
N (0, σ2) on the measurement, (1) can be written as

Ix(z) =
1

σ2
(Jx)

>Jx, where Jx =
∂z

∂x
. (2)

Note that in practice (1) and (2) are usually evaluated at the
estimate x∗ instead of the unknown true value x.

The Fisher information is a pivotal concept in parameter
estimation problems. Most notably, the inverse of the FIM
defines the Cramér-Rao lower bound, which is the smallest
covariance (in terms of Loewner order) that can be achieved
by an unbiased estimator [20, App. 3.2] [21, p. 14]. Note

1The presented definition is the observed Fisher information. See [19]
for the comparison of different concepts.



that the widely used nonlinear maximum likelihood estimator
(MLE) is in general biased, but the bias also tends to decrease
when the Fisher information increases [22]. Due to its rich
theoretical implications, the FIM is widely used in different
applications, such as optimal design of experiments [23],
active SLAM [17] and feature selection [24].

B. Using Fisher Information for Active Localization

Active localization aims to find the motion for a robot
in a known environment such that the localization accuracy
during the motion can be optimized. Without the loss of
generality, we denote the motion as a continuous time
function f(t;m), parameterized with m. The output of the
function is the 6 DoF pose of the camera at a given time.
Then, an active localization algorithm can be formulated to
solve

m∗ = argmin
m

µvCv(f(t;m)) + µoCo(f(t;m)), (3)

where Cv is the cost related to visual localization, Co
denotes the other cost terms collectively (e.g., collision and
execution time) and µv/µo are the corresponding weights.
Since localization can be viewed as the estimation of the
poses of interest, FIM can be used to quantify the estimation
error and, thus, the localization quality. Evaluating the cost
using M discrete samples, we have

Cv = −s(

IT1 0 0
0 . . . 0
0 0 ITM

), ITi =

k∈Vi∑
k

ITi(uik) (4)

where Ti is the ith sample, Vi is the index set of visible
landmarks in Ti, and uik is the projection of the kth landmark
in Ti. s(·) is a metric function that converts the information
matrix into a scalar (e.g., determinant).

(3) can be solved using sampling-based methods, such
as RRT [11] and motion primitives [12], or optimization-
based methods [17]. Either way, the FIMs for individual
poses in (4) need to be computed multiple times for different
motion samples or the iterations in optimization, which is
the computational bottleneck for solving (3). Specifically, the
calculation of ITi requires iterating all the landmarks in the
environment and evaluating the individual FIM for all the
visible ones (the sum in (4)), which scales linearly with the
number of landmarks. Moreover, ITi needs to be recomputed
from scratch once the pose Ti changes (both the visibility
and the Jacobian in (2) change), even if there can be some
invariant components that only need to be computed once.
This motivates us to look for an alternative formulation of
(4) to mitigate the bottleneck.

It is worth mentioning that, compared with complete prob-
abilistic treatment as in [5], [6], we make the simplification in
the problem formulation (3) (4) that the localization process
purely depends on the measurements (i.e., no prior from
the past). However, this is not a limitation of our work.
The computational bottleneck exists as long as the Fisher
information is used to characterize the visual estimation
process. The essence of this work is a compact representation

of the information to allow efficient computation, which is
widely applicable.

III. ROTATION SEPARATION AND INVARIANT KERNELS

In this section, we focus on the formulation of the Fisher
information for a single pose, since the FIMs of different
poses are calculated independently in the same way. Let
Twc = {Rwc, twc} stands for the pose of the camera in
the world frame, {pwk}Nk=1 the 3D landmarks in the world
frame and Ik the information matrix corresponding to the
observation of the kth landmark. The FIM for the pose can
be written as

ITwc =

N∑
k=1

v(Twc,p
w
i )Ii, (5)

where v(Twc,pwi ) is a binary valued function indicating the
visibility of the ith landmark. Conceptually, our goal is to
find an approximation S(Twc,p

w
i ) ≈ v(Twc,pwi )Ii that can be

written as S(Twc,p
w
i ) = S(H(twc,p

w
i ), Rwc) and satisfies

ITwc ≈
N∑
i=1

S(Twc,p
w
i ) = S(

N∑
i=1

H(twc,p
w
i ), Rwc). (6)

In words, we would like to find an approximation that can be
factored into two components, one of which does not depend
on rotation (i.e., H(·) in (6)), and the approximation is linear
in terms of the rotation-independent part. The linear form
lead to two favorable properties. First, for one position twc,
the sum of the rotation-independent H(·) of all the landmarks
need to be computed only once, and the sum can be used
to calculate the approximated information at this position
for arbitrary rotations; second, we can easily update the
sum when new landmarks are added or old ones deleted.
This form naturally leads to a volumetric representation that
allows online update, as described in Section IV.

The approximation (6) is achieved by first carefully param-
eterizing the information matrix Ii to be rotation-invariant
(Section III-A) and replacing the binary valued function v(·)
with a smooth alternative (Section III-B).

A. Rotation Invariant FIM

The observation of a 3D landmark can be represented in
different forms, such as (normalized) pixel coordinates and
bearing vectors. In this work, we choose to use the bearing
vector f because of its ability to model arbitrary FoVs. Then
the noise-free measurement model of a landmark pwi is

fi =
pci
‖pci ‖2

=
1

ni
pci , pci = Tcwp

w
i , (7)

and the Jacobian of interest is

Ji =
∂fi
∂pci

∂pci
∂Twc

. (8)

While the first part in (8) is trivially

∂fi
∂pci

=
1

ni
I3 −

1

n3i
pci (p

c
i )
>, (9)
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(a) Visibility as a function of θ.
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(b) Polynomial model (13).

Fig. 2: The approximation of visibility function v(·). (a) α is half of the
FoV, f is the bearing vector observation, e3 is the optical axis of the camera,
and C is the projection center. (b) Examples of the polynomial model (13).

the derivative ∂pc
i

∂Twc
is more involved. To handle the derivatives

related to 6 DoF poses without overparametrization, the
element in se(3) (denoted as ξξξ) is often used. In our case,
∂pc

i

∂Twc
is replaced by

∂pci
∂Twc

→ ∂(exp(ξξξ∧)Twc)
−1pwi

∂ξξξ
or

∂(Twc exp(ξξξ
∧))−1pwi

∂ξξξ
, (10)

where exp(·) is the exponential map of the Special Euclidean
group SE(3). The two forms corresponds to expressing the
perturbation δξξξ globally in the world frame or locally in the
camera frame respectively. Using the first form, we have the
Jacobian in (8) as

Ji =
∂fi
∂pci

Rcw[−I3, [pwi ]×]. (11)

With the global perturbation formulation, for two poses that
differ by a relative rotation Twc and Twc’ = {RwcRcc’, twc},
their Jacobians (11) have a simple relation J′i = Rc’cJi, from
which the corresponding FIMs turn out to be the same

I′i
(2)
=

1

σ2
J>i Rcc’Rc’cJi = Ii. (12)

The rotation-invariance is not surprising. Intuitively, since
we are considering only part of (5) (without visibility con-
straint) and modeling the camera as a general bearing sensor,
the camera should receive the same information regardless of
its rotation. Moreover, the choice of global frame expresses
the constant information in a fixed frame, resulting in the
invariance (12). If the local perturbation in (10) is chosen,
such invariance is not possible, and the information matrix
will be related by an adjoint map of SE(3) [25, Ch. 2].

To summarize, by choosing the bearing vector as the
observation and parameterizing the pose perturbation in the
global frame, the information matrix, without the visibility
constratint, is rotation-invariant. Next, we will see how to
handle the visibility function v(·) in (5).

B. Visibility Modeling

The exact visibility v(·) is a non-trivial function (e.g.,
horizontal/vertical/diagonal FoVs are not the same) of the
bearing vector f . To arrive at the desired form (6), we first
simplify v(·) as a function of the angle θ between the bearing
vector f and the optical axis e3 = [0, 0, 1]>, as illustrated in
Fig. 2a. Then, we further replace the simplified (still binary
valued) function with a second order polynomial of cos θ,
and for the ith landmark we have:

v(Twc,p
w
i )→ v(θi) = a2 cos

2 θi + a1 cos θi + a0, (13)

where {a0, a1, a2} are design parameters that can be used
to model: 1) the decay of the visibility when f moves away
from the center of the FoV; 2) the effect of different FoVs.
Several examples are shown in Fig. 2b.

The visibility model (13) is motivated by two reasons.
First, the binary valued visibility function is not differen-
tiable, which can bring problems for optimization-based mo-
tion planning methods that relies on the gradient of the cost
function; second, the cosine function can be conveniently
written as cos θi =

(pc
i)

>e3

ni
=

(e3)
>pc

i

ni
, which allows us to

write the overall information (5) in the form of (6).

C. Information Kernel

With the rotation-invariant Fisher information (12) and the
visibility approximation (13), the complete FIM for one pose
can be written as

ITwc ≈
N∑
i=1

a2 cos θ
2
i Ii + a1 cos θiIi + a0Ii

≈
N∑
i=1

a2
n2i

diag6(e
>
3 p

c
i )Ii diag6((p

c
i )
>e3)

+
a1
ni

diag6(e
>
3 p

c
i )Ii + k0Ii.

(14)

We use diagn(A) to denote a (block) diagonal matrix by re-
peating A by n times on the diagonal and diag([A1, . . . , An])
for the diagonal blocks of A1, A2, . . . , An. Observing pci =
Rcw(p

w
i − twc), p

0
i , pwi − twc and collecting the rotation-

independent parts into one matrix, we have

ITwc ≈
N∑
i=1

A(Rwc)H(p
w
i , twc)B(Rwc), (15)

where

A(Rwc) = [a2diag6(e
>
3 R
>
wc), a1 diag6(e

>
3 R
>
wc), a0I6]

B(Rwc) = [diag6(e
>
3 R
>
wc), I6, I6]>,

(16)

and the rotation independent matrix is H(pwi , twc) =
diag([H2, H1, H0]) with

H2 =
1

‖p0i ‖22
diag6(p

0
i )Ii diag

>
6 (p

0
i ),

H1 =
1

‖p0i ‖2
diag6(p

0
i )Ii, H0 = Ii,

(17)



where H2, H1 and H0 are of the dimension 18×18, 18×6 and
6 × 6 respectively. Finally, it can be seen that (15) satisfies
the desired property of (6):

ITwc ≈ A(Rwc)(

N∑
i=1

H(pwi , twc))B(Rwc). (18)

We call the sum of H(·) the information kernel at twc:

KI(twc) = (

N∑
i=1

H(pwi , twc)), (19)

which we will use in the proposed Fisher information field.

IV. INFORMATION FIELD FOR ACTIVE LOCALIZATION

A. Representation, Query and Update

Using the kernel (19), we propose a volumetric repre-
sentation, namely the Fisher information field, for active
localization. In particular, after discretizing the space of
interest into voxels, we compute the kernels for the voxels
(from all the 3D landmark) and store each kernel in the
corresponding voxel. Then, when the information of a certain
pose is queried, the related kernels (by nearest neighbor or
interpolation) are retrieved, and (18) is used to recover the
information in constant time. The method is illustrated in
Fig. 1. Once the field is built, the query of the information
for an arbitrary pose only requires a linear transformation
of the related kernels instead of checking all the points in
the point cloud, which is the key advantage of the proposed
method.

Field Update: In practice, especially during the explo-
ration of an unknown environment, new landmarks may
be added and existing ones deleted over time, and our
representation needs to adapt to such changes. Fortunately,
since the kernel (19) is in the form of the summation of
components calculated from each landmark independently,
adding/deleting the contribution of a landmark can be done
trivially by adding/subtracting the corresponding components
from existing kernels.

B. Memory Usage and Trace Kernel

The constant query time comes at the cost of extra
memory. The information kernel at each location consists
of three parts (17), which in total require 468 float numbers.
Admittedly, the size of storage needed is non-negligible, and
it increases linearly with the number of voxels in the field.
But the memory footprint is still acceptable in practice (and
much less than discretizing and sampling the rotation space
exhaustively), as we will show in Section V-A.

Note that the aforementioned information representation
can be used to recover the full approximated information ma-
trices (6×6). However, in the cost (4), only one scalar metric
s(·) is needed in the overall cost for active localization.
This brings the possibility of reducing the memory usage
by directly expressing one specific metric instead of the
full information matrix. Out of different metrics often used
with the Fisher information [23, Ch. 6&9], the T-optimality
criterion, which is the matrix trace, is especially suitable (i.e.,

TABLE I: Time and memory cost in a realistic room environment.

Method tbuild (s) tquery (s) Memory (MB)

Information Kernels ∼ 1.4 ∼ 0.4 ∼ 270
Trace Kernels ∼ 0.3 ∼ 0.05 ∼ 8
Point Cloud 0 ∼ 2 ∼ 0.11
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Fig. 3: Visualization of the information field in simulated scenes for the
trace and determinant metric. Blue circles are 3D landmarks. Each line
segment stands for one optimal view direction. Brighter color means better
localization quality. Fig. 3d is one failure case due to the visibility model.

a linear function) for this purpose. In particular, taking the
trace of the approximated information (14), we can arrive at
the similar form as (15)

Tr(ITwc) ≈
N∑
i=1

ATr(Rwc)G(p
w
i , twc)BTr(Rwc), (20)

where G(pwi , twc) = diag([
p0

i Tr(Ii)(p
0
i)

>

‖p0
i‖22

,
p0

i Tr(Ii)
‖p0

i‖2
,Tr(Ii)])

The derivation of ATr(Rwc) and BTr(Rwc) is trivial and
omitted here. The corresponding kernel for the trace is then

KTr(twc) =

N∑
i=1

G(pwi , twc). (21)

(21) can be used in the same way as (19), but only requires
13 float numbers for one voxel (at the cost of losing certain
information contained in the full FIMs).

V. EXPERIMENTS

To implement the proposed method, we used the voxel
hashing method [26] with the implementation from [2]. We
took 3D landmarks as input and built the proposed repre-
sentation incrementally or in a batch. When the information
field was built incrementally, new voxels were added to
the area around the camera as the camera moves in order



Fig. 4: Visualization of the information layer built from the EuRoC Machine Hall 05 sequence. Right: the overall information field. The magenta points
are the landmarks from a visual-inertial odometry. The arrows stand for the optimal orientations for visual localization at the corresponding positions. The
color coding indicating the localization quality. Left: the zoom-in view on the one part of the scene and the corresponding camera image, where most
landmarks are located nearby below the MAV. The optimal orientations calculated by the information field correctly point to these nearby landmarks.

to simulate navigation scenarios of mobile robots. Unless
specified otherwise, we used the trace kernel formulation.

We performed experiments on both simulated and real-
world data. In simulation, we simulated an ideal pinhole
camera and used groundtruth depth for 3D landmarks. For
real-world data, we ran a stereo visual-inertial odometry
pipeline that consists of an efficient frontend [27] and an
optimization backend [28], and used the estimated landmarks
and camera poses to build the information field.

A. Time and Space Complexity

We first compared the time and memory complexity of
the proposed method with that using a point cloud. The
simulated test scenario was a 5m×5m×3m room, with 5,000
landmarks. We used a voxel size of 10cm and computed the
two types of kernels (19) and (21) for all the voxels in the
room, which corresponds to 75,000 voxels. After building the
information field, we queried the information or the trace at
random poses inside the room for 500,000 times, for each
we assumed that 0.5% of the landmarks (namely 25) were
visible. Both the time (building and query) and memory
usage of our method and that using a point cloud directly
are summarized in Table I.

It can be seen that the query time of the information field
is much lower, for both kernel types, than the point cloud
method. The memory and building time are higher for our
methods, but still within reasonable ranges. Note that we
computed the kernels for the voxels densely within the test
scenario in a batch. In many applications, the field will be
expanded as the robot moves, and is not likely to fill the space
entirely (e.g., Fig. 4), and the building time will be amortized
as well. Also the assumption of 25 visible landmarks is rather
conservative, and a higher number of visible landmarks will
have a negative impact on the query time of the point cloud
method but not ours.

B. Qualitative Evaluation

To visualize the kernel in each, we calculated the optimal
orientation by exhaustively searching possible rotations to
find the one that maximizes a certain metric. This is also one
practical application. Thanks for the efficient query enabled
by the proposed representation, we were able to compute the
optimal orientation online. The results from simulation and
real-world data are shown in Fig. 3 and Fig. 4 respectively.
We can observe in both case: 1) the optimal views determined
by our representation in general point to the area with many
landmarks, 2) the color coding indicates that our method
correctly determined that the locations closer to landmarks
can be better localized. However, we indeed see some failure
cases (e.g., Fig. 3d), and the reason is discussed below.

C. Discussion

Visibility Modeling: (13) allows us to have the desired form
of the Fisher information. Unfortunately, the heavy tail for
large θ (see Fig. 2b) can be problematic: it can wrongly
take into consideration the information of the landmarks that
are actually not visible, resulting in undesired behaviors, as
in Fig. 3d. Designing and quantitatively comparing different
approximations (e.g., sigmoid) that are compatible with (6)
is one important direction for future work.

Occlusion: In our implementation, occlusion is not consid-
ered. This did not cause severe problems for sparse environ-
ments in the experiments, such as Fig. 4. To handle occlusion
properly, visibility check using a dense environment model
is required, which falls out of the scope of this work.

VI. CONCLUSION

In this work, we proposed a novel representation, namely
the Fisher information field, to efficiently calculate the
Fisher information of 6 DoF visual localization process.
The proposed method is based on the approximation of the



exact Fisher information and can achieve constant compu-
tation time, regardless of the number of landmarks in the
environment. The advantage and usefulness of our method
were shown on both simulated and real-world data. For
future work, we plan to integrate the map representation
with closed-loop systems to demonstrate the strength of our
method in active settings. Quantitative studies on different
visibility approximations and FoVs are also of interest.
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