Closed-Form Solution for Absolute Scale Velocity Determination
Combining Inertial Measurements and a Single Feature Correspondence

Laurent Kneip!, Agostino Martinelli?>, Stephan Weiss®, Davide Scaramuzza'! and Roland Siegwart!
L Autonomous Systems Lab ETH Zurich, Switzerland
2 INRIA, Grenoble - Rhéne-alpes, France

Abstract— This paper presents a closed-form solution for
metric velocity estimation of a single camera using inertial
measurements. It combines accelerometer and attitude mea-
surements with feature observations in order to compute both
the distance to the feature and the speed of the camera inside
the camera frame. Notably, we show that this is possible by just
using three consecutive camera positions and a single feature
correspondence. Our approach represents a compact linear and
multirate solution for estimating complementary information to
regular essential matrix computation, namely the scale of the
problem. The algorithm is thoroughly validated on simulated
and real data and conditions for good quality of the results are
identified.

I. INTRODUCTION

Today’s palette of robotic applications using visual sensors
for Simultaneous Localization and Mapping (SLAM) is
steadily growing, and this for obvious reasons. Alternatives
such as ultrasonic sensors, planar laser rangefinders, or
time-of-flight cameras are sparse in information content,
bulky, or inaccurate. The ratio between the information
content given by ordinary cameras and the corresponding
sensor size or weight is unmatched by any other sensor
type. Especially, compact solutions such as small inspection
robots or Micro Aerial Vehicles (MAV) tend towards using
vision more and more. Recently, Blosch et al. [1] succeeded
in the implementation of autonomous MAV navigation in
unstructured environments using monocular vision as the
only exteroceptive sensor.

The obvious problem with using vision is that cameras
only provide a bearing information about features, no depth
information. The latter may be recovered by triangulating
matched features from multiple views [2], more generally
resulting in a visual odometry [3] or visual SLAM approach
[4, 5]. However, although these monocular vision algorithms
try to conserve a certain scale via relative scale propagation,
the output such as camera speed and 3D structure is still only
computed up to an unknown scale. This does not represent
a serious problem for Augmented Reality (AR) applications,
but it certainly does when the control stability of a real robot
depends on it, as it is the case for the example mentioned ear-
lier. This paper presents a deterministic solution for finding
the absolute-scale velocity of the camera.

An alternative way of measuring the absolute scale is given
with stereovision approaches where the metrics is defined
via a known baseline. Achtelik et al. [6], for instance, use
a stereovision rig for indoor MAV navigation. However,

classical scale-variant stereovision concepts fail when the
requirements regarding the size of the baseline increase,
namely when operating in a large-scale environment with
more distant features. Niitzi et al. [7] propose to merge
the output of a scale-invariant monocular SLAM algorithm
with IMU (Inertial Measurement Unit) measurements in an
EKF filter holding the scale as an additional variable in
the state. However, their approach does not represent a
direct computation of scale and speed but rather depends
on the reliability of an external SLAM implementation and
a critical convergence of the filter. Armesto et al. [8, 9]
also address the fusion of inertial measurements and visual
pose computations, but rather focus on multirate aspects and
assume the position measurements to be correctly scaled.
An integral solution for obtaining also the speed is given
by Gemeiner et al. [10], where structure-from-motion and
motion estimation filtering based on inertial readings are
combined to obtain the absolute scale. The scale for the
vision part, however, has to be initialized with a given set
of known 3D features. Integral EKF-SLAM-based solutions
are given by Eade and Drummond [11] and Strelow and
Singh [12] via a replacement of the motion model by
motion estimation based on inertial measurements. Kelly
and Sukatme [13] demonstrate that a similar approach may
even be used for simultaneous camera-to-IMU calibration.
The computational complexity, however, is considerable and
all the mentioned solutions involve complete SLAM and,
thus, do not scale very well with the map-size. Mourikis
and Roumeliotis [14] improve the scalability by disregarding
older features, hence keeping the complexity of the algorithm
constant and linear in function of the number of considered
features. Huster et al. [15, 16] finally present a statistical
solution to the velocity estimation problem that has sim-
ilar complexity to the present one. It also uses only one
distinctive feature and tries to estimate its relative position
in Cartesian space. The drawback with most Kalman filter
approaches is that the number of iterations until the filter con-
verges is undefined. The reinitialization of state-variables—
if having to switch the observed feature—represents another
issue. Another approach is given by Roumeliotis et al. [17]
who only consider pairwise images for visual odometry, and
fuse the output afterwards with inertial measurements in an
EKF. However, their work uses an additional altimeter for
solving the unknown scale of the vision algorithm. Baldwin
et al. [18] develop a non-linear observer for 6-DOF pose



estimation in function of only monocular vision and inertial
readings, however, they worked only in simulation and with
a static set of features in the field of view.

The main contribution of the present paper consists in a
closed-form solution of the velocity determination problem
engaging inertial readings and a single feature observation
over the past three camera observation points. To the best of
our knowledge, this is the first time that such a solution is
provided and proven to be working on real data. Furthermore,
the fact that only a single feature needs to be considered
allows us to design very efficient and robust computation
methods such as 1-point RANSAC [19], hence reducing the
critical part of the implementation to short-term integration
of inertial readings.

The structure of the paper is the following: Section II
shows the derivation of the linear solution and the final
multirate algorithm; Sections III and IV present evaluation
on simulated and real data, respectively; finally Section V
concludes the work.

II. THEORY
A. Definitions

As a convention, variables are indicated in italic and
vectors in boldface throughout the whole paper. Vectors in
form of imaginary quaternions are added a tilde, e.g. v. Most
of the theoretical derivations are accomplished in the camera
frame Oxyz shown in Figure 1. z and y are parallel to the
image plane, and z points to the front of the camera. The
inertial frame is denoted with I XY Z. The camera velocity v
and the acceleration a are by default expressed in the camera
frame. The orientation of the camera frame is expressed with
respect to the inertial frame, and given with the Tait-Bryan
angles roll ¢, pitch 6, and yaw . Alternatively, the attitude
may be expressed by a quaternion q. The sampling rate of
the IMU is denoted with 7.

Fig. 1.  Acceleration a and velocity v of the camera frame Ozyz, and
feature vector f.

On the vision side, a feature is represented by the feature
vector f. Assuming that the camera is calibrated, we can use
the normalized image coordinates Time and Yimg, and f is
then defined by

Timg
Yimg . ( 1 )
1

f=z2-f==2-

B. Assumptions

We assume that the camera and the IMU are calibrated,
that is, both their intrinsic and extrinsic parameters are known
(this is possible by using off-the-shelf toolboxes like [20,
21]). Furthermore, for the moment we assume to have an
ideal IMU, that is, gravity and bias free acceleration and
gyroscopic measurements with respect to the IMU frame.
Knowing the IMU calibration parameters, the inertial read-
ings may be rotated into the camera frame, hence allowing
us to elaborate the following theory inside the camera frame
only. Finally, we assume to have a reliable feature detector
able to match all features visible in each of the last three
frames. Noise effects will be shown in Section III.

C. Velocity determination

Fig. 2. Three consecutive feature observation points.

Let us consider a moving camera as shown in Figure 2.
Each reference frame represents a position where an image
or inertial readings have been captured (indices k£ and j,
respectively). The basic idea of the velocity determination
consists in fitting its parameters and, at the same time,
the feature distance such that—respecting the equations of
motion of the camera—the normalized feature coordinates
inside the image plane in the previous observation points
correspond to their actually measured values. If the last three
camera observation points Oy, Oy_1, and Oy_o happened at
tr, tx—1, and ti_o, and if the relative displacements of the
two previous camera frames with respect to Oy, are denoted
by Sx—1 and Si_o, the feature vectors inside the previous
frames are given by

di_1(z1f'k = 8r_1) k1
Qo (zrf'k — Sp—2)dr—2, 2

fr1 =
fro =

where quaternions qi_o and qi_; represent the relative
change in orientation from the observation point Oj_s to
Oy, and from Og_; to Oy, respectively.

The key step now consists in expressing the relative
displacements Si_; and Si_o in function of the current
velocity inside the camera frame and the integration of the
acceleration between ¢;_o and t;. Since the IMU is typically
sampled at a higher rate, we switch to a different time index,
namely ¢;. If we denote relative displacements with respect to



the frame O;_ xyz with S ;_; and adopt the same notation
for velocities, we have (acceleration is always expressed in
the current camera frame)

1

Sjj1 = Vi T+ 58T 3)
Vij-1 = Vi1 +aaT 4)
- - 1. .
i1 = 4 (=¥, T - 58T
5)
Vi = qi-1(Vjo1 -1+ a7, (6)
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= Vj_1j-1 = q;_1V;qj-1 —a; 17, ¥
and by replacing (8) in (5), we obtain
S od 1 = * 2
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Hence, we also have
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and replacing (8) in (11), we obtain
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It can be easily proved that (9) and (12) follow a recursive
rule, namely that

(12)

§j7i = —{’le + dejsz
with
Gy = -1 (PP T+ En)ajy iG>
J 0 if j<b

13)
The recursive formulation provides one fundamental ad-
vantage. Notably, it allows us to sample the IMU readings at
a different rate than the camera. This way, the results from
an image processing algorithm do no longer have to arrive
at constant intervals, that is, we can simply continue until
the feature detector provides new interest points.
Splitting up the velocity using the imaginary quaternions
q:=(0100),d,=(0010)" and q. = (00 0 1), we
obtain

Sj—i = —(QxVz,j + Ayvy,j + As0z 5)iT + &jji. (14)

Assuming that ¢, = ¢; and that the past two observation
points happened at t,_; = t;_; and t;_o = t;_,,,, we may
then reformulate (2) in order to become

f,1 = qul(zkf/k + (EIz'Uz,k + vay,k + Eizvz,k)lT
— Qe j1)dk—1
fro = QZ—Q(Zkf/k + (vam,k + (iyvy,k + é’lzvz,k)"nT

—Qjj—m)dr—2- (15)

This is equivalent to stating that there are m IMU integra-
tion points between the second last and the present camera
observation point, and [ integration points between the last
and the present camera observation point. Through (1), we
have

2
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thus four equations with four unknowns, namely v, i, Uy k.
v, 1 and zj. The used operation [X], is defined as extracting
the coordinate x from an imaginary quaternion X. Following
the transformations presented in Appendix A, we finally
obtain

Ve, k Vg, k
v v _
Al Y =b=| Y| =A""Db, (0
Vz,k Uz, k
Zk Zk

with A and b as indicated in Figure 3. Computing the 4 x 4
matrix A and the 4 x 1 vector b and taking the inverse of A
essentially solves the velocity determination problem using

)
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Fig. 3.
qy (similar is valid for ..q...).

only one single feature. We can observe two advantages:
First, A and b have a high level of redundancy. This is
good because it simplifies the composition of the matrix
A, thus leading to reduced computational load. Second, the
method depicted here involves only the knowledge about
the relative change in orientation, which may be obtained
through integration of angular rate sensors, an information
that is commonly delivered by IMUs and not too much
affected by drift (at least not during smaller integration
times). As an alternative, the relative rotational displacement
might also be computed via the essential matrix. Hence,
the complete problem may be solved via exclusive use of
sensorial information directly given in the camera frame. An
absolute orientation estimation is however needed in order
to remove the gravity portion from the accelerometer values.
Note that even though at least three observation points are
necessary, it is possible to compute a new velocity for each
new camera image, as described in Figure 4.

In order to solve the problem using multiple features at
once, it is possible to combine the observation of multiple
features into a single sparse matrix A. This, however, leads to
increased computational complexity, and 1-point RANSAC
[19] to prune false matches and outliers in the speed com-
putation is definitely preferable.

III. SIMULATION RESULTS

The theories established in Section II will now be eval-
uated in simulation. The camera is assumed to be down-
looking with an opening angle of 180°. The idea behind the
orientation is that the camera is mounted on a quadrotor.
It is then equivalent to the helicopter attitude and hence
related to the translational accelerations via a simple point-
mass model. The features are placed on a flat surface at an
average distance of 5 m below the camera. They are evenly
distributed and cover an area of 10x10 m2. The sampling
frequencies are assumed to be 100 Hz for the IMU and 10
Hz for the camera. The duration of each experiment is 30 s.

The first experiment addresses the observation of a single
feature located around the center of the considered area.
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Matrix A and vector b as required by the velocity determination algorithm. ..qy.. equals to its term to the left except that q is replaced with
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Fig. 4. IMU callback function executed at a period of 7' and providing
a velocity update each time a new camera frame has been captured. Note
that the buffering of orientation quaternions and feature angles/descriptors is
omitted. Also note that the variables [ and m in Eq. 20 need to be replaced
by k — b and k — c using the terminology here.
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Fig. 5. Absolute error of velocity determination during the tracking of a

single feature.

White Gaussian noise with a standard deviation of 0.1 -7= \/E
is added to the acceleration values, a value taken from a
real IMU. The result of the velocity determination using
a single feature is shown in Figure 5. The RMS value of
the estimation error is 0.142 % for an average ground-truth
absolute velocity of 0.948 ™, hence resulting in a relative
error of about 15%. Furthermore it can be observed that the
precision of the measurement gets reduced around ¢ = 18s.
This happens because the considered feature has a very small
displacement in the image plane over the last three frames.
The motion is then not observable through this feature and
A becomes close to singular. For instance, this is the case if
the considered feature is perfectly aligned with the direction
of motion. When this happens, a solution is given by the
consideration of a different feature at a different position in
the image plane.

As shown in our next experiment, an alternative is given
by the application of 1-point RANSAC to all the features
observable in each of the last three frames. The results are
shown in Figure 6. It can be observed that the results in the
critical region around ¢ = 18s are significantly improved.
Furthermore, we obtain a general reduction of the RMS value
of the error down to only 0.023 ™, hence a relative error
of 2.5%. Moreover, even if all the features are considered,
the computation stays efficient due to the fact that each
RANSAC hypothesis is instantiated using only one single
feature.

Another obvious limitation is when the result of the
integration of the acceleration values over the last three
camera observation points is very small, which happens,
for instance, when the velocity of the camera is constant.
The acceleration values then remain zero and hence the
motion unobservable. This event may be observed in our
next experiment—shown in Figure 7—at ¢ = 21s. It has been

I _M_ s the standard unit to express the error of an IMU (m is meters,

s is seconds and h is hours)
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Fig. 6. Absolute error of velocity determination during the observation of
many features.

verified that at this instant the integration of the acceleration
over the three frames is almost zero, which leads to a singular
matrix for every observed feature and thus a non-observable
scale for the relative displacement of the camera. Note that
both critical cases can be easily detected at runtime by
analyzing the condition of A and the result of the IMU
integration.
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Fig. 7. Absolute error of velocity determination during the observation of
multiple features, this time with increased motion dynamics.

Another important question is to what extend the average
size of the magnitude of the acceleration influences the
precision of the speed determination. Therefore, the motion
dynamics and velocities in our previous experiment (Figure
7) have been increased to an average value of 5.738 “*, and
the resulting RMS value for the error is 0.3558 **. Thus,
the relative error increased to 6%. This can be explained by
the fact that large accelerations also cause higher velocities,
and hence also a more dynamic optical flow in the image
plane. The camera observation points being triggered by



thresholded disparity, the IMU integration times and thus also
noise cancelling effects are automatically getting smaller.
A similar increase of the relative error can be observed
for too small motion dynamics, where the noise of the
accelerometer signal then outweights the actual signal and
high noise integration times cause significant errors. It can
be concluded that the reliability of the algorithm depends
on good characteristics of the motion, which means not too
short and not too long integration times of the IMU data.

IV. EXPERIMENTS ON REAL DATA

Fig. 8. Crossbow-IMU with mounted uEye camera and tracking balls for
the motion capturing system.

In order to have a practical evaluation of the algorithm
introduced in Section II, a real dataset has been collected
with the setup presented in Figure 8. It consists of a uEye
UI-122xLE—a small monochrome USB-camera gathering
752x480 images with global shutter at a rate of 15 Hz—
and a Crossbow VG400CC-200 IMU providing measurement
updates at a rate of 75 Hz. According to the datasheet, the
noise contained in the acceleration measurements amounts
to O.5ﬁ. Figure 9 shows an image of the environment
capture({b the camera itself during the experiment. The
field of view of the camera is 150°, and the latter is cali-
brated using the omnidirectional camera calibration toolkit
by Scaramuzza [20]. The extrinsic calibration of the IMU
is realized using the camera-inertial calibration toolkit by
Lobo [21]. Reliable ground-truth data has been obtained
by conducting the experiments at the ETH Zurich Flying
Machine Arena [22], which is equipped with a Vicon mo-
tion capture system. Therefore, the sensor-setup is equipped
with three additional tracking balls. Synchronization between

Fig. 9. Image of the environment captured by the uEye camera.

visual, inertial, and ground-truth data has been obtained in
a pre-processing step. A Visual-SLAM implementation [4]
has been applied to the captured image sequence in order
to derive rotational velocities. The time-shifts have then
been obtained by maximizing the correlation between the
rotational velocities from all three sensors (camera, IMU,
and Vicon system).

The challenge when using a real IMU obviously con-
sists in subtracting the gravity vector from the acceleration
measurements, which can only be done if knowledge about
the absolute orientation is available. Therefore, the latter
has been recovered by fusing the accelerometer and rate-
gyro measurements in a standard complementary attitude
filter, similar to the one presented by Baerveldt [23]. After
back and forth rotation and removal of the gravity influence,
the preconditioning of the acceleration measurements is
concluded with the removal of the bias. The bias is safely
estimated by simply taking the average of the acceleration
values in all three directions over an extended period of time.
This works well since the biases are mostly constant and only
varying as a function of the temperature. Please note that
the prefiltering does not depend on the translational velocity
and can hence be started beforehand in order to deliver
stable orientation information for the velocity determination
algorithm upon convergence. The determined velocity can
then still be used for initializing a translational motion
estimation filter.

On the computer vision side, the implementation is engag-
ing the SIFT feature detector by Lowe [24]. A future real-
time implementation would obviously suggest the use of a
faster detector, like, for instance, the FAST feature detector
by Rosten [25].

The result of an over 35s long period with sufficient
motion dynamics is shown in Figure 10. The mean value
of the velocity is 0.3889 ** and the average of the velocity
estimation error is 0.1447 ™. The relative error thus results
to 37%. The increase of the relative error compared to the
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Fig. 10. Absolute error of velocity determination on real data.



results obtained in simulation is related on one hand to the
higher noise component in the inertial readings, and on the
other hand to temporarily missing dynamics of the camera
motion. Nevertheless, a visual odometry implementation
with relative scale propagation could still benefit from our
method, especially for setting the absolute scale whenever the
conditions imposed by the motion dynamics are favorable.
Considering the bounded scale drift, the scale factor can
as well be simply averaged over a longer period. We can
conclude that our algorithm represents an important and
very efficient contribution to estimate the absolute scale and
velocity in monocular visual odometry.

V. CONCLUSIONS AND OUTLOOK

In this paper, we povided a closed-form solution for veloc-
ity determination combining visual and inertial information,
which requires only a single feature observation across three
views. This approach operates at camera framerate in discrete
time-space and uses only information retrieved from the
moving camera/IMU frame. It is a multirate approach, which
means that the higher sampling rate of the IMU is also sup-
ported. The fact that our method requires as few as a single
feature correspondence means that multiple correspondences
can be very efficiently merged with a 1-point RANSAC
approach. The presented algorithm returns complementary
information to pure epipolar geometry computation and
solves for metric camera velocity and metric feature distance,
hence the scale of the problem.

While standard visual odometry provides a reliable speed
estimation up to a slowly drifting scale factor, the method
presented in this paper provides an estimation at an absolute
scale. Future research investigates the optimal combination
of this complementary information for a robust real-time
camera velocity estimation in absolute scale.
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APPENDIX A

The following shows the detailed steps in order to derive the linear solution from the four constraints (16), (17), (18), and
(19).
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