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Abstract— In this paper, we address the problem of localizing
a camera-equipped Micro Aerial Vehicle (MAV) flying in urban
streets at low altitudes. An appearance-based global positioning
system to localize MAVs with respect to the surrounding
buildings is introduced. We rely on an air-ground image
matching algorithm to search the airborne image of the MAV
within a ground-level Street View image database and to detect
image matching points. Based on the image matching points,
we infer the global position of the MAV by back-projecting the
corresponding image points onto a cadastral 3D city model.
Furthermore, we describe an algorithm to track the position
of the flying vehicle over several frames and to correct the
accumulated drift of the visual odometry, whenever a good
match is detected between the airborne MAV and the street-
level images. The proposed approach is tested on a dataset
captured with a small quadroctopter flying in the streets of
Zurich.

SUPPLEMENTARY MATERIAL

Please note the dataset used in this work along with a
video demonstration are both available on our webpage:
rpg.ifi.uzh.ch

I. INTRODUCTION

Our motivation is to create vision-driven localization
methods for Micro Aerial Vehicles (MAV) flying in urban
environments, where the satellite GPS signal is often shad-
owed by the presence of the buildings, or not available. Ac-
curate localization is indispensable to safely operate small-
sized aerial service-robots to perform everyday tasks, e.g.,
goods delivery,1 inspection and monitoring,2 first-response
and telepresence in case of accidents.

In this paper, we tackle the problem of localizing MAVs
in urban streets, with respect to the surrounding buildings.
We propose the use of textured 3D city models to solve the
localization problem of a camera equipped MAV. A graphical
illustration of the problem addressed in this work is shown
in Fig. 1.
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Fig. 1: Illustration of the problem addressed in this work. The absolute
position of the aerial vehicle is computed by matching airborne MAV
images with ground-level Street View images that have previously been
back-projected onto the cadastral 3D city model.

In our previous work [1], we described an algorithm
to search airborne MAV images within a geo-registered,
street-level image database. Namely, we localized airborne
images in a topological map, where each node of the map is
represented by a Street View image. 3

In this paper, we advance our earlier work [1], by back-
projecting the geo-referenced images onto the 3D cadastral
model of the city to obtain the depth the scene. Therefore, the
algorithm described in this paper, computes the 3D position
of the corresponding image points—between the airborne
MAV images and ground-level Street View images—in order
to compute the real-world 3D position of the flying vehicle
within a metric map.

World models, maps of the environment, street-network
layouts have been used for a long time to localize vehicles
performing planar motion in urban environments. Recently,
several research works have addressed the localization of
ground vehicles using publicly available maps [2], [3], road
networks [4] or satellite images [5]. However, the algorithms
described in those works are not suitable for the localization
of flying vehicles, because of the large viewpoint differ-
ences. With the advance of the mapping technology, more
and more detailed, textured 3D city models are becoming
publicly available [6], which can be exploited for vision-
based localization of MAVs.

In the recent years, numerous research papers have ad-
dressed visual appearance-based place recognition by ground
vehicles in Simultaneous Localization and Mapping (SLAM)
systems [7], [8]. Such image-matching algorithms tend to

3In our work we used Google Street View images: http://google.
com/streetview.
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perform poorly in the case of flying robots [1], since in this
case—besides the challenges present in ground visual search
algorithms, such as illumination, lens distortions, over-season
variation of the vegetation, and scene changes between the
query and the database images—extreme changes in view-
point and scale can be found between the aerial MAV images
and the ground-level images. To illustrate the challenges
of matching airborne images with ground level ones, in
Fig. 2 we show a few samples of the airborne images and
their associate Street View images from the dataset used in
this work. As can be observed, due to the different fields
of view of the ground cameras and aerial vehicles and
their different distance to the buildings’ facades, the aerial
image is often a small subsection of the ground-level image,
which mainly consists of highly-repetitive and self-similar
structures (e.g., windows). All these peculiarities make the
air-ground matching problem extremely difficult to solve for
state-of-the-art feature-based image-search techniques.

In our work we depart from conventional appearance-
based localization algorithms by applying our air-ground im-
age matching algorithm to match airborne MAV images with
ground-level Street View images. In this paper, we advance
our previous topological localization [1] by computing and
tracking the position of the MAV in the 3D space using
cadastral 3D city models. To the best of our knowledge, this
is the first work to present an in-depth analysis to solve the
problem of localizing an MAV and track its position using
textured 3D cadastral city models.

To summarize, this paper advances the state-of-the-art with
the following contributions:

• We present a solution to the localization problem of
MAVs flying at low altitudes (up to 10 meters) in
urban streets. The dataset used in this work is publicly
available on our website.

• We present a new appearance-based global positioning
system to detect the position of MAVs with respect
to the surrounding buildings. The proposed algorithm
matches airborne MAV images with geo-tagged Street
View images and exploits cadastral 3D city models in
order to compute the absolute position of the flying
vehicle.

• We describe an algorithm to track the vehicle position
and correct the accumulated drift induced by the on-
board state estimator.

The remainder of the paper is organized as follows.
Section II presents the visual localization system. Section III
describes the position tracking algorithm. Section IV presents
the experimental results.

II. APPEARANCE-BASED GLOBAL POSITIONING
SYSTEM

In this section, we briefly summarize and show the limi-
tations of our previous work [1] concerning the appearance-
based, global localization of MAVs in topological maps.
Next, we present the cadastral 3D model used in this work
and we show the back-projection of the Street View images
onto the city model.

Fig. 2: Comparison between ground-level Street View (top row) and airborne
MAV (row 2 and 3) images used in this work. Note the significant changes—
in terms of viewpoint, over-season variation, and scene between the database
((a); respectively (d)) and query images ((b), (c); respectively (e),(f))—that
obstruct their visual recognition.

A. Overview and evaluation of the Air-ground Image Match-
ing algorithm

Conventional image-matching algorithms tend to fail in
matching airborne MAV images with street-level images
because of the extreme changes in viewpoint and scale
that can be found between them. In [1], we proposed an
algorithm that can successfully match air-ground images,
with a significant difference in viewpoint and scale. To
avoid the caveats of other image-search algorithms in case
of severe viewpoint changes between the query and the
database images, in [1] we generate virtual views of the
scene, which exploit the air-ground geometry of the system.
Next, similarly to [9], we extract SIFT [10] image points in
the original image, and also, on the generated virtual views.
Further on, we use a robust algorithm to select the inlier
feature points based on virtual line descriptors [11]. Also,
we present techniques to speed up the image search within
the Street View image database by adopting a histogram-
voting scheme and by computing the algorithm in parallel
threads on different cores.

Our appearance-only-based Air-ground matching algo-
rithm is described more in detail in [1]. It can successfully
recognize more than 45% of the airborne MAV images within
a database of street-level images with 100% precision—
namely without detecting any false positive matches—using
only the visual similarity between them. In other words,
almost every second airborne image captured by the MAV,
flying at different altitudes (up to 15 meters), and often
traveling close to the buildings, is successfully recognized
along a 2km path.4

The precision of the air-ground matching algorithm and

4For further details please watch: http://youtu.be/
CDdUKESUeLc.
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Fig. 3: Number of inlier feature points matched between the MAV and
ground images versus the distance to the closest Street View image.

the uncertainty of the position determination depends on the
correctly-matched number of features. Fig. 3 summarizes
the mean number of inliers matched between the airborne
and the ground images versus the distance to the closest
Street View image. The results show a Gaussian distribution
with standard deviation σ = 5 meters. This means that, if the
MAV is in the vicinity of 5 meters from a Street View image
along the path, our algorithm can detect around 60 correct
correspondences. The 3D coordinates of the matched image
feature points can be computed by back-projecting them onto
the 3D city model.

The main goal of this work is to present a proof-of-concept
of the system, rather than the real-time, efficient implemen-
tation. Though, for the sake of completeness, we present
in Fig. 4 the effective processing time of the Air-ground
image matching algorithm, using a commercially available
laptop with an 8 core—2.40 GHz clock—architecture. The
Air-ground matching algorithm is computed in five major
steps: (1) virtual view generation and feature extraction; (2)
approximate nearest-neighbor search within the full Street
View database; (3) putative correspondences selection; (4)
approximate nearest-neighbor search among the features
extracted from the aerial MAV image with respect to the
selected ground level image; (5) acceptance of good matches
(kVLD inlier detection). In Fig. 4 we used more than 400
airborne MAV images. All the images were searched within
the entire Street View images that could be found along the
2km trajectory. Notice that the longest computation time is
the approximate nearest-neighbor search in the entire Street
View database for the feature descriptors found in the MAV
image. However, for position tracking, this step is completely
neglected (Section III) since, in this case, the MAV image
is compared only with the neighboring Street View images
(usually up to 4 or 8, computed in parallel on different cores,
depending on the road configuration). Finally, notice that
the histogram voting (Fig. 4) takes only 0.01 seconds. On
average, steps (1), (4), and (5) are computed in 3.2 seconds.
Therefore, if the MAV flies roughly with a speed of 2 m/s,
its position would be updated every 6.5 meters (section IV).
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Fig. 4: Analysis of the processing time of the Air-ground image matching
algorithm. To compute this figure, we used more than 400 airborne MAV
images, and all the images were searched within the entire Street View
image database, that could be found along the 2km trajectory.

B. Textured 3D cadastral models

The 3D cadastral model of Zurich used in this work was
acquired from the city administration and claims to have an
average lateral position error of σl = ±10 cm and an average
error in height of σh = ±50 cm. The city model is referenced
in the Swiss Coordinate System CH1903 [12]. Note that this
model does not contain any textures.

The geo-location information of the Google Street View
dataset is not exact. The geo-tags of the Street View im-
ages provide only approximate information about where the
images were recorded by the vehicle. Indeed, according to
[13], where 1,400 Street View images were used to perform
the analysis, the average error of the camera positions is 3.7
meters and the average error of the camera orientation is
1.9 degrees. In the same work, an algorithm was proposed
to improve the precision of the Street View image poses.
There, cadastral 3D city-models were used, in combination
with image-segmentation techniques, to detect the outline of
the buildings. Finally, the pose was computed by an iterative
optimization, namely by minimizing the offset between the
segmented outline and the reprojected one. The resulting cor-
rected Street View image positions have a standard deviation
of 0.1184 meters and the orientation of the cameras have
standard deviation of 0.476 degrees.

In our work, we apply the algorithm from [13] on the
dataset used in this work to correct the Street View im-
age poses. Then, we back-project each pixel onto the 3D
cadastral model. One sample of the resulting textured 3D
model is shown in Fig. 5. This step is crucial to compute the
scale of the monocular visual odometry (Section III-A) and
to localize the MAV images with respect to the street level
ones, thus, reducing the uncertainty of the position tracking
algorithm. In the next section, we give more details about
the integration of textured 3D models into our pipeline.

C. Global MAV camera pose estimation

By back-projecting the Street View images, onto the
3D city model as illustrated in Fig. 5, the absolute MAV
camera pose and orientation can be estimated given a set
of known 3D-2D correspondence points. Several approaches
have been proposed in the literature to estimate the external
camera parameters based on 3D-2D correspondences. In



Fig. 5: (a) perspective view of the cadastal 3D city model; (b) the ground-level Street View image overlaid on the model; (c) the back-projected texture
onto the cadastral 3D city model; (d) estimated MAV camera positions matched with one Street View image; (e) the synthesized view from one estimated
camera position corresponding to actual MAV image (f); (g)-(i) show another example from our dataset, where (g) is an aerial view of the estimated camera
position (h), which is marked with the blue camera in front of the textured 3D model, (h) is the synthesized view from the estimated camera position
corresponding to actual MAV image (i).

[14], the perspective-n-point (PnP) problem was introduced
and different solutions were described to retrieve the absolute
camera pose given n correspondences. The authors in [15]
addressed the PnP problem for the minimal case where n
equals 3 and introduced a novel parametrization to compute
the absolute camera position and orientation. Given that the
output of our Air-ground matching algorithm [1] may still
contain outliers and that the model-generated 3D coordinates
may depart from the real 3D coordinates, we apply the P3P
algorithm together with a RANSAC scheme [14] to discard
the outliers. Finally, using the inlier points we compute the
MAV camera position by applying EPnP [16]. We refine
the resulting camera pose estimate using the Levenberg-
Marquardt [17] optimization, which minimizes the reprojec-
tion error given by the sum of the squared distances between
the observed image points and the reprojected 3D points.

Fig. 5 (a-c) show how the Street View images are back-
projected onto the 3D city model. Moreover, Fig 5 (d) shows
the estimated camera positions and orientations in the 3D city
model for a series of consecutive MAV images. As we do not
have any ground-truth (i.e. we do not know the true MAV
camera position) we visually evaluate the accurateness of

the position estimate by rendering-out the estimated MAV
camera view and comparing it to the actual MAV image
for a given position as shown in 5(e-f). Fig. 5(g-i) again
show another example of estimated camera position (g), the
synthesized camera view (h), and the actual MAV image
(i). By comparing the actual MAV images to the rendered-
out views (Fig. 5(e-f) and Fig. 5(h-i)), we can see that—
even though there are differences in terms of orientation and
position—there is a significant visual overlap between the
two images meaning that the estimated camera position is
relatively close to the true camera position. Similar results
were derived for the remaining MAV-Street View image pairs
of the recorded dataset. Based on this visual verification, we
can conclude that the absolute MAV camera positions are
correctly computed. These global-localization updates will
be used in the next section to correct the accumulated drift
in the trajectory of the MAV.

III. POSITION TRACKING

The goal of this section is to track the state of the
MAV over several images. The vehicle state at time k is
composed by the position vector and the orientation of the
airborne image with respect to the global reference system.



To simplify the proposed algorithm, we neglect the roll
and pitch, since we assume that the MAV flies in near-
hovering conditions. Consequently, we consider the reduced
state vector qk ∈ R4

qk = (pk, θk), (1)

where pk ∈ R3 denotes the position and θk ∈ R the yaw
angle.

We adopt a Bayesian approach [18] to track and update the
position of the MAV. We compute the posterior probability
density function (PDF) of the state in two steps. To compute
the prediction update of the Bayesian filter, we use visual
odometry. To compute the measurement update, we integrate
the global position as soon as this is made available by the
algorithm described in the previous section.

The system model f describes the evolution of the state
over time. The measurement model h relates the current
measurement zk ∈ R4 to the state. Both are expressed in
a probabilistic form:

qk|k−1 = f(qk−1|k−1, uk−1), (2)

zk = h(qk|k−1), (3)

where uk−1 ∈ R4 denotes the output of the visual odometry
algorithm at time k − 1, qk|k−1 denotes the prediction
estimate of q at time k, and qk−1|k−1 denotes the updated
estimate of q at time k − 1.

A. Visual odometry

Visual Odometry (VO) is the problem of incrementally
estimating the ego-motion of a vehicle using its on-board
camera(s) [19]. We use the VO algorithm in [20] to incre-
mentally estimate the state of the MAV.

B. Uncertainty estimation and propagation of the VO

At time k, VO takes two consecutive images Ik, Ik−1 as
input and returns an incremental motion estimate with respect
to the camera reference system. We define this estimate as
δ∗k,k−1 ∈ R4

δ∗k,k−1 = (∆s∗k,∆θk), (4)

where ∆s∗k ∈ R3 denotes the translational component of the
motion and θk ∈ R the yaw increment. ∆s∗k is valid up to
a scale factor, thus the metric translation ∆sk ∈ R3 of the
MAV at time k with respect to the camera reference frame
is equal to

∆sk = λ∆s∗k. (5)

We define δk,k−1 ∈ R4 as

δk,k−1 = (∆sk,∆θk), (6)

where λ ∈ R represents the scale factor. We describe the
procedure to estimate λ in Section III-E.

We estimate the covariance matrix Σδk,k−1
∈ R4x4 using

Monte Carlo technique [21]. The VO at every step of the
algorithm provides an incremental estimate δk,k−1, together
with a set of corresponding image points between image
Ik and Ik−1. We randomly sample five couples from the

corresponding point set multiple times (1000 in our experi-
ments). Each time, we use the selected samples as an input
to the 5-point algorithm [22] to obtain the estimate {δi}.
All these estimates form D = {δi}. Finally, we calculate
the uncertainty Σδk,k−1

of the VO by computing the sample
covariance from the data.

The error of the VO is propagated throughout consecutive
camera positions as follows. At time k the state qk|k−1

depends on qk−1|k−1 and δk,k−1

qk|k−1 = f(qk−1|k−1, δk,k−1), (7)

We compute its associated covariance Σqk|k−1
∈ R4x4 by the

error-propagation law:

Σqk|k−1
= ▽fqk−1|k−1

Σqk−1|k−1
▽ fT

qk−1|k−1
+▽fδk,k−1

Σδk,k−1
▽ fT

δk,k−1
,

(8)
assuming that qk−1|k−1 and δk,k−1 are uncorrelated. We
compute the Jacobian matrices numerically. The rows of the
Jacobian matrices ▽ (ifqk−1|k−1

), ▽ (ifδk,k−1
) ∈ R1x4 (i =

1,2,3,4) are computed as

▽(ifqk−1|k−1
) =

[
∂(if)

∂(1qk−1|k−1)
∂(if)

∂(2qk−1|k−1)
∂(if)

∂(3qk−1|k−1)
∂(if)

∂(4qk−1|k−1)

]
,

▽(ifδk,k−1
) =

[
∂(if)

∂(1δk,k−1)
∂(if)

∂(2δk,k−1)
∂(if)

∂(3δk,k−1)
∂(if)

∂(4δk,k−1)

]
,

(9)
where iqk−1|k−1 and iδk,k−1 denote the i-th component of
qk−1|k−1 respectively δk,k−1. The function if relates the
updated state estimate qk−1|k−1 and the VO output δk,k−1

to the i-th component of the predicted state iqk|k−1.
In conclusion, the state covariance matrix Σqk|k−1

defines
an uncertainty space (with a confidence level of 3σ). If
the measurement zk that we compute by means of the
appearance-based global positioning system is not included
in this uncertainty space, we do not update the state and we
rely on the VO estimate.

C. Uncertainty estimation of the appearance-based global
localization

Our goal is to update the state of the MAV qk|k−1,
whenever an appearance-based global position measurement
zk ∈ R4 is available. We define zk as

zk = (pSk , θ
S
k ), (10)

where pSk ∈ R3 denotes the position and θSk ∈ R the yaw in
the global reference system.

The appearance-based global positioning system (Section
II) provides the index j ∈ N of the Street View image
corresponding to the current MAV image, together with two
sets of n ∈ N 2D corresponding image points between the
two images. Furthermore, it provides also the 3D coordinates
of the corresponding image points in the global reference
system. We define the set of 3D coordinates as XS : = {xS

i }
({xS

i } ∈ R3 ∀ i = 1, · · · , n) and the set of 2D coordinates
as MD = {mD

i } ({mD
i }, ∈ R2 ∀ i = 1, · · · , n).

If the MAV image matches with a Street View image, it
cannot be farther than 15 meters from that Street View cam-
era (c.f. Fig. 3), according to our experiments. We illustrate
the uncertainty bound of the MAV in a bird-eye view in



Fig. 6: Blue dots represent Street View cameras. If the MAV current image
matches with the central Street View one, the MAV must lie in an area of
15 meters around the corresponding Street View camera. We display this
area with a green ellipse.

Fig. 6 with the green ellipse, where the blue dots represent
Street View camera positions. To reduce the the uncertainty
associated to zk, we use the two sets of corresponding image
points.

We compute zk such that the reprojection error of XS

with respect to MD is minimized, that is

zk = argmin
z

(
n∑

i=1

||mD
i − π(xS

i , z)||), (11)

where π denotes the j-th Street View camera projection
model.

The reprojected points coordinates π(xS
i , z) are noisy,

because of the uncertainty of the Street View camera poses
and of the 3D model data. The MD, XS sets may contain
outliers. We choose then P3P-RANSAC (Section II-C) to
compute zk, selecting the solution with the highest consensus
(maximum number of inliers, minimum reprojection error).

Similarly to Section III-B, we estimate the covariance ma-
trix Σzk ∈ R4x4 using Monte Carlo technique. We randomly
sample five couples of corresponding points from MD, XS

multiple times (1000 in the experiments). Each time, we
use the selected samples as an input to the P3P algorithm,
to obtain the measurement {zi}. As we can see in Fig.
3, a match with images gathered by Street View cameras
farther than twenty meters is not plausible. We use this
criterion to accept or discard {zi} measurements. All the
plausible estimates form the set Z = {zi}. We estimate Σzk

by computing the sample covariance from the data.

D. Fusion

We aim to reduce the uncertainty associated to the state
by fusing the prediction estimate with the measurement,
whenever an appearance-based global position measurement
is available. The outputs of this fusion step are the updated
estimate qk|k and its covariance Σqk|k ∈ R4x4. We compute
them according to Kalman filter equations [23]:

qk|k = qk|k−1+Σqk|k−1
(Σqk|k−1

+Σzk)
−1(zk−qk|k−1) (12)

Σqk|k = Σqk|k−1
− Σqk|k−1

(Σqk|k−1
+Σzk)

−1Σqk|k−1
(13)
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Fig. 7: Uncertainty along the x, y, z-axis and yaw, with respect to the traveled
distance.

E. Initialization

In order to initialize our system we use the global local-
ization algorithm, namely we use (11) to compute the initial
state q0|0 and the Monte Carlo procedure described in III-C
to estimate its covariance Σq0|0 . In the initialization step, we
also estimate the absolute scale factor λ for Visual Odometry.
After the initial position we need another position of the
MAV that is globally localized by our appearance-based
approach. Finally, we compute λ by comparing the metric
distance traveled computed by the two global localization
estimates, with the unscaled motion estimate returned by the
VO.

IV. EXPERIMENTS AND RESULTS

A. The experimental dataset

We collected a dataset in downtown Zurich, Switzerland
using a commercially available Parrot AR.Drone 2. The
flying vehicle was manually piloted along a 150 m trajectory,
collecting images throughout the environment at different
altitudes. The MAV camera was always side-looking, facing
the buildings. We considered a street in which we could
receive also the GPS signal. Although we do not have
accurate ground truth data to compare with (GPS has very
limited accuracy in urban environments due to multipath),
we can evaluate our algorithm visually. We also plot the
obtained trajectories in the cadastral 3D city model, where
the surrounding buildings can give an intuitive measure
about the MAV positions. The memory requirements of the
appearance-based global localization system are moderate,
since only the image features extracted offline from the Street
View images and their real world coordinates obtained form
the cadastral 3D city model are stored in order to localize
the MAV. The rendered views showing the textured model
together with the MAV trajectories are for a better evaluation
of the proposed solutions.

B. Results

Even though, we do not have a ground-truth path of the
MAV to compare with, we can still evaluate visually the
performance of our system. Furthermore, we display our
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Fig. 8: Comparison between the estimated trajectories: (a) bird eye-view perspective of the results overlayed on Google Maps; (b) side view of (a); black
circles represent the Street View camera positions, note that the terrain is ascendant, consequently, we measure the altitude above the ground; we display
the trajectory measured using the on-board GPS with green; the path estimate obtained with the system described in this paper is with blue, the squares
identify the state updates; we show with red the enhanced version of our path estimate, computed using the on-board magnetometer data to estimate the
yaw of the MAV, red circles identify the state updates; finally, the magenta displays the estimate given by pure Visual Odometry.

result within the very accurate 3D city model, which can
give a good basis to evaluate the result.

We show the results using a bird-eye-view perspective,
overlayed on Google Maps in Fig. 8 (a). Fig. 8 (b) shows a
side-view of the same figure, where the flying altitude can
be observed. We display the trajectory measured by the on-
board GPS in green. Note that the GPS measurement shows
a very high altitude compared to the real one, which never
exceeds 6 meters relative to the ground. Note that, although
the terrain is uphill, the Street View images are recorded
at the same altitude. We show the path estimated by the
algorithm described in this paper with blue. The blue squares
mark the positions where an update from the appearance-
based global localization system was integrated into the
Bayesian tracking to correct the trajectory. Although in these
states the position was accurately detected, the orientation of
the camera was occasionally not very accurate, resulting in
a non-smooth trajectory.

To improve our results, we computed the orientation of
the MAV in the update positions (red dots in Fig. 8 (a) and
(b)), using the on-board magnetometer data to correct the
yaw angle of the vehicle. Thereby, the best trajectory was
obtained in comparison with the actual one. We show the
uncertainty of the position and yaw in Fig. 7. Along the
considered path, the average uncertainty was 4.2 m in x, 4.3
m in y, and 3.6 m in z. After each state update, highlighted by
red dots in Fig. 7, the uncertainty drops lower than 5 m. The
yaw uncertainty never exceeds 12.2 degrees, and it is about
7.5 degrees in average. When the Visual Odometry (magenta
in Fig. 8 (a) and (b)) is not updated by the appearance-based
global-positioning system, a very big error is accumulated
in the trajectory of the MAV. Conversely, when the proposed
appearance-based localization is used, the trajectory of the
MAV is corrected as it shown in 8 (a) for the x, y coordinate,
respectively 8 (b) for the z coordinate.

In Fig. 9 (a)-(c), we display the results using the cadastral

3D model, in order to evaluate the trajectories with respect
to the surrounding buildings. The Visual Odometry estimate
is shown in black, the GPS in green, and our estimate in
blue. The altitude estimate error of the GPS is even more
notable, while the VO estimate penetrates the buildings. The
estimated trajectory with the proposed algorithm is the most
plausible, is the most similar to the actual one.

Finally, the rendered view of the textured 3D model—
which the MAV perceives at the end of the trajectory—is
visually more similar to the real one (Fig. 9 (d)), in case
it is estimated by the presented algorithm (Fig. 9 (e)), in
comparison with the rendered view computed based on the
GPS measurement (Fig. 9 (f)).

V. CONCLUSIONS
This paper presented a solution to localize MAVs in urban

environments with respect to the surrounding buildings using
a single on-board camera and priorly geo-tagged street-
level images together with a cadastral 3D city model. A
reliable alternative to satellite-based global positioning was
introduced, which is purely based on appearance. Moreover,
it was shown that the performance of such a system can
be increased by making use of additional on-board sensors
such as the magnetometer. The presented appearance-based
positioning described in this paper can be of great importance
to safely operate—to takeoff, land, and navigate—small-
sized, autonomous aerial vehicles in urban environments
equipped with vision cameras.
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