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Abstract—Event-based cameras record an asynchronous
stream of per-pixel brightness changes. As such, they have
numerous advantages over the standard frame-based cameras,
including high temporal resolution, high dynamic range, and no
motion blur. Due to the asynchronous nature, efficient learning
of compact representation for event data is challenging. While it
remains not explored the extent to which the spatial and temporal
event "information" is useful for pattern recognition tasks. In
this paper, we focus on single-layer architectures. We analyze
the performance of two general problem formulations: the direct
and the inverse, for unsupervised feature learning from local
event data (local volumes of events described in space-time).
We identify and show the main advantages of each approach.
Theoretically, we analyze guarantees for an optimal solution,
possibility for asynchronous, parallel parameter update, and the
computational complexity. We present numerical experiments for
object recognition. We evaluate the solution under the direct and
the inverse problem and give a comparison with the state-of-the-
art methods. Our empirical results highlight the advantages of
both approaches for representation learning from event data. We
show improvements of up to 9 % in the recognition accuracy
compared to the state-of-the-art methods from the same class of
methods.

I. INTRODUCTION

By asynchronously capturing the light changes in a scene,
the event-based camera offers an alternative approach for
imaging, which is fundamentally different from the common
frame-based cameras. Rather than measuring the “absolute”
brightness at a constant rate, the event-based cameras measure
per-pixel brightness changes (called “events”) in an asyn-
chronous manner. Some of their main advantages are very
high temporal resolution and low latency (both in the order
of microseconds), very high dynamic range (140 dB vs. 60
dB of standard cameras), and low power consumption. Hence,
event cameras have promising potential for pattern recognition,
machine learning, computer vision, robotics, and other wearable
applications in challenging scenarios (e.g. high-speed motion
and the scene has a high dynamic range).

As data-driven sensors, the event-based camera output
depends on the brightness change caused by the camera’s
motion or the objects’ motion in the scene. The faster the
motion, the more events per second are generated since each
pixel adapts its sampling rate to the rate of change of the
intensity signal that it monitors. One of the critical questions
of the paradigm shift posed by event cameras is how to
extract meaningful and useful information from the event
stream to fulfill a given task. In the past, several unsupervised
event-based features were proposed [17] for various tasks,

  

  

Fig. 1. An illustration for the construction of the local volume of aggregated
events that we use as a vector input representation vb in our unsupervised
feature learning approach.

like recognition, object detection, segmentation, and feature
tracking. Based on how the feature is estimated, these methods
can be grouped on two broad categories: (i) handcrafted and
(ii) learned approaches. Concerning the used model, the latter
category can be divided into two subgroups: (a) single-layer
and (b) multi-layer architecture.

Deep, multi-layered architectures have shown to be suc-
cessful at many tasks, but most of these methods process
events in synchronous batches, sacrificing the asynchronous
property of event data. Asynchronous and parallel learning
for event-based data was addressed under the spiking neural
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Fig. 2. A schematic diagram which illustrates the main components in the
proposed recognition pipeline.

networks (SNN) [18]. However, SNNs were challenging
to train due to the absence of an efficient equivalent to
back-propagation learning method and the hyper-parameters’
sensitivity. While the interpretations and the understanding of
the learning dynamics, even for the most popular multi-layer
architectures, remain challenging. On the other hand, data-
adaptive, i.e., learned single-layer architectures for event-based
data were not studied extensively. Moreover, the analysis for the
appropriate problem formulation, which would be advantageous
for efficient, asynchronous, and parallel learning from event-
based data, was not fully explored. As such, it remains unknown
to which extend a single-layer model could be useful for event-
based data and how the spatial and temporal resolution of the
event-based data impacts performance for a given task.

This paper analyzes two classes of single-layer methods for
compact, information preserving, and task-relevant representa-
tion learning from event-based data. We focus on unsupervised
learning of a set of basis vectors (or filter bank). We encode
the event-based input data with respect to the basis vectors to
produce features, which we use for recognition. In general, the
problem of learning such basis vectors can be formulated as a
direct [32], [33], [23] or inverse problem [35], [19] [29].
• Under the inverse problem, we would like to estimate

(represent) the input event-data as a linear combination
over a given set of basis vectors.

• While under the direct problem, we would like to estimate
(represent) the input event-data as a set of projections over
a set of basis vectors.

We highlight and show the advantages of both approaches.
Theoretically, we reflect on the optimal solution and the
complexity for asynchronous and parallel updates under both
problem formulations. In both cases, we have to jointly estimate
the representation and learn the set of basis vectors during
training time. However, under the direct problem formulation,
the complexity for estimating the representation is low. While
under the inverse problem formulation, the complexity can be
high, especially when the input event-based data dimension is
high, or the number of basis vectors is high. We evaluate both
methods on different data sets for the task of object recognition.
Our validation shows improvements in the recognition accuracy

while using event-data at low spatial resolution compared to
the state-of-the-art methods.

A. Contributions

In the following, we give our main contributions.
• We analyze the recognition performance of a two part

recognition pipeline: (i) unsupervised feature learning
and (ii) supervised classifier over the encoded features.
We show that with this simple single layer architecture
we can achieve state-of-the-art result which outperforms
handcrafted methods.

• In the unsupervised feature learning, we address the direct
and the inverse problem formulation, i.e., data adaptive
basis vectors learning with respect to which we encode
the event-based data. We investigate the solutions of the
both problems, comment on the local optimal guarantees
as well as highlight the complexity under asynchronous
and parallel solution update.

• We validate both approaches trough a numerical evaluation
on different data sets for the task of object recognition.
In addition, we also provide an analysis for different
trade-offs and highlight the advantages of each approach.
We demonstrate that the direct problem formulation has
identical recognition performance to the inverse problem
formulation, but under the direct problem formulation, the
learning complexity is lower. In addition to having local
convergence guarantees, the direct problem formulation
also has lower complexity for asynchronous and parallel
update. Our numerical results, compared to the state-of-the-
art methods from the same category show improvements
of up to 9% in the recognition accuracy.

II. RELATED WORK

Unsupervised feature learning is a well studied topic, e.g.,
[28], [13], [39], [24], [38], [43] in the area of image processing,
computer vision and machine learning for object recognition,
detection and matching. On the other hand, only recently, the
event-based vision has been used to address these problems.

Analogously to the approaches used for a standard camera
image, feature extraction approaches from event-based camera
can be grouped into two broad categories handcrafted and
learning-based. Spatio-temporal feature descriptors of the event
stream were used for high-level applications like gesture
recognition [22], object recognition [27], [4] or face detection
[7]. Low-level applications include optical flow prediction
[37], [34] and image reconstruction [26]. As a data-driven
model, asynchronous, spiking neural networks (SNNs) [21]
have been applied to several tasks, e.g., object recognition
[21], [15], [20], gesture classification [6], and optical flow
prediction [37]. However, computationally efficient equivalent
to back-propagation algorithms still limits the usability of
SNNs in complex real-world scenarios. Several works have
recently proposed using standard learning architectures as an
alternative to SNNs [5], [11], [4], [3]. Commonly, these works
use a handcrafted event stream representation. Deep multi-layer
architectures have shown to be successful at many tasks, but



asynchronous and parallel learning and the interpretation and
understanding of the learning dynamics remain challenging.
While not much attention was given to single-layer architectures
that exploit the appropriate problem formulation, which would
be advantageous for efficient, asynchronous, and parallel
learning from event-based data.

III. PAPER ORGANIZATION

The rest of the paper is organized as follows. In Section IV,
we introduce the working principle of the event-based camera.
In Section V, we first present an overview of our approach, then
we present how we form the input for the unsupervised learning
algorithm. Afterward, we give the problem formulation for our
unsupervised learning approach and describe our classifier. We
devote Section VI to numerical evaluation, while with Section
VII, we conclude the paper.

IV. EVENT BASED CAMERA WORKING PRINCIPLE

In this section, we present the working principle of event
cameras. The event-based cameras (like DVS [1]) at indepen-
dent pixels locations measure “events” according to brightness
change. Let L([ xy ], t) = log I([ xy ], t) be the logarithmic
brightness at pixel location [ xy ] on the image plane. The event-
based camera generates an event et = {[ xy ], tk, pk} when the
change in logarithmic brightness at pixel location [ xy ] reaches
a threshold C, i.e.,

∆L = L([ xy ], tk)− L([ xy ], t−∆t) = pt(x, y)C, (1)

where t is the time "stamp" of the event, ∆t is the time
since the previous event at the same pixel location [ xy ] and
pt(x, y) ∈ {+1,−1} is the event polarity (i.e., sign of the
brightness change). It is important to highlight that an event
camera does not produce images at a constant rate, but rather
a stream of asynchronous, sparse events in space and time.
That is, depending on the visual input, the event-based camera,
outputs data proportionally to the amount of brightness changes
in the scene.

V. UNSUPERVISED REPRESENTATION LEARNING FOR
EVENT BASED DATA

This section describes our approach, which focuses on
learning features from local volumes of events. We adopt
a multi-stage approach, which is similar to those employed in
computer vision, as well as other feature learning works [9].

A. Approach Overview

Our approach consists of two parts (i) feature representation
learning and (ii) classification. In Figure 2, we show the
schematic diagram, which illustrates the main components in
the proposed recognition pipeline. The unsupervised learning
part includes the following steps:

1) Extract random local volumes of events from unlabeled
set of events for training and apply a pre-processing to
the local volume of events.

2) Learn a feature-mapping using an unsupervised learning
algorithm.

We address the problem of learning the feature mapping under
unsupervised learning algorithm. We highlight that depending
on the input representation, our single layer unsupervised
feature learning approach has flexibility to accommodate and
capture different features. That is, when the local spatial
dimension equals to the spatial dimension of the event-based
camera stream then our single layer architecture equals to a
fully connected layer. In that case, our unsupervised learning of
basis vectors consists of learning the weights in the equivalent
fully connected layer. On the other hand, when the local spatial
dimension is smaller to the spatial dimension of the event-
based camera stream and the basis vectors are shared for all
local volumes of accumulated events then our single layer
architecture equals to a convolutional layer. Furthermore, if
the length of the local volume of accumulated events equals
to the total number of accumulation intervals then we have
2D convolution. This is indeed the case, since, we actually
preform a convolution operation only over the spatial domain,
i.e., the X and Y axis. Otherwise, when the length of the
local volume of accumulated events is smaller to the total
number of accumulation intervals, then we have additional
temporal dimension over which we can preform the convolution
operation and thus have a 3D convolution. In this paper, we
focus on learning a basis vectors that correspond to learning a
2D convolutional filters.

In the second part, given the learned feature mapping and
a set of labels for the training events, we perform feature
extraction and classification as follows:

1) Extract features from equally spaced local volumes of
events covering the input event set and pool features
together over regions of the input events to reduce the
dimensionality of the feature vector.

2) Train a linear classifier to predict the labels given the
feature vectors.

B. Formation of Local Volumes of Events and Pre-processing

Given an set of events across time as input, we extract and
use local volumes of accumulated events. This representation is
a vector vb ∈ <BxByTl that describes a local volume indexed
by b, which has height Bx, width By and length Tl that equals
to the number of time intervals over which we accumulate
events. We construct vb as follows:

vb =


gtl

(Nb)

gtl+1
(Nb)
.
.
.

gtl+Tl
(Nb)

 , where gt =

t+δt∑
t

 pt(1,1)
pt(1,2)

.

.

.
pt(Nx,Ny)

 , (2)

while t ∈ {0, ..., T} is the time index, δt is the duration of
one accumulation interval, Nb, b ∈ {1, ..., B} is the index for
a spatial block with size Bx ×By, centered at spatial spatial
position (x, y). An illustration for the construction of the local
volume of accumulated events is shown in Figure 1.

Our pre-processing consists of two parts. In the first part,
we normalize each local volume of accumulated events vb by
subtracting the mean and dividing by the standard deviation
of its elements. In fact, this corresponds to normalization in



the change of the event accumulation. After normalizing each
input vector, in the second part, we whiten [9] all vb from the
entire data set of events. This process is commonly used in the
learning methods (e.g., [9]) for standard images, but it is less
frequently employed in pattern recognition from event-based
data.

C. Unsupervised Feature Learning

Our training data, i.e., V = [V1, ...,VM ] consists of set of
vectors Vj = [vj,1, ...,vj,B ], where vj,b ∈ <BxBxTl represents
the local volume of temporally aggregated events over local
spatial region indexed by b for the event data j. We consider
the direct and inverse problem formulations, where we jointly
estimate the representations and learn a set of basis vectors.
In the following, we present the both problem formulations.

1) Inverse Problem Formulation: The inverse problem
formulation has the following from:[

L,D
]

= arg min
L,D

1

2
‖V −DL‖2F +λ0m(L)+λ1Ω(D), (3)

where ‖.‖F denotes Frobenius norm, m(L) =∑M
j=1

∑B
b=1 ‖lj,b‖1 and Ω(D) = λ2‖D‖22 − λ3‖DDT −

I‖22 − λ4 log |detDDT | are constraints on the representations
L = [L1, ...,LM ], Lj = [lj,1, ..., lj,B ], lj,b ∈ <K and the
dictionary (the set of basis vectors) D = [d1, ...,dK ],
dk ∈ <BxBxTl while λ0 and λ1 are Lagrangian parameters.
Given the dictionary D under the inverse problem (3), we
would like to represent the local volume of events vj,b as a
sparse linear combination lj,b, i.e., vj,b = Dlj,b.

2) Direct Problem Formulation: The direct problem formu-
lation has the following from:[

L,A
]

= arg min
L,A

1

2
‖AV − L‖2F +λ0m(L)+λ1Ω(A), (4)

where A =

[
aT
1
.
.

aT
K

]
, ak ∈ <BxBxTl , while the constraints

m(L) and (A) are equivalent with the ones defined for (3).
Given the linear map A, under the direct problem (4), we
would like to represent vj,b as a two step nonlinear transform
ll,b = g(Avl,b) consisting of: (i) linear mapping Avj,b and
(ii) element-wise nonlinearity g(Avl,b), which is induced by
the constraint m(lj,b) = ‖lj,b‖1.

Both, (3) and (4) are non-convex in the variables {L,D}
and {L,A}, respectively. If the variable D in (3) (or A in
(4)) is fixed, (3) (or (4)) is convex, but if L is fixed, the
reduced problem for (3) (or (4)) might not be convex due
to the penalty function Ω. Nonetheless, to solve (3) (or (4))
usually an iterative, alternating algorithm is used that has two
steps: dictionary D (or transform A) update and sparse coding.

Method Local Convergence Guarantee
Under Sparsity Constraints

Proposed (inverse) exists
Proposed (direct) exists

TABLE I
THE LOCAL CONVERGENCE GUARANTEE.

Considering the inverse problem (3), in the dictionary update
step, given L that is estimated at iteration t, we use a K-SVD
[36]. In the sparse coding step, given Dt+1, the sparse codes
lt+1
l,b are estimated using [40].

Considering the direct problem (4), in the transform estimate
step, given L that is estimated at iteration t, we use approximate
closed form solution to estimate the transform matrix At+1

at iteration t+ 1. In the sparse coding step, given At+1, the
sparse codes lt+1

j,b are estimated by a closed form solution.
3) Local Convergence Guarantees: Under sparsity con-

straints for the representations, and conditioning and coher-
ence constraints [23] for the dictionary, a local convergence
guarantee to both (3) and (4) has been shown [35], [29] and
[23]. However, it is important to note that under the direct
problem formulation the complexity of the sparse coding step
has very low computational complexity which is linear in the
dimension of the representation lj,b, i.e., O(BxByTl). While
for the inverse problem the same complexity is higher [31], [32].
In addition, as advantage, the direct problem allows posing a
class of penalties under which a low complexity closed form
solution exists.

Method Complexity
Under Sparsity Constraint

Proposed (inverse) O(sBxByTlK)
Proposed (direct) O(BxByTl)

Method Complexity
Under Broad Class of Constraint

Proposed (inverse) high
Proposed (direct) low

TABLE II
THE COMPLEXITY FOR ESTIMATING THE UNSUPERVISED REPRESENTATION

UNDER SPARSITY CONSTRAINTS AND UNDER BROAD CLASS OF
CONSTRAINTS.

D. Final Feature Composition and Classification

Under either the direct or inverse problem formulation, we
estimate basis vectors, which we consider as the parameters
of a function that maps the input local volume of events to
a new representation. We apply this mapping to our (labeled)
training event-based data for classification.

1) Final Feature Composition: We consider the learned
basis vectors as the parameters of an encoding function f :
RBxByTl → RK , which represents our feature extractor. Many
functions might be used to encode with respect to the learned
basis vectors, here we use the triangle encoding, as presented
by [9]. Under our encoding function f , for any Bx-by-By-by-
Tl local volume of accumulated events vj,b, we compute the
corresponding representation lj,b ∈ RK . Moreover, we define
a (single layer) representation for the set of events by applying
the function f to all of the local volumes of accumulated
events. That is, given the set of events defined over Nx-by-Ny-
by-T volume of event locations, for each of the local volumes
vj,b described by the spatial index b ∈ Nb, we compute the
representation lj,b. More formally, we let lj,b to be the K-
dimensional representation extracted for location index b, from
the input set of events indexed by j.



We reduce the dimensionality of the event-based data
representation by pooling, which is similar as proposed by
[9], but instead of image patches, we operate on local volumes
of accumulated events and construct the final representation

yj =

∑
b1

lj,b1.
.
.∑

b4
lj,b4

 ∈ <4K .

2) Classification: In our classification, we use the pooled
feature vectors yj for each training event-based data and its
corresponding label. We apply (L2) SVM [42] classification,
with regularization parameter that is determined by cross-
validation.

E. Asynchronous and Parallel Update in Feature Learning

We note that the differences between the inverse problem
(3) and the direct problem (4) emerge only if the set of
basis vectors is over-complete or under-complete. Since, under
an orthonormal set of basis vectors the two problems are
equivalent. Considering an over-complete set of basis vectors,
the solution in the sub-problems related to both the inverse
problem (3) and the direct problem (4) have major impact on
the possibility for asynchronous and parallel update for the
proposed unsupervised feature learning approach.

During the sparse coding step for the inverse problem
formulation (3), at any change (even small) of the input
representation, a solution to inverse problem has to be estimated,
which would lead to high computational complexity and
challenges in parallel update of the representation. In contrast,
the same step in the direct problem formulation (4) has a
closed from solution. Moreover, under (4), it is straightforward
to update each element of the representation in parallel and in
an asynchronous fashion, with no additional increase in the
computational complexity.

During the basis set update, under the conditioning and
coherence constraints, for both the inverse (3) and the direct (4)
problem formulation, parallel update is challenging. Additional,
structure enforcing constraint on the basis set might be helpfully
towards parallel and asynchronous update of the basis set,
especially under the direct (4) problem formulation.

VI. NUMERICAL EVALUATION

In this section, we evaluate the potential of our approach
and provide comparative results between our algorithm and
the state-of-the-art methods. We consider the task of object
recognition over three publicly available data sets. In the
following subsection, we describe the setup for the preformed
experiments and finally present and discuss the results.

A. Data Sets, Setup and Analysis

In our evaluation, we used N-MNIST [25], N-Caltech101
[25] and N-Cars [1] event-based data sets. We use our
classification pipeline, which we presented in the earlier section.
We learned the over-complete basis set under the direct and
the inverse problem formulation. As an encoding function, we
use the triangle encoding as proposed in [8], [9], by which we
encode the local volume of events with respect to the learned
set of basis vectors. After the puling stage over all the encoded

representations for the local volumes of events, we use the
final representation to learn a linear SVM classifier.

Considering the N-MNIST data set, we use the final
representations from the training data set in order to learning the
classifier, while we use the final representations from the test
data set for evaluation of the recognition accuracy. Considering
the N-Caltheh101 and N-Cars data sets, we use 80% of the
data set for training and the remaining to test the recognition
performance.

We compare the results of our approach under the direct
and the inverse problem formulation for learning the basis
set with the state-of-the-art methods. Our evaluation includes
comparison to the methods under single layer as well as multi-
layer architectures which use event-based data. In addition, we
analyze the impact on the recognition performance when we
change different parameters in the components of our pipeline.
We present the recognition results under varying (i) number of
basis vectors, (ii) size of the local volume and (iii) number of
accumulation bins.

Method Acc. %
Hfist [14] 06.0
HOTS [2] 21.0

Garbor-SNN [41] 19.2
HATS [4] 64.2

DART [30] 70.3

Method Acc. %
EST [16] 81.7

VID2E [10] 90.1

Method Acc. %
Proposed (inverse) 78.4
Proposed (direct) 77.1

TABLE III
A COMPARISON OF THE AVERAGE PRECISION ACCURACY FOR OUR

APPROACH AND THE STATE-OF-THE-ART SINGLE LAYER AND MULTI-LAYER
METHODS, WHICH USE EVENT DATA AS INPUT.

Data set Acc. % (inverse) Acc. % (direct)
N-MNIST 98.1 96.8

N-Calteh101 78.4 77.1
N-CARS 84.7 81.3

TABLE IV
THE AVERAGE PRECISION ACCURACY OF THE PROPOSED METHOD UNDER

DIRECT AND INVERSE PROBLEM FORMULATION FOR UNSUPERVISED
FEATURE LEARNING OVER THE USED N-MNIST, N-CALTEH101 AND

N-CARS EVENT-BASE DATA SETS.

B. Result Discussion

The results of our numerical evaluation are shown in Tables
III, IV, and V.

In Tables III and IV, we show a comparison between the
average recognition accuracy of our approach under direct
and inverse problem formulation and the state-of-the-art single
layer methods which use as input event-based data and frame
based data. As we can observe, highest accuracy achieves
the proposed unsupervised learning approach under inverse
problem formulation. The unsupervised learning approach
under the direct problem formulation also has high accuracy,
which is a bit lower, but the learning complexity is also lower
compared to the unsupervised learning approach under inverse
problem formulation. Moreover, we can see that the proposed



Fig. 3. Visualization for a subset of the learned basis vectors under the inverse and direct problem formulation for the N-CARS data set.

Method Number of Basis Vectors
1000 1500 1700 2000

Proposed (inverse) 73.2 74.5 78.4 76.0
Proposed (direct) 74.3 77.0 77.1 75.5

Method Size of the Local Volume
4×4×4 4×12×12 4×16×16 4×21× 21

Proposed (inverse) 69.6 78.4 76.4 75.2
Proposed (direct) 64.8 77.1 74.5 75.1

Method Number of Accumulation Intervals
2 4 7 10

Proposed (inverse) 61.7 72.4 78.4 76.3
Proposed (direct) 63.2 69.1 77.1 74.1

TABLE V
THE AVERAGE PRECISION ACCURACY UNDER VARYING: (I) NUMBER OF
BASIS VECTORS, (II) SIZE OF THE LOCAL VOLUME AND (III) NUMBER OF

ACCUMULATION INTERVALS.

unsupervised learning approach outperforms the comparing
state-of-the-art methods from the same category. It is important
to note that under the proposed unsupervised learning approach,
we use as input an event data that has ×4 lower spatial
resolution. That is, we use ∼ 1 order of magnitude less event
data compared to the state-of-the-art methods.

In Table III, we also show a comparison between the
average recognition accuracy of our approach under direct
and inverse problem formulation and the state-of-the-art multi-
layer methods which use as input event-based data. We can
see that compared to the EST [16] method, the accuracy is
lower, but only about 3.3%. On the other had, compared to
the VID2E [10] multi-layer method, we have bigger gap in the
achieved accuracy. However, we have to note that under the
multi-layered methods the authors used (i) pre-trained networks
(using image-net [12] data set), (ii) additionally simulated
(artificially generated) and augmented event-data, while in
our approach, we did not used any additionally simulated or
external data. The recognition accuracy over each of the event-
based data set is shown in Table IV and we can see that the
recognition accuracy is high.

In Table V, we show the recognition results under varying
different parameters in the components of our recognition
pipeline. As we can see the higher number of basis vectors we
have higher recognition accuracy, but up to a certain point. We
explain this by the fact that to small number of overcomplete

basis vectors does not capture well the inherent invariances
over all of the local volumes of events, while to big number
of overcomplete set of basis vectors reduces the discrimination
property. Interestingly, we have similar behavior when we vary
the size of the local volume. However, we explain this by the
fact that under very small local volumes the space of variation
is to small, hence lower distinguishability between the local
blocks, which results in low recognition accuracy. On the other
hand, under very big local volumes the space of variation is
big, which would imply that we have to use a bigger number
of basis vectors1.

Considering the impact of the number of accumulation
intervals, we note that we achieve the highest accuracy when we
have 7 accumulation intervals. We suspect that the reason for
low accuracy at too small or too big numbers of accumulation
intervals is due to the fact that our events are triggered by
motion, which we do not know in advance. This adds additional
variability in the distribution of the events across the spatial
domain that can be interpreted as noise corruption.

VII. CONCLUSION

In this paper, we presented an analysis of the performance
of two general problem formulations, i.e., the direct and the
inverse, for unsupervised feature learning from local event data.
We identified and show the main advantages of each approach
theoretically and by a numerical validation.

Empirically, we demonstrated that the direct problem for-
mulation has similar recognition performance to the inverse
problem formulation, but the learning complexity is lower
under the direct problem formulation. The direct solution to
the problem formulation has lower complexity, advantageous
for an asynchronous and parallel update. In our numerical
evaluation, the comparison with the state-of-the-art methods
from the same category showed improvements of up to 9% in
the recognition accuracy while using fewer event data.

We leave the analysis of different encoding functions, the
joint learning of features and classifiers, and the analysis for a
multi-layered unsupervised feature learning as feature work.

1In Fig. 3, we give visualization of a subset of the learned basis vectors
for the N-Cars event-based data set under the inverse and direct problem
formulation. We note that there is not much of visual difference between
the basis vectors when we have regularization for the conditioning and the
coherence of the basis set.
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