
Onboard State Dependent LQR for Agile Quadrotors

Philipp Foehn, Davide Scaramuzza

Abstract— State-of-the-art approaches in quadrotor control
split the problem into multiple cascaded subproblems, exploit-
ing the different time scales of the rotational and translational
dynamics. They calculate a desired acceleration as input for a
cascaded attitude controller but omit the attitude dynamics.
These approaches use limits on the desired acceleration to
maintain feasibility and robustness through the control cascade.
We propose an implementation of an LQR controller, which:
(I) is linearized depending on the quadrotor’s state; (II)
unifies the control of rotational and translational states; (III)
handles time-varying system dynamics and control parameters.
Our implementation is efficient enough to compute the full
linearization and solution of the LQR at a minimum of 10Hz
on the vehicle using a common ARM processor. We show four
successful experiments: (I) controlling at hover state with large
disturbances; (II) tracking along a trajectory; (III) tracking
along an infeasible trajectory; (IV) tracking along a trajectory
with disturbances. All the experiments were done using only
onboard visual inertial state estimation and LQR computation.
To the best of our knowledge, this is the first implementation
and evaluation of a state-dependent LQR capable of onboard
computation while providing this amount of versatility and
performance.

SUPPLEMENTARY MATERIAL

This paper is accompanied by a video showcasing the con-
ducted experiments: https://youtu.be/8OVsJNgNfa0

I. INTRODUCTION

A. Motivation

With the recent advances in control of Micro Aerial
Vehicles (MAVs), it is possible to use them in a wide variety
of applications, ranging from search and rescue scenarios,
observation, hobbyist drone racing to transportation and
delivery. Many of these scenarios include difficult, cluttered
environments, such as post-disasters or emergency situa-
tions. In all these applications, robust control of the vehicle
plays a crucial role for success, which becomes particularly
challenging considering the quadrotor as an under-actuated
system with sublime agility and simplicity.

Many groups have shown examples of complex, agile
maneuvers [1], [2], [3], [4], [5] which rely on excellent
tracking of a given trajectory. This tracking control is often
based on assumptions and simplifications, exploiting the
time-scale separation between the translational and rotational
dynamics, but introducing certain limitations.

The authors are with the Robotics and Perception Group, Dep. of
Informatics, University of Zurich, and Dep. of Neuroinformatics, University
of Zurich and ETH Zurich, Switzerland—http://rpg.ifi.uzh.ch.
This research was supported by the National Centre of Competence in
Research (NCCR) Robotics, through the Swiss National Science Foundation,
the SNSF-ERC Starting Grant, and the DARPA FLA program.

Fig. 1. Flying an ellipse with sate-dependent LQR control. Our quadrotor
is based on a Qualcomm Snapdragon Flight board with the Pixhawk PX4
flight stack, onboard visual inertial odometry and commercial electronic
speed controllers, motors, propeller and frame. It has a take-off weight of
255 g.

Richard Bellmans work on dynamic programming [6], [7]
and Rudolf Kalmans optimal control theory [8] formed the
realm of the Linear Quadratic Regulator (LQR), a powerful
tool towards optimal control. Until today, LQR has often only
been used to solve parts of the control problem on MAVs,
such as attitude stabilization, but never to provide a full-state
controller unifying rotational and translational states in one
feedback loop. Exactly this unified control scheme is where
LQR can exceed other approaches.

B. Related Work & Problem Statement

State-of-the-art approaches in control and trajectory gen-
eration exploit the time-scale separation and differential
flatness of these systems [9]. They rely heavily on cas-
caded control schemes [10] and decouple the rotational and
translational dynamics via a geometric tracking controller
as described in [11]. These control schemes leverage the
desired acceleration to prescribe the attitude, which therefore
is directly affected by the over-imposed position and velocity
control. Direct control over the attitude itself is therefore
lost and the demanded acceleration is subject to several
limitations in change rate, magnitude, and direction.

On the other hand, many approaches on LQR [12] lin-
earize the system at a given stable state [13] or use a precom-
puted library of LQR gains [14]. None of these approaches
is capable of adjusting to the full state space, varying state
or input costs, or changing system parameters at execution
time. Moreover, they often separate orientation and position
control, similarly to the aforementioned geometric control.
Also for Model Predictive Control (MPC), this decoupling
is used to simplify the problem [15], [16].

A reason for this is surely the difficulty of applying an
LQR scheme to a system where inputs (body-frame) and

https://youtu.be/8OVsJNgNfa0
http://rpg.ifi.uzh.ch.

states (world-frame) do not share the same reference coordi-
nate frame. In the example of most MAVs, this means that
the attitude radically changes the linearization, even in the
simplified case of a quadrotor where often only the yaw state
is concerned. This necessitates the recomputation of the LQR
whenever an attitude change occurs, or in simplified cases at
a certain rate, to handle this state-dependent linearization.

All of these methods make use of the under-actuation
property of the system, splitting the control problem into
multiple subproblems. Especially leveraging the desired ac-
celeration to define the attitude of the vehicle leads to
complications, since it disregards the attitude dynamics
and therefore requires planned smooth trajectories which
must also account for actuator saturations. One specific
problem arising from this control scheme is the difficulty
to distinguish between actually desired negative downward
acceleration (wanted), and erroneously large downward ac-
celeration from large position errors (unwanted). This makes
it difficult to use one single control algorithm for many
different maneuvers, while keeping the interface and tuning
possibilities simple and intuitive for the user. Neither could
varying system-and-control parameters be handled without
significant complications.

C. Contribution

We propose a linear quadratic regulator that unifies the
control of translational and rotational dynamics of a quadro-
tor and mitigates many of the aforementioned shortcom-
ings. It vastly simplifies the tuning of the system, since
the tuning parameters are costs that directly relate to state
errors, weighting all system states in relation to each other.
To achieve this, we leverage the formulation of dynamics,
reference states, trajectories, and costs to implement a state-
dependent LQR.

This provides a robust way to control such a MAV not
only in the reduced static state space (hover) but also along
dynamic state sequences (trajectories). The shown formula-
tion of the dynamics can be extended with a more detailed
state description, for example the dynamics of inputs or even
virtual states, like the integral of position error. We focus
here on the discrete infinite time horizon LQR solution, but
our linearization method translates without restrictions to
iterative LQR or other model predictive control schemes.

In multiple experiments, we show the robustness of our
controller in various situations, such as disturbance from
hover, reference jumps, tracking of feasible as well as
infeasible trajectories and disturbance during such tracking.
We use a small MAV as visible in Fig. 1 with all computation
running onboard.

D. Structure of the Paper

We first give an overview of the control architecture, in
Sec. II-A, since this defines our system dynamics formu-
lation, which is described in the following Sec. II-B. The
LQR control principle is outlined in Sec. II-C with a detailed
explanation of the linearization of this system in Sec. II-
D. We explain the tracking scheme used for the experiment

Fig. 2. Overeview of the control architecture implementation on the
Snapdragon Flight with measured acceleration ã and bodyrates ω̃, estimated
position p̂, orientation q̂ and full state x̂, and desired inputs u∗

in Sec. II-E. The experiment setup, platform and control
architecture is specified in Sec. III. We show our results in
Sec. IV and comment our findings the discussion Sec. V
followed by the conclusion Sec. VI.

II. METHODOLOGY

A. Control Hierarchy

Most quadrotors are equipped with an Inertial Measure-
ment Unit (IMU) to get high-frequency intrinsic measure-
ments of the rotational velocity and linear acceleration to
stabilize the rotational dynamics, and additional extrinsic
information to stabilize the translation dynamics. This ex-
trinsic information often comes from GPS, offboard motion
capture systems or nowadays also from onboard visual (-
inertial) odometry, where we will focus on the last. While
the inertial sensors often work at very high frequencies,
of up to 8 kHz, to stabilize the fast rotational dynamics,
visual odometry operates at a slower rate (typically 30 Hz,
visualized in Fig. 2 and explained in Sec. III-B). This is still
enough to estimate position and velocity since state-of-the-art
visual inertial odometry fuses measurements from the IMU
and the camera to output a higher frequency pose estimate.

This choice of sensors is fitted specifically to multirotors.
Since they produce thrust forces and drag torques with each
rotor, as long as all rotors lie in one plane, one can simplify
these forces to a collective thrust and a torque around each
body axis. To control acceleration, velocity and position,
the quadrotor must adjust its orientation since the collective
thrust is always aligned with the body z-axis.

We can now split the control scheme into two domains
of fast and slow dynamics. The fast dynamics contains the
bodyrates that can be measured directly by the gyroscope
in the IMU. The slow dynamics contains the orientation—
which is the integral state of the body rates—and the position
and velocity—which are integral states of the acceleration—
depending on collective thrust, orientation, and gravity. Since
the bodyrates are the integral state of the torque produced
by different single motor thrusts, they can be controlled with
simple feedback loops using the directly available bodyrate
measurement. From a control perspective, we intuitively
separate these two domains, where the output of the slow

dynamics domain are the desired bodyrates and collective
thrust. The fast dynamics domain controls the single rotor
thrusts to achieve the desired values. This cascade vastly
simplifies the control architecture but our approach fully
extends to a system where both domains are fused and
controlled together. Note that this does not imply decoupling
of the rotational and translational dynamics, but using the
first derivative of the rotation as an input to the system.

B. System Dynamics

The system dynamics of a quadrotor can be described as
a single rigid-body system. Based on the assumption that
the low-level bodyrate controller is faster then our LQR
controlled state, we use the bodyrates as input to our system.
The bodyrates Bω are defined in the body-fixed frame,
as well as the collective normalized thrust Bc = [0, 0, c]
whereas gravity g = [0, 0, g]T is defined in world frame.
Furthermore the state x consists of position p, orientation q
and velocity v.

x = [p, q,v]T = [px, py, pz, qw, qx, qy, qz, vx, vy, vz]T (1)

u = [Bωdes,B cdes]
T = [ωdes,x, ωdes,y, ωdes,z, cdes] (2)

We use quaternions to represent the orientation of the
quadrotor to avoid singularities (gimbal lock) due to angle
representation. We will drop the prefix B [] for the body
frame from now on. The system dynamics can then be
described in a simplified form as:

ṗ = v, q̇ =
1

2
q ⊗

[
0
ω

]
, v̇ = g + q � c, (3)

where ⊗ is the quaternion multiplication and � is the
quaternion rotation as:

q1 ⊗ q2 = Q×(q1)q2 = Q̄×(q2)q1 (4)

q1 � v = R×(q)v. (5)

Q×(q) is the quaternion multiplication matrix and R×(q)
is a rotation matrix with

Q× (q) =

qw −qx −qy −qz
qx qw −qz qy
qy qz qw −qx
qz −qy qx qw

 (6)

Q̄× (q) =

qw −qx −qy −qz
qx qw qz −qy
qy −qz qw qx
qz qy −qx qw

 (7)

Q̄× (q) = Q× (q̄) (8)

Q̄×T (q)Q×(q) =
[
1 0
0 R× (q)

]
. (9)

This results in the full equations for velocity and orienta-
tion as:

v̇ = g + R×(q)c =

[
2(qwqy + qxqz)c
2(qyqz − qwqx)c

−g + (1− 2q2x − 2q2y)c

]
(10)

q̇ =
1

2
Q̄×
([

0
ω

])
q =

1

2

−ωxqx − ωyqy − ωzqz
ωxqw + ωzqy − ωyqz
ωyqw − ωzqx + ωxqz
ωzqw + ωyqx − ωxqy

 . (11)

C. Linear Quadratic Regulator

A Linear Quadratic Regulator provides the optimal solu-
tion for a given linear time-invariant system

ẋ = Ax + Bu (12)

at the reference state x0 and input u0 with respect to a user-
defined quadratic cost given by the two positive-definite cost
matrices Q and R. We define the cost-to-go for the infinite-
time solution as:

J (x,u) =

∫ ∞
0

x̃TQx̃ + ũTRũ dt (13)

with the errors x̃ = x−x0 and ũ = u−u0. Assume that the
optimal cost-to-go is of the quadratic form J∗(x) = xTPx.
The solution for P can be found using the Continuous
Algebraic Riccati Equation

0 = PA + ATP − PBR−1BTP + Q (14)

and results in

u = u0 + K(x− x0) with K = −R−1BTP (15)

as the optimal feedback-policy. To solve the problem, we use
a dynamic programming approach as described in [12].

D. Linearization

To calculate the LQR, the full linearization of the system is
needed. Instead of just calculating all partial derivatives, we
see from (3) that most entries of A and B are independent:

A(q,u) =
∂

∂q
f(q,u) =

0 0 ∂
∂v

ṗ

0 ∂
∂q

q̇ 0

0 ∂
∂q

v̇ 0

 (16)

B(q,u) =
∂

∂u
f(q,u) =

[
0 0
∂
∂ω

q̇ 0

0 ∂
∂c

v̇

]
. (17)

Therefore, we calculate only the required derivatives in the
following sections.

Preface: Partial Derivatives w.r.t. Unit Quaternions:
Since the orientation is represented with a unit quaternion
, this induces a constraint on the respective states so that
‖q‖ = 1. When deriving a function of this unit quaternion,
the constraint does no longer hold for the derivative. To
make the constraint generally valid, we discard it for the
general quaternion q and enforce a specific unit quaternion
qu = q · ‖q‖−1. The derivation then yields:

∂

∂q
f (qu) =

∂

∂qu
f (q) · ∂

∂q

(
q · ‖q‖−1

)
∂

∂q

(
q · ‖q‖−1

)
=

∂

∂q
q · ‖q‖−1 + q · ∂

∂q
‖q‖−1

= ‖q‖−1 · 1− q · ‖q‖−2 · ∂
∂q
‖q‖

= ‖q‖−1
(
1− ‖q‖−2qqT

)
(18)

1) Position: As in (3), the position is the integral of the
velocity in the same frame, all partial derivatives are zero
except for the

∂

∂v
ṗ = 1. (19)

2) Orientation: From (3), we can see that it only depends
on the orientation q and the bodyrates ω. From this, we get
for the partial derivative with respect to the orientation:

∂

∂q
q̇ =

1

2

 0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 · 1− ‖q‖−2qqT

‖q‖
(20)

and similar for the derivation with respect to bodyrates:

∂

∂ω
q̇ =

1

2

−qx −qy −qz
qw −qz −qy
qz qw qx
−qy qx qw

. (21)

3) Velocity: From (3), we also get the partial derivatives
from the quaternion rotation function and the thrust:

∂

∂q
v̇ = 2c

[
qy qz qw qx
−qx −qw qz qy
qw −qx −qy qz

]
· 1− ‖q‖−2qqT

‖q‖
(22)

∂

∂c
v̇ =

[
(qwqy + qxqz)
(qyqz − qwqx)

(q2w − q2x − q2y + q2z)

]
. (23)

E. Trajectory Tracking Scheme

To track the reference state along a predefined trajectory,
one could use multiple tracking schemes, for example:
• temporal tracking where the reference state x0(t) is

chosen based on the passed time,
• spatial tracking where the reference state x0(p) closest

to the position of the system is chosen.
Since temporal tracking requires the system to follow the
trajectory with exact computed timing, it is often less robust
against disturbances and model uncertainties. Therefore, we
chose spatial tracking, similarly to the approach in [17]. In
each control loop, we search on the remaining trajectory for
the reference state that minimizes the spatial distance to the
actual vehicle position. We do this by applying algorithm 1,
where pdes,i denotes a position on the trajectory at index
i, and xdes,i denotes the state at index i. As a result, i is
the index of the next reference state on the trajectory, γ is
the interpolation value, and xdes is our linearly-interpolated
closest desired state on the trajectory.

Algorithm 1 for spacial tracking.
repeat

i← i+ 1
d← pdes,i − pdes,i−1
γ ← (p− pdes,i−1) · d/‖d‖22

until γ < 1
xdes← xdes,i−1 + γ(xdes,i − xdes,i−1)

Global Shutter
VGA Camera

Snapdragon
Flight

ESC

Motor &
Propeller

Power
Distribution

4k Camera

Fig. 3. Our Quadrotor seen from below with a 30 cm ruler. The Snapdragon
Flight is visible on top with the global shutter camera. Four ”DYS SN20A”
ESCs are placed in the arms of the ”RKH 250” frame to feed the ”DYS
BX1306-3100kV” motors with ”Gemfan 5030” propellers.

III. EXPERIMENTAL SETUP

A. Experiment Platform

Our experiment platform is designed to be lightweight and
easy to operate. We achieved this at a total take-off weight
of 255 g. The combination of such low inertia and a carbon
fiber frame make it extremely robust. It consist of consumer-
grade electronic speed controller (ESC), motors, propellers,
and a frame with 250 mm diagonal motor distance. Using
this components, it can deliver a maximal thrust-to-weight
ratio of ∼ 2. As flight controller, we use a Snapdragon
Flight1 single-board solution, visible in Fig. 3. It includes a
computational unit, IMU, front-facing color camera at a 4k-
resolution and down-facing global-shutter gray-scale camera
at VGA resolution.

B. Control Architecture

The main software is split into a fast low-level controller
for the bodyrates and our superimposed high-level LQR con-
troller, as already described in Sec II-A. This architecture is
illustrated in Fig. 2. On the Snapdragon Flight’s Application
Digital Signal Processor (aDSP); the low-level controller
runs in the form of the PX42 flight stack. This controller
reads the IMU onboard the Snapdragon Flight with 8 kHz
and computes the PWM signal for the ESC from the desired
bodyrates and collective thrust.

The high-level controller runs on the main processor
(2.26 GHz quad-core ARM) using Linaro Linux3 provided

1Qualcomm: developer.qualcomm.com/software/machine-vision-sdk
2PX4 flight stack: www.px4.io
3Linaro: www.linaro.org

https://developer.qualcomm.com/software/machine-vision-sdk
www.px4.io
www.linaro.org

10 20 30 40

-1

-0.5

0

0.5

1

Fig. 4. Position error during a hover task. The vehicle was disturbed by
pulling it away from its reference point as seen in the accompanying video.

by Intrinsyc4 with ROS5. To get an accurate state estimate,
we use a Visual Inertial Odometry (VIO) by Qualcomm1.
The IMU readings are down-sampled and forwarded to the
VIO pipeline at 250 Hz together with a VGA gray-scale
image from the down-facing global-shutter camera at 30 Hz.
The pose estimate after each camera frame is fed back to the
PX4 flight stack, which fuses it together with IMU signals
to get a low drift, high frequency state estimate at 250 Hz.

Our proposed LQR controller uses this estimate to com-
pute the target bodyrates and collective thrust at 100 Hz.
Furthermore, it recalculates the cost-optimal gain matrix K
from (15) at 10 Hz using the linearization of the system at the
most recent estimated state. To chose the tracking reference,
we use the the spatial tracking scheme from Sec. II-E due
to better handling of model uncertainties and disturbances.
All experiments were done with the quadratic cost terms
set to Q = diag([100, 100, 100, 1, 1, 1, 1, 10, 10, 10]) and
R = diag([1, 5, 5, 0.1]), while the inputs were limited at
‖Bωdes‖ ≤ 2 rad s−1 and 2 m s−2 ≤B cdes ≤ 18 m s−2 for
all experiments.

C. Experiment Description

We perform four different experiments to show basic
stability of our controller: hover with reference jumps and
disturbances (III-C.1); tracking a feasible minimum-snap
trajectory (III-C.2); tracking an infeasible trajectory (III-C.3);
disturbing the vehicle during tracking a feasible trajectory
(III-C.4). For all experiments, we use onboard VIO only,
without any external motion capture system. Because the
floor and walls provide practically no texture, we place some
textured carpets in the room.

1) Hover with Reference Jumps and Disturbances: In this
experiment we let the vehicle hover and apply step-changes
to the reference and disturbances by pulling the vehicle
from its hover position. While the reference is momentarily
constant, we still apply the state-dependent LQR to adjust
to the estimated vehicle state. No trajectory or feasibility
checks are needed, since the pure state-feedback is enough
to stabilize the vehicle around and towards the reference.

4Intrinsic: www.intrinsyc.com
5Robot Operating System: www.ros.org

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

Fig. 5. Position during step changes in the reference all 5 seconds. The
dashed line marks the reference, while the full line marks the estimate.

13 13.5 14 14.5 15 15.5 16
-2

-1

0

1

2

3

Fig. 6. Input ωy with reference px,ref , position px and velocity vx during
step changes in the reference.

2) Tracking a Feasible Trajectory: We generate a fea-
sible trajectory using the minimum-snap approach from
[2]. For this, we set four waypoints at positions pms0 =
[0,−1.2, 0]T , pms1 = [1.5, 0, 0.5]T , pms2 = [0, 1.5, 0]T ,
pms3 = [−1.5, 0, 0.5]T and compute a minimum-snap tra-
jectory sampled with dt = 0.1 s. We limit the velocity to
3.0 m s−1. This results in a trajectory close to an ellipse,
except for the start and end phase.

3) Tracking an Infeasible Trajectory: In this experiment,
we show the stability of the controller with respect to infea-
sible references. We generate a perfectly elliptical trajectory,
parametrized with respect to the angle α by pell(α) =
[rx sin(α),−ry cos(α), rz sin(α)]T with rx = 1.5 m, ry =
1.2 m, rz = 0.5 m and a sample with dα = 2π/36. The
velocity is set to point from one reference point to the next
one with a magnitude of 2.0 m s−1. The reference orientation
is perfectly horizontal as in hover. Note that, therefore, the
velocity is discontinuous, the acceleration is infeasible, and
no feed-forward part exists.

4) Tracking with Disturbance: We generate a feasible
trajectory as in III-C.2 but with a lower maximal velocity
of 1.0 m s−1. During execution, we stop the vehicle by
holding or pulling it away from the trajectory. Because
of the spatial tracking, it continues along the trajectory
without skipping any segments, which instead could happen
in temporal tracking as mentioned earlier (II-E).

www.intrinsyc.com
www.ros.org

-1 0 1
-1

-0.5

0

0.5

1

1.5

-1 0 1
-1

-0.5

0

0.5

1

1.5

-1 0 1
-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 7. View from each world axis on a feasible minimum-snap trajectory with vmax = 3.0m s−1 executed using only VIO and our state-dependent
LQR. Note the error in z-direction due to thrust uncertainties.

-2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 8. Stabilizing the vehicle along an unfeasible trajectory. Note the
deviation outward of the ellipse due to unfeasible velocity and attitude
reference, resulting in a error of ∼0.5m.

IV. RESULTS

All experiments are visible in the accompanying video at:
https://youtu.be/8OVsJNgNfa0

A. Hover with Reference Jumps and Disturbances

First, we note the non-zero static error in position tracking,
which results from model uncertainties and the lack of an
integrative part in the controller. In Fig. 4, we can see the
position error due to a large disturbance by a human. Note
how the disturbance is rejected with very little overshoot.
Another property is the bounded velocity due to position-
and velocity-error saturation. In Fig. 5, we depict the reaction
to jumps in the reference. Note how small deviations from
the z-axis setpoint are caused by large jumps in x and y
as a trade-off to lower the quadratic state cost as fast as
possible. Additionally, we show the an input in Fig. 6 during
a reference jump. Note that the input jumps due to the
instantaneous jump in the reference, but otherwise is smooth
even over the updates of the LQR gains at 10 Hz.

B. Tracking a Feasible Trajectory

While tracking a feasible trajectory introduces no more
complexity than our hover experiment except for a moving

-2 -1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 9. Trajectory tracked with a human operator disturbing (pulling)
the vehicle. Note the convergence back to the trajectory without skipping
segments due to spatial tracking.

reference state, we expect the same results as in IV-A.
In fact, we can again observe some small offset from the
reference trajectory, as depicted in Fig. 7, resulting from
model uncertainties. The biggest influence is the uncertainty
of the collective thrust, since this can change with battery
voltage and is not accounted for in the low level controller,
resulting in the observable deviation in z-direction (calibrated
to minimal z-error in hover at 70% charging state). We can
observe this deviations in the first and second plot in Fig.
7, as well as the non symmetry of it due to gravity. This
results in a too low position when moving upward, and a
too high position when moving downward. The last plot of
Fig. 7 shows the x, y-plane depicting the horizontal tracking
performance with little position error.

C. Tracking an Infeasible Trajectory

With this experiment, we want to show stability of the
controller when the reference is infeasible. We can see in
Fig. 8 how the vehicle deviates outward from the reference
trajectory due to the lack of a correct reference attitude and
infeasible velocity changes. Still, the controller manages to
follow the trajectory and stabilize the vehicle, with a trade-
off in positional accuracy.

https://youtu.be/8OVsJNgNfa0

D. Tracking with Disturbance

In our last experiment, we show how the spatial tracking
performs under significant disturbances during execution,
depicted in Fig. 9. While a time-based tracker would not
account for the disturbance and possibly skip segments after
a disturbance, our spatial tracker is not influence by catching,
holding and pulling the vehicle from the trajectory. The al-
gorithm for spatial tracking simply keeps the reference at the
last sample point while we hold the vehicle back. As soon as
we release the vehicle, it converges back onto the trajectory
and continues tracking without skipping any segments, as
visible in our video. Note that this adds to the robustness
of the implementation and covers many failure scenarios
introduced by disturbance as well as model uncertainties.

E. Computation Time

Our algorithm computes the solution for the state-
dependent LQR at 10 Hz with a mean computation time of
t̄c = 36 ms with a standard deviation of σc = 11 ms in an
average of n̄i = 41 iterations.

V. DISCUSSION

In this work, we showed the fundamental applicability
of state-dependent and, therefore, time-varying LQR control
on a MAV with real experiments, where other approaches
only show LQR control for attitude (linearized around one
reference state) or only deliver simulation results. While we
did not directly compare to other approaches, we intended
to mitigate problems of hierarchical control schemes and
show the feasibility of the state-dependent LQR approach
using our implementation, proven by our experiments. Two
topics remain up for discussion: (V-A) optimality under
uncertainties due to state estimation and (V-B) extensions
of our approach.

A. Separation Theorem

Since modern MAVs use visual integral state estimation
as in our approach, it is interesting to discuss the stability of
our controller in conjunction with such an estimator. Many of
these estimators are based on a Kalman filter as in [18], [19].
Due to the separation principle, the combination of such an
estimator and an LQR will still be stable and optimal if both
individual components are stable. Therefore, this approach
is valid for a wide variety of state estimation pipelines.

B. Extension of our Approach

The true advantage of our controller and linearization is its
possible extensions, such as: (I) integral states to counteract
steady-state errors; (II) implementation of an actuator dy-
namics model to cover uncertainties and actuator limitations;
(III) development of a iterative LQR for planning and model
predictive control; (IV) predictive control for cost-field-based
obstacle avoidance; (V) extension to other platforms. We will
build upon our findings and investigate the implementation of
these extensions to develop a more elaborate control pipeline.

VI. CONCLUSION

We proposed a state-dependent LQR which couples the
translational and rotational states of the vehicle, and provides
the dynamics and linearization needed. We implemented
this approach on a lightweight quadrotor using a low-power
Qualcomm ARM platform and run all state estimation, LQR
computation and controller onboard. Our implementation is
efficient enough to update the LQR gains at 10 Hz and our
experiments prove feasibility and robustness with this control
approach.

REFERENCES

[1] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza, “Aggres-
sive quadrotor flight through narrow gaps with onboard sensing and
computing,” in IEEE Int. Conf. Robot. Autom. (ICRA), 2017.

[2] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in IEEE Int. Conf. Robot. Autom. (ICRA), May
2011, pp. 2520–2525.

[3] M. Mueller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball
juggling,” in IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), 2011,
pp. 4972–4978.

[4] S. Tang and V. Kumar, “Mixed integer quadratic program trajectory
generation for a quadrotor with a cable-suspended payload,” in IEEE
Int. Conf. Robot. Autom. (ICRA), 2015, pp. 2216–2222.

[5] P. Foehn, D. Falanga, N. Kuppuswamy, R. Tedrake, and D. Scara-
muzza, “Fast trajectory optimization for agile quadrotor maneuvers
with a cable-suspended payload,” in Robotics: Science and Systems
(RSS), 2017.

[6] R. E. Bellman, “The theory of dynamic programming,” Bull. Amer.
Math. Soc., 1954.

[7] R. Bellman, Dynamic Programming, ser. Dover Books on Computer
Science Series. Dover Publications, 1957.

[8] R. Kalman, “A new approach to linear filtering and prediction prob-
lems,” J. Basic Eng., vol. 82, pp. 35–45, 1960.

[9] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and
control for precise aggressive maneuvers with quadrotors,” in Int.
Symp. Experimental Robotics (ISER), Dec 2010.

[10] M. Hehn and R. D’Andrea, “Quadrocopter trajectory generation and
control,” in IFAC World Congress, vol. 18, no. 1, 2011, pp. 1485–1491.

[11] T. Lee, M. Leoky, and N. McClamroch, “Geometric tracking control
of a quadrotor uav on se(3),” in IEEE Conf. Decision Control (CDC),
Dec. 2010, pp. 5420–5425.

[12] A. Al-Tamimi, F. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear
HJB solution using approximate dynamic programming: Convergence
proof,” IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 38, no. 4, pp. 943–949, Aug. 2008.

[13] E. Reyes-Valeria, R. Enriquez-Caldera, S. Camacho-Lara, and
J. Guichard, “LQR control for a quadrotor using unit quaternions:
Modeling and simulation,” in CONIELECOMP 2013, 23rd Interna-
tional Conference on Electronics, Communications and Computing,
Mar. 2013.

[14] P. Reist and R. Tedrake, “Simulation-based LQR-trees with input and
state constraints,” in IEEE Int. Conf. Robot. Autom. (ICRA), 2010, pp.
5504–5510.

[15] G. V. Raffo, M. G. Ortega, and F. R. Rubio, “Mpc with nonlinearH∞
control for path tracking of a quad-rotor helicopter,” IFAC Proceedings
Volumes, vol. 41, no. 2, pp. 8564–8569, 2008.

[16] M. Kamel, K. Alexis, M. Achtelik, and R. Siegwart, “Fast nonlinear
model predictive control for multicopter attitude tracking on SO(3),”
in IEEE Conf. Control Appl. (CCA), Sept. 2015, pp. 1160–1166.

[17] G. Antonelli, E. Cataldi, F. Arrichiello, P. R. Giordano, S. Chiaverini,
and A. Franchi, “Adaptive trajectory tracking for quadrotor MAVs in
presence of parameter uncertainties and external disturbances,” IEEE
Transactions on Control Systems Technology, pp. 1–7, 2017.

[18] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman
filter for vision-aided inertial navigation,” in IEEE Int. Conf. Robot.
Autom. (ICRA), Apr. 2007, pp. 3565–3572.

[19] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and
D. Scaramuzza, “Autonomous, vision-based flight and live dense 3D
mapping with a quadrotor MAV,” J. Field Robot., vol. 33, no. 4, pp.
431–450, 2016.

	Introduction
	Motivation
	Related Work & Problem Statement
	Contribution
	Structure of the Paper

	Methodology
	Control Hierarchy
	System Dynamics
	Linear Quadratic Regulator
	Linearization
	Position
	Orientation
	Velocity

	Trajectory Tracking Scheme

	Experimental Setup
	Experiment Platform
	Control Architecture
	Experiment Description
	Hover with Reference Jumps and Disturbances
	Tracking a Feasible Trajectory
	Tracking an Infeasible Trajectory
	Tracking with Disturbance

	Results
	Hover with Reference Jumps and Disturbances
	Tracking a Feasible Trajectory
	Tracking an Infeasible Trajectory
	Tracking with Disturbance
	Computation Time

	Discussion
	Separation Theorem
	Extension of our Approach

	Conclusion
	References

