
This paper has been accepted for publication at the Conference on Robot Learning,
Cambridge MA, USA. 2020.

Flightmare: A Flexible Quadrotor Simulator

Yunlong Song, Selim Naji, Elia Kaufmann, Antonio Loquercio, Davide Scaramuzza

Robotics and Perception Group
Depts. Informatics and Neuroinformatics

University of Zurich and ETH Zurich

Abstract:
State-of-the-art quadrotor simulators have a rigid and highly-specialized struc-
ture: either are they really fast, physically accurate, or photo-realistic. In
this work, we propose a novel quadrotor simulator: Flightmare. Flightmare
is composed of two main components: a configurable rendering engine built
on Unity and a flexible physics engine for dynamics simulation. Those two
components are totally decoupled and can run independently of each other.
This makes our simulator extremely fast: rendering achieves speeds of up to
230 Hz, while physics simulation of up to 200,000 Hz on a laptop. In addition,
Flightmare comes with several desirable features: (i) a large multi-modal sensor
suite, including an interface to extract the 3D point-cloud of the scene; (ii)
an API for reinforcement learning which can simulate hundreds of quadrotors
in parallel; and (iii) integration with a virtual-reality headset for interaction
with the simulated environment. We demonstrate the flexibility of Flightmare
by using it for two different robotic tasks: quadrotor control using deep rein-
forcement learning and collision-free path planning in a complex 3D environment.

Website: https://uzh-rpg.github.io/flightmare
Code: https://github.com/uzh-rpg/flightmare

Keywords: Quadrotor Simulator, Photo-realistic Rendering.

1 Introduction

Simulators are invaluable tools for the robotics researcher. They allow developing and testing al-
gorithms in a safe and inexpensive manner, without having to worry about the time-consuming and
expensive process of dealing with real-world hardware. The ideal simulator is: (i) fast, to collect a
large amount of data with limited time and compute; (ii) physically-accurate, to represent the dy-
namics of the real world with high-fidelity; and (iii) photo-realistic, to minimize the discrepancy
between simulated and real-world sensors’ observations. Those objectives are generally conflicting
in nature: for example, the more a simulation is realistic, the slower it is. Therefore, achieving all
those objectives in a single monolithic simulator is challenging.

The landscape of currently available simulators is fragmented: some are extremely fast, e.g. Mu-
joco [1], while others have either really accurate dynamics [2, 3] or highly photo-realistic render-
ing [4]. One of the main limitations of those simulators is their rigid nature. Specifically, they
entrust the simulator developers, and not the end-users, to trade-off accuracy for speed. However,
this paradigm leaves some questions open: What if we want to dynamically change the underlying
physics model? What if we want to actively trade-off photo-realism for speed? In this work, we
answer these questions in the context of quadrotor simulation. To do so, we propose Flightmare, a
new flexible simulator which puts the speed vs. accuracy trade-off in the hands of the end-users.

Flightmare is composed of two main blocks: a rendering engine, based on Unity [5], and a physics
model. These blocks are completely decoupled and can run independently from each other. Besides,
each block is flexible by design. Indeed, the rendering block can be used within a wide range of

4th Conference on Robot Learning (CoRL 2020), Cambridge MA, USA.

https://uzh-rpg.github.io/flightmare
https://github.com/uzh-rpg/flightmare


Simulator Rendering Dynamics Sensor Suite Point Cloud VR Headset RL API Vehicles

Hector [6] OpenGL Gazebo-based IMU, RGB 7 7 7 Single

RotorS [3] OpenGL Gazebo-based IMU, RGB, Depth 7 7 7 Single

FlightGoggles [4] Unity Flexible IMU, RGB 7 3 7 Single

AirSim [7] Unreal Engine PhysX IMU, RGB, Depth, Seg 7 3 7 Multiple

Flightmare Unity Flexible IMU, RGB, Depth, Seg 3 3 3 Multiple

Table 1: A comparison of Flightmare to other open-source quadrotor simulators.

3D realistic environments and generate visual information from low to high photo-realism. With
minimal additional computational costs, it is also possible to simulate sensor noise, e.g. motion-
blur, environment dynamics, e.g. wind, and lens distortions [5]. Similarly, the physics block offers
full control to the user in terms of the desired robot dynamics and associated sensing. Depending on
the application, the users can easily switch between a basic (noise-free) quadrotor model and a more
advanced rigid-body dynamics, including friction and rotor drag, or directly use the real platform
dynamics like [4]. Inertial sensing and motor encoders, which directly depend on the physics model,
can also be noise-free or include different degrees of noise [3, 6].

Apart from photo-realistic rendering and fast quadrotor dynamics simulation, Flightmare comes
with several desirable features with respect to currently available quadrotor simulators. In contrast
to FlightGoggles [4], we provide interfaces to the popular robotics simulator Gazebo along with
different high-performance physics engines. In contrast to AirSim [7], we decouple the rendering
module from the physics engine, which offers fast and accurate physics simulation when rendering
is not required. Additionally, Flightmare (i) can simulate up to several hundreds of agents in parallel,
which is not only useful for multi-drone applications but also enables extremely fast data collection
and training, which is crucial, e.g., for developing deep reinforcement learning (RL) applications, (ii)
provides a standard wrapper (OpenAI Gym) [8] to several RL tasks, together with popular OpenAI
baselines [9] for state-of-the-art RL algorithms, and (iii) offers a rich and configurable sensor suite,
together with an API to extract the full 3D information of the environment, in the form of a point-
cloud. Table 1 summarizes the main differences between ours and other quadrotor simulators.

We quantitatively evaluate the speed of the rendering and dynamics blocks of Flightmare under a
wide range of settings. This study shows that we can achieve speeds of up to 230 Hz for the rendering
block and up to 200,000 Hz for the dynamics block with a commodity multi-core laptop CPU. In
addition, we demonstrate the generality of our simulator by using it on two challenging robotics
tasks: learning a sensorimotor control policy for a quadrotor, possibly subject to sensor failures; and
path-planning in a complex 3D environment. Those two tasks put completely different requirements
on the simulation stack, which Flightmare can provide given its flexible interface. However, our
simulator is not limited to these problems and can be applied to a wide range of tasks.

2 Related Work

We review several existing open-source simulators that have been widely used by robotics and ma-
chine learning researchers. We highlight important features and limitations of each simulator. We
drew inspiration from the successes of previous work to design a flexible quadrotor simulator that
combines their desirable features while addressing their limitations.

RotorS and Hector: Both RotorS [3] and Hector [6] are popular Micro Aerial Vehicle (MAV) sim-
ulators built on Gazebo [10], which is a general robotic simulation platform and generally used with
the popular Robot Operating System (ROS). Hector is a collection of open-source modules and is
primarily used for autonomous mapping and navigation with rescue robots. RotorS provides several
multi-rotor helicopter models such as the AscTec Hummingbird, Pelican, and Firefly. These gazebo-
based simulators have the capability of accessing multiple high-performance physics engines and
simulating various sensors, ranging from laser range finders to RGB cameras. In particular, RotorS
has been extensively used in robotics to develop algorithms on MAVs, such as drone racing [11],
exploration [12], path-planning [13], or mapping [14]. Nevertheless, Gazebo has limited rendering

2



capabilities and is not designed for efficient parallel dynamics simulation, which makes it difficult
to develop learning-based systems.

AirSim and CARLA: Both AirSim 1 [7] and CARLA [15] are open-source photo-realistic simula-
tors for autonomous vehicles built on Unreal Engine. CARLA is mainly made for autonomous driv-
ing research and only provides the dynamics of ground vehicles. Conversely, AirSim offers an inter-
face to configure multiple vehicle models for quadrotors and supports hardware-in-the-loop (HITL)
as well as software-in-the-loop (SITL) with flight controllers such as PX4. The vehicle is defined as
a rigid body whose dynamics model is simulated using NVIDIA’s physics engine PhysX, a popular
physics engine used by the large majority of today’s video games. However, this physics engine
is not specialized for quadrotors (or robots), and it is tightly coupled with the rendering engine to
allow simulating environment dynamics. Because of this rigid connection between rendering and
physics simulation, AirSim can achieve only limited simulation speeds. This limitation makes it
difficult to apply the simulator to challenging model-free reinforcement learning tasks, e.g. training
an end-to-end control policy for quadrotor stabilization under harsh initialized poses [16] or flying
through a fast moving gate [17].

FlightGoggles: FlightGoggles [4] is a photo-realistic sensor simulator for perception-driven robotic
vehicles. FlightGoggles consists of two separate components: a photo-realistic rendering engine
built on Unity and a quadrotor dynamics simulation implemented in C++. In addition, it also pro-
vides an interface with real-world vehicles and actors in a motion capture system. FlightGoggles is
very useful for rendering camera images given trajectories and inertial measurements from flying ve-
hicles in real-world, in which the collected dataset [18] is used for testing vision-based algorithms.
Flightmare shares the same motivation with FlightGoggles of decoupling the dynamics modeling
from the photo-realistic rendering engine. However, our simulator offers a larger suite of sensors
observations, an API to extract the environment point-cloud, and a more structured physics inter-
face, which allows simulating multiple agents in parallel. These characteristics open up several new
opportunities for both robotics and machine learning research (see Section 4).

Apart from the aforementioned simulators, there are many more existing simulators that have been
widely adopted by other research communities. For example, MuJoCo [1] has been widely used
by the reinforcement learning community for benchmark comparisons. Similarly, RaiSim [2] is a
physics engine for robotics and AI research written in C++, that supports massive parallel dynamics
simulation. However, both simulators do not support complex 3D environments and photo-realistic
image rendering. Sim4CV [19] is a photo-realistic simulator but made solely for computer vision
applications.

3 Methodology

3.1 System Overview

Flightmare is a modular and flexible quadrotor simulator that is mainly composed of two separate
components: a photo-realistic rendering engine built with the Unity Editor and a quadrotor dy-
namics simulation. We decouple the quadrotor’s dynamic modeling from the rendering engine in
order to achieve fast and accurate dynamics simulation by making use of parallel programming [20].
Flightmare provides a flexible interface for the user to simulate different sensors in various complex
close-to-reality 3D environments. The interface between the rendering engine and the quadrotor
dynamics is implemented using a high-performance asynchronous messaging library ZeroMQ 2. In
addition, we use the python wrapper [21] to implement OpenAI-Gym style interface for reinforce-
ment learning tasks. A system overview of Flightmare is shown in Figure 1.

3.2 Rendering Engine

3D Environments. The rendering engine of Flightmare was built with Unity, which is a popular
cross-platform game engine and a general platform for artificial intelligence [5]. Unity enables high-
fidelity graphical rendering, including realistic pre-baked or real-time lighting, flexible combinations
of different meshes, materials, shaders, and textures for 3D objects, skyboxes for generating realistic

1AirSim also has an experimental Unity release.
2https://zeromq.org

3



Figure 1: System overview of Flightmare.

ambient lighting in the scene, and camera post-processing. Flightmare offers various high-quality
3D environments: from a simple warehouse to a complex nature forest, where the environments are
composed of high-resolution 3D models of both static and dynamic objects. A new environment or
asset can easily be created or directly purchased from the Unity Asset Store3. Hence, it is straight-
forward for the user to extend or change the environment with only very limited knowledge of the
Unity Editor.

Sensors. The rendering engine provides a flexible configuration of the sensor suite. Cur-
rently, Flightmare can simulate RBG cameras with ground-truth depth and semantic segmentation,
rangefinders, and collision detection between agents and their surroundings. In particular, Flight-
mare allows the user to change the camera intrinsics such as field of view, focal length, and lens dis-
tortion. In addition, it can simulate physical effects on the camera including motion blur, lens dirt,
and bloom. An arbitrary number of sensors and their extrinsic parameters with respect to the vehi-
cle’s body frame can be defined offline or online. In addition, we provide a graphical user interface
(GUI) as well as a C++ application programming interface (API) for users to extract ground-truth
point clouds of the environment, and then, export it as a binary polygon file format (PLY). The PLY
file stores the ground-truth three-dimensional information about the environment by checking the
occupancy of a specific point. The point cloud file can be read via the Open3D [22] library and used
for path planning algorithms (see Section 4).

Figure 2: Screenshots of the sensor information provided by Flightmare.

3https://assetstore.unity.com/

4



Scripts. Unity offers a rich and flexible scripting system via C#, making it possible for the user to
define complex simulation tasks, such as creating graphical effects and controlling the physical be-
havior of objects. We use a list of C# scripts for different tasks, including scene management, object
control, image synthesis, sensor instantiation, and simulation. All scripts are developed independent
of the simulated 3D environments, and hence, are easy to add to other existing Unity projects.

3.3 Dynamic Modeling

Flightmare provides a flexible interface to three quadrotor dynamics: a gazebo-based quadrotor
dynamics [3], real-world dynamics, and a parallelized implementation of classical quadrotor dy-
namics [23]. Each dynamics serves useful purposes for different applications. For example, we can
simulate hundreds of racing drones in parallel and collect several millions of state transitions under a
minute. Such a parallel sampling scheme is extremely useful for large-scale reinforcement learning
applications. The gazebo-based dynamics is slower, but more realistic thanks to high-fidelity physics
engines, e.g. Bullet. Finally, Flightmare offers the interface to combine real-world dynamics with
photo-realistic rendering, similarly to what is already shown by previous work [4].

The quadrotor is modeled as a rigid body which is actuated by four motors. We use the quadrotor
dynamics that have been used for designing control algorithms in real quadrotor experiments [24,
23, 25]:

ṗWB = vWB v̇WB = qWB � c− g −RDRTv

q̇WB =
1

2
Λ(ωB) · qWB ω̇WB = J−1(η − ωWB × JωWB)

where pWB is the position, vWB is the linear velocity of the quadrotor in the world frame W ,
and D = diag(dx, dy, dz) is a constant diagonal matrix which defines the rotor-drag coefficients,
which is a linear effect in the quadrotor’s velocity. We use a unit quaternion qWB to represent the
orientation of the quadrotor and use ωWB to denote the body rates in the body frame B. Here,
g = [0, 0,−gz]T with gz = 9.81m s−2 is the gravity vector, and Λ(ωB) is a skew-symmetric
matrix. Moreover, c = [0, 0, c] is the mass-normalized thrust vector. The conversion of single rotor
thrusts [f1, f2, f3, f4] to the mass-normalized thrust c and the body torques η is formulated as

η =

 l√
2
(f1 − f2 − f3 + f4)

l√
2
(−f1 − f2 + f3 + f4)

κf1 − κf2 + κf3 − κf4

 (1)

c = (f1 + f2 + f3 + f4)/m (2)

where m is the quadrotor’s mass and l is the arm length. We model the dynamics of a single rotor
thrusts as first-order systems ḟ = (fdes − f)/α where α is the time-delay constant. We imple-
mented both Euler and 4th-order Runge-Kutta methods for integrating the dynamic equations. In
addition, we simulate the inertial measurement unit (IMU) which provides acceleration and angu-
lar rate measurements of the vehicle. The quadrotor can be controlled in two different modes: the
body-rate mode and the rotor-thrusts mode. In the body-rate control, we implemented a low-level
controller [26] for tracking the desired body rates, in which the low-level controller generates desired
rotor thrusts for each motor.

4 Experiments

We design our experiments to answer the following questions. Why do we need to decouple the
dynamics simulation from the rendering engine? What are the simulation speeds of the quadrotor
dynamics and the rendering engine? How can we use the simulator for robot learning? What other
applications can we use the simulator for?

4.1 Simulation Speed

We evaluate the simulation speed of Flightmare using a laptop with a 12-core Intel(R) Core(TM)
i7-8850H CPU at up to 2.60GHz. The evaluation result is shown in Figure 3. We first evaluate
the speed of quadrotor dynamics by simulating multiple quadrotors in parallel using multiple CPU

5



Figure 3: Simulation performance when using Python API to interact with the simulation. Left:
Quadrotor dynamics simulation speed with different number of simulated quadrotor in parallel and
different number of threads. Right: A comparison of RGB image rendering speed in different
environments with different image sizes.

threads. Flightmare is extremely fast—when simulating 150 quadrotors in parallel with randomly
sampled actions, it achieves over 200,000 steps per second on the CPU. It allows users to collect
several millions of samples under a minute. For example, we achieved an average sampling rate
of around 2 million samples per minute when using a fully-connected multilayer perceptron (MLP)
with two hidden layers of 128 units in the sampling loop. Since we use a laptop that has a maximum
of 24 threads in total, increasing the number of threads above a certain threshold, e.g., 15 threads, for
parallelization results in a performance drop. Besides, using multiple threads for a single quadrotor
simulation will add additional computational and memory costs, and hence, can result in lower
sampling rates. We test the RGB image rendering speed of simulated cameras using the Unity
application, in which the simulated 3D scenes range from a lightweight Garage environment to a
complex Nature Forest environment. Flightmare can offer greater than real-time rendering speed
by taking advantages of the parallelization scheme and a flexible API for configuring an arbitrary
number of simulated cameras. For example, we test the rendering speed (frames per second) with 5
simulated quadrotors in parallel, each quadrotor is attached with an RGB camera (see Figure 3). We
achieve frame rates of up to 230 Hz for the smaller image size in the Garage environment.

4.2 Learning a Sensorimotor Policy for Quadrotor Control

Flightmare provides several example tasks as well as OpenAI gym-style [27] wrappers for reinforce-
ment learning. Those gym wrappers give researchers a user-friendly interface for the interaction
between Flightmare and existing RL baselines designed around the gym interface. These tasks are
designed to be both useful for benchmarking RL algorithms as well as templates for solving more
complex problems. We list the RL tasks as well as their input states and output control actions in
Table 2. It includes the following tasks: 1) stabilizing a quadrotor from randomly initialized poses
(similar to [16]); 2) stabilizing a quadrotor from randomly initialized poses under a single motor
failure; 3) controlling a quadrotor to fly through static gates as fast as possible. These tasks feature
interesting research problems in both robotics and reinforcement learning, such as quadrotor con-
trol using neural networks and learning a time-optimal controller in drone racing. We train neural
network controllers for each task using the Proximal Policy Optimization (PPO) algorithm [28] and
the OpenAI stable-baselines implementation [9]. During training, we simulate 100 quadrotors in
parallel for trajectory sampling and collect in total 25 million time steps for each task. The learn-
ing curves for these tasks are reported in Figure 5. Figure 4 shows screenshots of controlling 100
quadrotors in parallel using a single pre-trained neural network controller.

Task Input Observations Output Actions
1) Quadrotor control [p,θ,v], dim=10 [c, ωx, ωy, ωz], dim=4
2) Quadrotor control under motor failure [p,θ,v,ω], dim=12 [f1, f2, f3], dim=3
3) Flying through a gate [p,θ,v,ω,pgate,θgate], dim=18 [f1, f2, f3, f4], dim=4

Table 2: Example tasks for reinforcement learning.

6



Figure 4: Control of 100 quadrotors in parallel using the learned sensorimotor policy.

Figure 5: Learning curve of 3 different tasks using PPO. The shaded region indicates the standard
deviation over 5 different random seeds.

4.3 Point Cloud and Path Planning

Existing simulators don’t provide an efficient API to access 3D information of the environment.
However, such information is needed by a large class of algorithms, e.g. path-planning. To foster
research in this direction, Flightmare provides an interface to export the 3D information of the full
environment (or a region of it) as point cloud with any desired resolution (configurable via the UI,
Figure 6). The point-cloud is saved in the binary polygon file format (PLY), given its compatibility
with the open-source library Open3D [22]. We show an example of a generated point-cloud in
Figure 6, where we illustrate a section of the complex Nature Forest environment. This point-cloud
is 100m× 100m× 30m with a resolution of 0.1m and contains detailed 3D structure information
of the forest, such as clusters of small tree branches and leaves. As an example application, we
intend to compute the shortest collision-free path between two points: from point A to point B. We
run the Open Motion Planning Library (OMPL) [29] on the point-cloud extracted from the forest
with a default solver for path-planning. In spite of the complexity of the environment, the solver
finds a solution within 1.0 second.

Figure 6: Left: User interface for point cloud extraction. Middle: A visualization of the extracted
point cloud in the Forest environment, all collision-free path (green line) found by OMPL, and
solved shortest path (red line) between A and B. Right: A bird view of the shortest path in the forest
environment.

4.4 Virtual Reality and Safe Human-Robot Interaction

As autonomous flying robots and the consumer drone market flourish, safe collocated human-drone
interactions are becoming increasingly important. Compared to ground robotics, the high-speed

7



motion of drones poses different challenges in the recent research area of human-robot interaction
(HRI) [30]. To open Flightmare for this new research community, we integrate our simulator with
the popular Oculus virtual reality offset (Figure 7). This opportunity offers a favorable alternative
to real-world experiments for HRI. Indeed, it allows interaction with the drone under a large set of
configurations, included some extreme, potentially dangerous, cases. Other applications that could
potentially benefit from the virtual reality feature of Flightmare are human-aware robot navigation,
safe drone landing in cities, and safe pilot training.

Figure 7: The user can directly interact with the simulator via a virtual-reality headset.

4.5 Other Applications

Flightmare is not limited to the aforementioned applications, and it can be used to several other
applications. Given its ability to simulate hundreds of quadrotors in parallel, our simulator can be
used to study the implications of large-scale multi-robot systems. In addition, given its flexible
structure and the availability of hundreds of simulated environments through the Unity Store, we
believe that Flightmare can be extremely useful for testing odometry and simultaneous localization
and mapping (SLAM) systems. In the context of robot learning, Flightmare can also be used to learn
deep sensorimotor policies via imitation learning [25].

5 Conclusion and Discussion

Being optimized for specific tasks or features, e.g. photo-realistic rendering, currently available
quadrotor simulators have been developed with a rigid structure. However, this design choice con-
strains the set of applications these simulators can be used for. Specifically, it cuts out the possibility
of letting the user, or an automated algorithm, fine-tune the simulator to the task at hand. Our work
moves away from this rigid paradigm and proposes a flexible modular structure that empowers the
users with full control of the simulation characteristics.

According to this idea, we design a novel simulator for quadrotors: Flightmare. In Flightmare,
physics modeling and visual sensors rendering are managed by two independent blocks. Physics
simulation can be adapted to follow the robot dynamics with any degree of accuracy, from the
simplest point-mass to real-world quadrotor dynamics. Similarly, rendering can be configured to
accommodate the different needs of the users and ranges from a very fast, but simplistic, version to
a more photo-realistic, but slower, configuration. In addition, Flightmare possesses several favorable
features with respect to previous work: a large sensor suite fitting to the majority of robotics and
machine learning applications, an API to efficiently simulate multiple quadrotors in parallel and
train controllers with reinforcement learning, and the possibility to interact with the simulator via a
virtual reality headset.

Our work opens up several opportunities for future work. On the systemic side, it would be inter-
esting to apply the proposed flexible design to other robots, e.g. manipulators or ground vehicles.
Our experimental finding, currently limited to the context of quadrotors, will most likely generalize
to these other platforms. On the algorithmic side, it would be interesting to develop new methods
to optimize the simulation to the task in an end-to-end fashion. Eventually, not only does Flight-
mare foster new research opportunities for autonomous navigation, but also for the human-robot
interaction community.

8



Acknowledgments

This work was supported by the National Centre of Competence in Research (NCCR) Robotics
through the Swiss National Science Foundation, the SNSF-ERC Starting Grant, and the Euro-
pean Union’s Horizon2020 research and innovation program through the AERIAL-CORE project
(H2020-2019-871479). We would like to thank Philipp Foehn for structuring the C++ project and
helping with the open source implementation of Flightmare.

References
[1] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In

IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), pages 5026–5033, 2012.

[2] J. Hwangbo, J. Lee, and M. Hutter. Per-contact iteration method for solving contact dynamics.
IEEE Robot. Autom. Lett., 3(2):895–902, 2018.

[3] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart. Rotors—a modular gazebo mav simulator
framework. In Robot Operating System (ROS), pages 595–625. Springer, 2016.

[4] W. Guerra, E. Tal, V. Murali, G. Ryou, and S. Karaman. FlightGoggles: Photorealistic sen-
sor simulation for perception-driven robotics using photogrammetry and virtual reality. In
IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), 2019.

[5] A. Juliani, V.-P. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, and D. Lange. Unity: A
general platform for intelligent agents. arXiv e-prints, 2018.

[6] S. Kohlbrecher, J. Meyer, T. Graber, K. Petersen, U. Klingauf, and O. von Stryk. Hector open
source modules for autonomous mapping and navigation with rescue robots. In Robot Soccer
World Cup, pages 624–631. Springer, 2013.

[7] S. Shah, D. Dey, C. Lovett, and A. Kapoor. Airsim: High-fidelity visual and physical simula-
tion for autonomous vehicles. In Field and Service Robot., pages 621–635. Springer, 2018.

[8] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

[9] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse,
O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu. Stable
baselines. https://github.com/hill-a/stable-baselines, 2018.

[10] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-robot
simulator. In IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), volume 3, pages 2149–2154.
IEEE, 2004.

[11] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scaramuzza. Deep
drone racing: From simulation to reality with domain randomization. IEEE Trans. Robot., 36
(1):1–14, 2019.

[12] T. Cieslewski, E. Kaufmann, and D. Scaramuzza. Rapid exploration with multi-rotors: A
frontier selection method for high speed flight. In IEEE/RSJ Int. Conf. Intell. Robot. Syst.
(IROS), 2017.

[13] P. D. Nguyen, C. T. Recchiuto, and A. Sgorbissa. Real-time path generation and obstacle
avoidance for multirotors: a novel approach. Journal of Intelligent & Robotic Systems, 89
(1-2):27–49, 2018.

[14] T. Hinzmann, J. L. Schönberger, M. Pollefeys, and R. Siegwart. Mapping on the fly: real-
time 3d dense reconstruction, digital surface map and incremental orthomosaic generation for
unmanned aerial vehicles. In Field and Service Robot., pages 383–396, 2018.

[15] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban
driving simulator. In Conference on Robot Learning (CORL), pages 1–16, 2017.

9

https://github.com/hill-a/stable-baselines


[16] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter. Control of a quadrotor with reinforcement
learning. IEEE Robot. Autom. Lett., 2(4):2096–2103, 2017.

[17] Y. Song and D. Scaramuzza. Learning high-level policies for model predictive control. In
IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), 2020.

[18] A. Antonini, W. Guerra, V. Murali, T. Sayre-McCord, and S. Karaman. The blackbird uav
dataset. Int. J. Robot. Research, 39(10-11):1346–136, 2020.

[19] M. Müller, V. Casser, J. Lahoud, N. Smith, and B. Ghanem. Sim4cv: A photo-realistic simu-
lator for computer vision applications. Int. J. Comput. Vis., 126(9):902–919, 2018.

[20] L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory programming.
IEEE computational science and engineering, 5(1):46–55, 1998.

[21] W. Jakob, J. Rhinelander, and D. Moldovan. pybind11–seamless operability between c++ 11
and python, 2017.

[22] Q.-Y. Zhou, J. Park, and V. Koltun. Open3D: A modern library for 3D data processing. arXiv
e-prints, 2018.

[23] M. Faessler, A. Franchi, and D. Scaramuzza. Differential flatness of quadrotor dynamics sub-
ject to rotor drag for accurate tracking of high-speed trajectories. IEEE Robot. Autom. Lett., 3
(2):620–626, 2018.

[24] M. Faessler, D. Falanga, and D. Scaramuzza. Thrust mixing, saturation, and body-rate control
for accurate aggressive quadrotor flight. IEEE Robot. Autom. Lett., 2(2):476–482, 2017.

[25] E. Kaufmann, A. Loquercio, R. Ranftl, M. Müller, V. Koltun, and D. Scaramuzza. Deep drone
acrobatics. Robotics: Science and Systems (RSS), 2020.

[26] M. Faessler, F. Fontana, C. Forster, and D. Scaramuzza. Automatic re-initialization and failure
recovery for aggressive flight with a monocular vision-based quadrotor. In IEEE Int. Conf.
Robot. Autom. (ICRA), pages 1722–1729, 2015.

[27] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

[28] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv e-prints, 2017.

[29] I. A. Şucan, M. Moll, and L. E. Kavraki. The Open Motion Planning Library. IEEE Robot.
Autom. Mag., 19(4):72–82, 2012.

[30] A. Wojciechowska, J. Frey, S. Sass, R. Shafir, and J. R. Cauchard. Collocated human-drone
interaction: Methodology and approach strategy. In International Conference on Human-Robot
Interaction (HRI), pages 172–181, 2019.

[31] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig, M. Muglikar, and D. Scara-
muzza. Alphapilot: Autonomous drone racing. Robotics: Science and Systems (RSS), 2020.

10



Supplementary Material

In this section, we describe the experiment details that are used in the reinforcement learning tasks
of learning sensorimotor policies for quadrotor control.

5.1 Quadrotor Control

In this task, we aim to learn a neural network policy for quadrotor stabilization under random ini-
tialization, similar to [16]. At the beginning of each episode, the quadrotor’s state s = [p,θ,v]
is randomly initialized, where p is the position vector, θ represents the orientation using Euler an-
gles, and v is the linear velocity vector. The goal is to stabilize the quadrotor in the goal state
starget = [ptarget,θtarget,vtarget], where θtarget = [0, 0, 0] are Euler angles in the hovering mode and
vtarget = [0, 0, 0] are the target linear velocities. We train a multilayer perceptron (MLP) using the
Proximal Policy Optimization (PPO) [28], where the output of the MLP is the body-rate control
command [c, ωx, ωy, ωz]. The mass normalized thrust c and desired body rates ω = [ωx, ωy, ωz] are
outputted to a low-level controller. We define a reward function for the reinforcement learning

rt = −(c1‖p− ptarget‖+ c2‖θ − θtarget‖+ c3‖v − vtarget‖) (3)

where c1 = 2 ∗ 10−3, c2 = 2 ∗ 10−3, c3 = 2 ∗ 10−4 are the weights for each reward component. We
use a fixed episode length of 5 s and a discretization of dt = 0.02 s for the dynamics simulation.

5.2 Quadrotor Control Under Motor Failure

Controlling a quadrotor under motor failure is a more challenging problem. This example describes
a new application of using reinforcement learning for quadrotor control despite the loss of one
propeller. Similar to the previous example, we initialize the quadrotor with random poses in the air
and intend to stabilize it with an MLP. The input state to the MLP is denoted as s = [p,θ,v,ω]
of dimension dim = 12, where ω denotes the body rates in the vehicle’s body frame. The neural
network outputs the control commands of 3 motor thrusts acting directly on the vehicle. The goal is
to stabilize the quadrotor in the goal state sgoal = [ptarget,θtarget,vtarget,ωtarget], in which θtarget = 0,
vtarget = 0, and ωtarget = 0. We design the reward function as

r1t = −(c1‖p− ptarget‖+ c2‖θx,y‖+ c3‖v‖+ c4‖ωx,y‖)

where c1 = 2 ∗ 10−3, c2 = 2 ∗ 10−3, c3 = 2 ∗ 10−4, c4 = 2 ∗ 10−4 are the weights for each reward
component. Here, we use zero weights for both the yaw angle θz and the body rate in yaw ωz , due
to the loss of a propeller.

5.3 Flying Through a Gate

Flying a quadrotor through a static gate generally requires a high-level trajectory generator as well
as a low-level controller for tracking the trajectory [31]. In this example, We show it is possible to
directly learn an end-to-end controller for this task while forgoing the need for a high-level trajectory
generator. During training, we randomly sample the vehicle’s position in front of a gate and keep
the orientation to the world’s origin. The goal is to fly through the gate in the x-axis while reaching
a target hovering state starget behind the gate. The gate is defined as a circle of radius r = 1.0m.
We define a boolean expression to decide whether or not an episode is terminated. For example, an
episode is terminated when the quadrotor is hitting the gate or passing through an external region
outside of the gate. The observation vector is a concatenation of the quadrotor’s full state s =
[p,θ,v,ω] and the gate’s pose sgate = [pgate,θgate], where pgate is the position vector and θgate is the
orientation vector of the gate in the world frame. The output control command are 4 motor thrusts
[f1, f2, f3, f4] acting directly on the quadrotor. We design the reward function as

rt =

{
rgoal + 0.1, if not hitting the gate or the ground
−0.1, otherwise

(4)

where rgoal has the same definition as Equation (3). We use a positive reward 0.1 to encourage the
policy not to hit the gate and the ground.

11


	Introduction
	Related Work
	Methodology
	System Overview
	Rendering Engine
	Dynamic Modeling

	Experiments
	Simulation Speed
	Learning a Sensorimotor Policy for Quadrotor Control
	Point Cloud and Path Planning
	Virtual Reality and Safe Human-Robot Interaction
	Other Applications

	Conclusion and Discussion
	Quadrotor Control
	Quadrotor Control Under Motor Failure
	Flying Through a Gate


