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Abstract—Traditional cameras face a trade-off between low-light performance and high-speed imaging: longer exposure times to
capture sufficient light results in motion blur, whereas shorter exposures result in Poisson-corrupted noisy images. While burst
photography techniques help mitigate this tradeoff, conventional cameras are fundamentally limited in their sensor noise
characteristics. Event cameras and single-photon avalanche diode (SPAD) sensors have emerged as promising alternatives to
conventional cameras due to their desirable properties. SPADs are capable of single-photon sensitivity with microsecond temporal
resolution, and event cameras can measure brightness changes up to 1 MHz with low bandwidth requirements. We show that these
properties are complementary, and can help achieve low-light, high-speed image reconstruction with low bandwidth requirements. We
introduce a sensor fusion framework to combine SPADs with event cameras to improves the reconstruction of high-speed, low-light
scenes while reducing the high bandwidth cost associated with using every SPAD frame. Our evaluation, on both synthetic and real
sensor data, demonstrates significant enhancements (> 5 dB PSNR) in reconstructing low-light scenes at high temporal resolution
(100 kHz) compared to conventional cameras. Event-SPAD fusion shows great promise for real-world applications, such as robotics or

medical imaging.

Index Terms—Event Cameras, SPADs, Image reconstruction, Low Light imaging

1 INTRODUCTION

High-speed imaging is crucial for diverse applications rang-
ing from safe autonomous navigation to understanding
biological tissue dynamics. Attaining high-speed imaging
with conventional CMOS and CCD sensors suffers from
the challenges of low signal-to-noise ratio (SNR) and high
bandwidth: Low SNR because sampling the scene intensity at
a low exposure leads to high noise and high bandwidth be-
cause high sampling rate results in a substantial amount of
data. Enabling high-speed imaging with adequate SNR and
manageable bandwidth demands developing new imaging
techniques and sensor architectures beyond conventional
cameras.

We focus on two rapidly advancing sensor technolo-
gies aimed at passive high-speed imaging: single photon
avalanche diodes (SPADs) and event sensors. These sen-
sors address the challenges in high-speed imaging from
different perspectives. SPADs directly convert single photon
incidences into counts, eliminating read noise and achieving
better SNR than conventional cameras. SPADs can mea-
sure scene intensity as 1-bit frames at rates up to 100
kHz, but these bit frames require substantial bandwidth.
Conversely, event cameras asynchronously register sparse
intensity changes exceeding a certain threshold. As a result,
event cameras have much lower bandwidth requirements,
but recovering the entire high-fidelity intensity image from
sparse events is challenging. Thus, SPADs and event cam-
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eras lie at opposite ends of a bandwith-performance trade-
off depicted in Fig. 1.

Our key insight is that these complementary capabilities
of SPAD and event cameras can be combined to achieve
high imaging performance and low bandwidth jointly. We
demonstrate that SPADs and events provide superior SNR
under a low-light flux regime than conventional cameras.
We propose the first approach to combine events and SPAD
frames for high-speed low-bandwidth imaging. The main
idea of our proposed method is to first read aggregated
SPAD frames which reduces bandwidth but introduces mo-
tion blur. We then deblur using event frames obtained at
higher temporal resolution with minimal additional band-
width to deblur the aggregated SPAD frames.

Our method for sensor fusion of SPAD and event cam-
eras consists of three components. First, we incorporate the
non-linear camera response function of SPADs for a new
method for deblurring SPAD frames from events that we
term Nonlinear Event Double Integration (NEDI). Second,
our sensor fusion strategy uses a Kalman-filter-based ap-
proach that fuses the asynchronous events and deblurred
SPAD frames to reconstruct HDR images in continuous
time. Third, to further tackle bandwidth constraints, we pro-
pose an adaptive sampling approach for SPAD frames. The
uncertainty estimates from the Kalman filter are leveraged
to adaptively trigger SPAD frames once the uncertainty falls
below a threshold.

We evaluate the complementary properties of SPAD and
event cameras and our sensor fusion technique on both
simulated and real-world scene. For real-world compar-
isons, we created a dataset with calibrated and aligned
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Fig. 1. Towards low-light, high-speed, and low bandwidth imaging by combining event cameras and SPADs. (Left)Event cameras are able
to operate at high speeds with low bandwidth, while SPAD cameras are highly sensitive in low-light conditions. We leverage the complementary
properties of these two cameras for high-quality image reconstruction under challenging conditions. (Right) Visualliy comparing conventional cam-
era, SPAD camera and event camera in HDR scenes. Our method combines events with SPADs resulting in highest quality image reconstructions
of both dark indoor region and bright outdoor scene, compared to all sensors while requiring lower bandwidth than SPAD-only methods.

SPAD, event and conventional cameras. SPAD-based Our
sensor fusion allows us to achieve high-speed (10kH z), low
light (> 10Lux) image reconstruction compared to event
and conventional frame fusion methods which can only
achieve 5000 fps at > 100 Lux [1]. Moreover, our adaptive
approach not only reduces the bandwidth requirements
of SPAD frames by 4x, but also achieves 5 dB gain in
PSNR compared to conventional camera-based approaches.
We achieve better performance than SPAD-only baselines
such as Quanta Burst Photography [2], while reducing the
bandwidth and power by 1000x.

Contributions. We summarize our key contributions as
follows:

o We demonstrate the complementary properties of
SPAD and event cameras for high-speed imaging on
a novel real-world dataset

o We demonstrate that there exist low light flux regimes
where both SPAD and event cameras have better SNR
than conventional cameras

o We propose the first sensor fusion method to combine
SPAD frames and events for high-speed imaging under
low light and bandwidth constraints.

o Our proposed method achieves better imaging perfor-
mance conventional than state-of-the art conventional
frame-event fusion, events-only and SPAD-only tech-
niques while significantly reducing bandwidth over
SPAD-only techniques by 1000x and over the conven-
tional frame-event fusion by 2x.

2 RELATED WORK

HDR imaging with frames Burst denoising is a popular
technique to capture low light scenes by merging and de-
noising multiple frames [3], [4]. These methods often rely on
motion estimation and alignment to merge the frames. Deep
learning-based approaches were also proposed to address
automatic alignment [5], [6]. While these methods focus on
obtaining single clean image from multiple noisy frames,
other works such as [7] focus on video denoising. However,
at extremely low light, conventional cameras suffer from
a low signal to noise (SNR) ratio, which makes it difficult
to capture the scene. This is primarily because the pixel

electronics noise dominates the signal at low light levels
[8]. It is precisely this limitation that has motivated the
development of SPADs for high dynamic range imaging.
Low bandwidth imaging with event cameras Event camera
provide sparse relative intensity changes with a very low
bandwidth. Extracting the full intensity from these sparse
measurements was shown in several works [9], [10], [11],
[12], [13]. Significant advancement was done by learning
to reconstruct images from events [14], [15]. These recon-
structed images inherited the HDR property of event cam-
eras. However, in the absence of contrast or relative scene
motion, these methods do not produce any meaningful in-
formation. Several methods were then proposed to combine
frames with events to obtain the low frequency details from
the frames and the high frequency illumination changes
from events [1], [16], [17], [18], [19]. However, the inherent
limitation of frame-based sensors makes the use of these
fusion sensors unusable in low-light, HDR scenes.

HDR imaging with SPADs While SPADs have been pri-
marily explored with active sensing applications such as
fluorescence microscopy [20], non line of sight imaging, and
time of flight imaging [21], [22], [23], [24], only recently
have SPADs been utilized as passive imaging devices. [8]
proposed a method to capture light intensity by measuring
the time between two photons, enabling the capture of high
dynamic range scenes. To combat motion blur, [2] proposed
a quanta burst photography (QBP) method to capture high
dynamic range scenes with SPADs and correct for motion
blur. Similar to burst photography, this approach focused on
obtaining single clean image from multiple binary frames.
Moreover, these methods require each every binary frames
of the SPAD sensor to be transmitted, which results in high
bandwidth requirements. Instead, we propose to combine
SPADs with events to address the motion blur artifacts. Our
Kalman filter-based approach enables adaptive sampling of
SPADs, thus addressing the bandwidth limitations.

3 SENSOR CHARACTERISTICS

In this section, we compare the key properties of conven-
tional, SPAD and event cameras through simulated and
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Fig. 2. Comparing sensor characteristics. Standard cameras require sufficient accumulation of photons, which is impractical for low-light and
fast-moving scenes. SPADs measure light through avalanching to enable single-photon sensitivity and high temporal precision, which are useful for
low-light and high-speed respectively. Event cameras, by only recording changes in brightness, can operate at high speeds and low bandwidth.

captured measurements. The comparison highlights the in-
herent trade-offs and strengths of each sensor type, empha-
sizing that no single imaging modality excels universally
across all desired properties. The comparison is summa-
rized in Table 2. We approach this comparison from the
perspective of low-light imaging, high-speed imaging and
data bandwidth, as these are the key properties that we
aim to address in our work. With this comparison, we build
intuition towards our solution for combining the strengths
of SPAD and event cameras towards performing high-speed
low bandwidth low-light imaging.

3.1 Overview

Conventional cameras and SPADs operate in a fundamen-
tally different manner compared to event cameras in terms
of how they capture scene information. Conventional cam-
eras and SPADs synchronously sample the scene at fixed
time intervals, with each sample containing the raw inten-
sity values for the entire image frame. This results in a
sequence of intensity frames that represent the scene over
time. Therefore, for both conventional cameras and SPADs,
the image frame quality is only a function of the scene
illumination (¢) and the sensor noise.

In contrast, event cameras employ an asynchronous
sensing mechanism, capturing information only when a
change in intensity occurs within a pixel. These changes
are thresholded and encoded as binary events, each event
containing only the polarity (increase or decrease) of the
intensity change, not the absolute intensity value itself. As a
result, event cameras do not capture full-intensity frames.
Instead, they accumulate a sparse, asynchronous stream
of events that encode the temporal changes in the scene.
Therefore, the quality of the event data is a function of the
scene illumination (¢), the illumination change (A¢) and the
sensor noise. We now compare the captured scene informa-
tion of the three sensors in terms of low-light performance,
high-speed performance and data bandwidth.

3.2 Low Light Performance

We study the dynamic range of the three sensors by com-
paring their image quality in capturing different illumina-
tion scenes. To quantify the dynamic range of each sensor
modality, we measure the signal to noise ration (SNR) of the
captured sensor data at different illuminations. The SNR is

a measure of the quality of the captured image, with higher
SNR indicating better image quality. For traditional cameras
and SPAD, it is possible to quantify the performance in
terms of signal to noise(SNR) ratio for any given illumina-
tion level. The SNR comparison between traditional camera
and SPADs was shown in [8] as expressed as follows:
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where @ is the illumination, ®4,,% is the dark current,
g is the charge of an electron, 7, is the time constant of the
photodetector, 74 is the time constant of the detector, T' is
the integration time and 7 is the time constant of the readout
circuit.

Due to the unique asynchronous and sparse nature of
event camera, quantifying it’s performance under different
illumination and scene motion is challenging. SNR in the
context of event camera depends not only on the illumi-
nation but also on the illumination change and the scene
motion. We therefore simplify the problem as follows: Con-
sider the scenario where the illumination is given by ® and
the illumination change is given by A®. The SNR for event
camera is given by:

(Pe x )

N(¢)

where P.(®,A®) is by the event trigger probability C' is
the contrast threshold and N (¢) the static noise. Therefore,
given event probability, contrast threshold and noise, we can
compare the SNR of event camera with traditional cameras
and SPADs. Estimating these values is challenging and is an
open problem in the field of event camera research ( [25],
[26]). In this paper, we resort to empirical measured values
of event probability and noise. Details about calculating
SNR for event camera are provided in the suppl. mat.

In Fig. 3a, we compare the SNR of all 3 sensors: frame,
SPAD and event camera with increasing illumination. For

SNRevents((I)a A(I)) =10 10g10 3)
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Fig. 3. Effect of illumination on signal quality. (a) SNR comparison between SPAD, event and frame sensors at different flux regimes. SPADs
and Events have a better quality information at low lights compared to conventional cameras. (b) Visualization of sensor output in challenging

illumination.

event cameras, we show the SNR for 2 illumination changes:
30% and 100% given a contrast threshold of 30%. We make
three main observations from this plot:

o SPADs have higher SNR than cameras at both low flux
and high flux regime.

e More illumination change, better the SNR for events.

o Comparing the three sensors, we can see that SPADs
and events have a better SNR at lower illumination
(with SPADs being more sensitive at lower illumina-
tion).

We also show the effect of this using real sensor data in
Fig. 3b. At extremely low illumination (1Luz), the frames
and events are unable to capture the contrast edges of
the star, whereas SPADs can capture these edges. As the
illumination increases to 10 Lux, the events and SPADs both
are able to capture the contrast edges of the star being
rotated, where conventional cameras struggle.

3.3 High-speed performance

Scene dynamics, characterized by the rate of change in the
scene over time, is another crucial factor influencing sensor
performance. For slow scene dynamics, where changes oc-
cur gradually, event cameras perform similarly to periodic
sampling sensors like conventional frames and SPADs, with
the mean square error (MSE) of event cameras depending
primarily on the contrast threshold, while the MSE of frames
and SPADs is determined by the frame rate. As SPADs
generally operate at higher frame rates, they outperform
conventional frames in slow-motion scenarios, albeit at the
cost of higher bandwidth requirements. In contrast, for
fast scene dynamics involving near-instantaneous changes
(< 10msec), event cameras exhibit a distinct advantage.
Their MSE is binary, either zero or one, depending solely on
the contrast threshold, while the error for frames and SPADs
is a function of the frame rate [27]. Consequently, the higher
frame rates of SPADs result in significantly lower error com-
pared to conventional frames in fast-motion scenarios. Event
cameras, however, excel in such conditions, offering the best
trade-off between error and bandwidth requirements. This
is exemplified in Fig. 3b, where a rapidly rotating table fan
causes motion blur and low contrast in conventional frames,

while SPADs, though struggling, can capture some scene
structure behind the fan owing to their high dynamic range.
Event cameras, on the other hand, can effectively capture
the high-contrast edges of the fan’s motion.

3.4 Data bandwidth

The data bandwidth of a sensor is a measure of the amount
of data it generates per unit time. For conventional cameras,
the data bandwidth is determined by the frame rate and the
resolution of the sensor. For SPADs, the data bandwidth is
determined by the frame rate, the resolution of the sensor
and the dynamic range of the sensor. For event cameras, the
data bandwidth depends on relative scene motion and is
measured in terms of event rate. The event rate is a measure
of the number of events generated per unit time. The event
rate is a function of the scene motion, the illumination
and the illumination change. We use the memory as a
proxy for the data bandwidth of the sensor. For the SPAD
camera, the average memory required to store the sensor
data was 3.2 Gb. Traditional frames stored as in raw file
format took up 0.5 Gb of memory. For the same scene, the
average memory required to store the event camera data
was 0.154 Gb.

The summary of the comparison is shown in Table 2. It
shows the complementary nature of SPADs and Event cam-
eras which results in a better trade-off between low light
performance, high speed performance and data bandwidth.

3.5 Outlook

While our evaluation on real data is based on current
hardware, here we discuss how the technological trends will
change over time and demonstrate that the two sensors will
continue to co-exist and exhibit this complementary nature.
These trends are summarized in Table 1. In the case of
SPADs, the inherent limitation for frame rate comes from
the pixel deadtime which is in the order of nanoseconds
and readout time which is in the order of microseconds.
With rapid progress towards reducing bandwidth of single-
photon imaging through better communication protocols
and in-sensor and near-sensor computing [28], [29], readout
time of SPADs is projected to reduce. In the case of event
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Property SPADs Event Camera
Current | Future Current | Future
Latency 10 us 10ns lps (Re- | 10ns (Re-
(Readout (Dead- fractory fractory
rate) time) period period)
and bus
conges-
tion)
Low Light | > 1Lux | <1Lux > 10Lux | < 10Lux
Ilumina- (Quantum (Fill factor,
tion efficiency dark
0.4), fill photon
factor) current)

High Hlu- | < 10°Luz | < 109Luz | < 10*Luz | >
mination (Soft satu- | (Soft satu- | (contrast 10'2 Lux
ration) ration) sensitivity

(> 15%))
TABLE 1

Current and Future Trends in SPADs and Event Cameras In terms
of low-latency, both SPADs and event cameras in future will have
similar latency. In the case of illumination in future SPADs will have
better low light sensitivity, whereas improvements in event cameras will
result in better bright-light sensitivity.

cameras, the bottleneck for latency comes from the pixel
refractory period, which in the end depends on the capacitor
discharge time constant and is in the order of microseconds,
and the event bus congestion [30]. In future, with better
asynchronous readout protocol, the bus congestion-related
latency could be mitigated to a large extend. Therefore in
context of low-latency event cameras, the capacitor used in
the circuit will control the latency, which can be easily re-
duced by having higher refractory current flowing through
the circuit [31] bringing it down to nanoseconds.

In the context of low-light sensitivity, the limitation for
event cameras comes from low contrast sensitivity (> 15%).
This means that smaller illumination changes cannot be eas-
ily detected by event cameras, which is specially important
for high-flux scenarios as seen in the SNR plot 3. Efforts
have been made to improve the temporal contrast sensitivity
of event cameras, leading to experimental sensors with
higher sensitivity of 1% [32], [33], [34]. Another limitation
for low-light sensitivity of event cameras is the fill factor
(i.e., the ratio of a pixel’s light sensitive area to its total area).
The previous versions of event cameras featured front-side
illuminated circuit, they resulted in lower fill factor < 20%,
resulting in poor low contrast sensitivity. Current and future
event camera models incorporated Back-Side Illumination
(BSI) technology which improved the fill factor significantly
(> 70%). In the case of SPADs, the low-light sensitivity is
limited by the quantum efficiency of the sensor which is
currently upto 0.4 [8]. Improvements in this direction can
result in the highest performance of SPADs in all illumina-
tion scenarios.

Specifically for high illumination scenarios, SPADs suffer
from soft-saturation (as seen in the SNR plot 3) resulting in
poor SNR beyond 10° Luz. This is an inherent limitation of
the sensor characteristic which depends on the pixel dead-
time, which leave little room for improvement. In contrast,
for event cameras, the limitation for operation in high flux
regime is the contrast sensitivity. By adopting better capaci-
tor design, this contrast sensitivity can significantly improve
the performance for low illumination changes in high flux
regime to beyond > 10° Luz [31]. It was shown in [31],

5

that refractory period inversely depends on the capacitor
current. Increasing this current, can result in higher con-
trast sensitivity at brighter illuminations resulting in high
response curve for event cameras across all illumination
changes (i.e the light blue curve of event camera will go upto
dark blue curve in 3 for all illumination). An important thing
to note is that for high illumination change, this is already
the case for event cameras.

Looking at these trends, it can be seen that while sensor
improvements will result in better latency for both event
cameras and SPADs, for the case of illumination they will
always provide complementary properties with SPADs pro-
viding better low-light sensitivity and event cameras having
better signal at high illuminations. This motivates our work
to combine the two sensors to address the combined ca-
pabilities of each, which marks landmark in this direction,
opening new directions for future more sophisticated sensor
fusion strategies. We will now describe our approach to
combine the two sensors in the next section.

4 METHODOLOGY

In Section 4.1, we describe our non-linear deblurring
method to deblur SPAD images using events. We describe
our asynchronous integration of SPADs and event cameras
using a Kalman filter 4.2. Finally, in Sec. 4.3 we describe
our approach for adaptively changing the integration time
of SPADs to reduce the bandwidth. An overview of our
approach is shown in Fig. 4.

4.1 Deblurring SPAD images with Event Cameras

Unlike traditional image sensor, the SPAD camera response
function is not linear and therefore the classic Event Double
Integration (EDI) method [16] cannot be used here. The
SPAD response function is given by:

N(t)

quin + TN(t) (4)

Pspap =
where N is the number of photons detected by the SPAD
sensor, ¢ is the quantum efficiency of the SPAD sensor, Tj;y,
is the integration time for each binary frame and 7 is the
dead time of the SPAD sensor. Therefore, a blurry image
can be expressed as the sum of the true latent image N ()
over the period of exposure time 7" :

1 f+T/2
Bspap(t) = T )iz Pspap (t)dt ©)

. S A 6
T Ji—1/2 qThin +TN(t) ©)
7)

The latent image sequence N(t) can be expressed as a
function of intensity changes E(t) (obtained from event
signal) and the previous latent image N(f) as follows:

N(t) = N(f)exp (cE(t)) ®)
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Fig. 4. Overview of our approach. Our approach operates on the motion blurred images of SPADs. Aligned and synchronized events are then used
to deblur the SPAD images. The Kalman update uses the deblurred SPAD images and events and generates state estimate and state uncertainty.
The uncertainty is used to sample the next SPAD image and state estimate is fused in continuous time to generate the final deblurred HDR images.

Substituting N (¢) from Equation. 8:

1T NG e ()
BSPAD(t)_T f=T/2 qum"f'TN(f)eXp(CE(t))dt ©)
_NU) /f*m exp (cE (1))
T Ji—rs2 qThin+TN(f)exp (CE(t>)( )
10

Note the difference between this model and the traditional
camera model is that while traditional model has a linear
relation between the latent image and events, its not the
case for SPADs. Estimating the latent image N(t) from
the SPAD image Bspap(t) is challenging due to the non-
linear relation between the two. Therefore, we propose to
solve this using a optimization framework. We initialize
the latent image using the linearized form estimated using
EDI We then optimize the latent image using the above
equation to minimize the difference between the blurred
SPAD image and the estimated blur image produced with a
known latent image. We call this the nonlinear event-based
double integral (NEDI) model for SPADs. The effect of the
non-linear relation between the latent image and the SPAD
image is shown in Fig. 5. Using our proposed NEDI model,
we can estimate the latent image N (t) with sharper edges
than the EDI model.

4.2 Asynchronous Kalman Filter

We introduce the kalman filter which integrates the un-
certainty models of events and SPAD measurements to
computer the kalman gain. Our AKEF is inspired by the
work of [17]. While the backbone of our AKF remains the
same, we extend this approach to include the uncertainty
models of SPAD sensors. We first introduce the uncertainty
models used for event camera and SPAD camera in Sec-
tion 4.2.1 and Section 4.2.2 respectively. We then describe

EDI [16] NEDI (Ours)

.

- Zoom

Fig. 5. Non-linear event double integration de-blurring (NEDI). Our
non-linear (NEDI) deblurring approach qualitatively produces sharper
reconstructions than EDI [16].

the asynchronous integration of SPAD frames using the AKF
backbone in Section 4.2.

4.2.1 Event Camera Uncertainty Model

The models for noise in event camera are difficult to develop
due to the complex circuit behaviour. In [17], they proposed
a simple heuristics to model the event noise as additive
Gaussian process. The model considers three types of noise:
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(a) process noise (b) isolated pixel noise and (c) refractory
period noise. However, their model did not consider the
effect of illumination and contrast threshold mismatch on
the noise [25]. In this paper, we extend their model to
include the noise dependence on illumination and contrast
threshold mismatch in accordance to circuit noise model.
The noise is modelled as a Gaussian process with variance
that grows linearly with time since the last pixel occurred as
follows:

Q _ Z(Qshot. + Qisol. + Qref. + chresh.)é‘(t o tl) (11)

=0

Temporal noise/Shot noise This noise models the effect
of the photon shot noise which depends on the incident
photon flux ¢. The noise is insignificant at high flux but
dominates at low flux. We model this using a function f(¢)
which decreases with increasing flux and drops to zero. It
is modelled as a Gaussian process with variance that grows
linearly with time since the last pixel occurred as follows:

Q! = f(o)t

Threshold mismatch The typical value of contrast sensi-
tivity is about 0.3. The uncertainty of the contrast sensi-
tivity is modelled as a Gaussian distribution with variance
og = 0.03.

Isolated pixel noise/Hot pixels Hot pixels tend to occur in
isolation and are not correlated with other pixels. This noise
was modelled using a variance as:

— ¢t (12)

Qisol. — O_Z_Qso(ti _ ti—l) (13)
Refractory period noise The refractory period noise is a
result of the refractory period p of the pixels. Within this

period, no event will be triggered due to circuit limitations.

‘e 1i i—1
Qrel — 0 ift, —t, " >p (14)
P pref otherwise

4.2.2 SPAD Camera Uncertainty Model

The noise in scene irradiance comes from uncertainty in raw
camera response, also known as Camera Response Function
(CRF).

I, =CRF ™" (F,) +pp, pp~N(O,Ry), (15

where I, is the scene irradiance, F}, is the raw camera
response, CRF is the camera response function, y,, is the
noise in the scene irradiance and R, is the covariance of the
noise.
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Fig. 6. Modelling the uncertainty of SPAD and standard camera (b)
using the Camera Response Function (a) measured across different
illumination on x-axis.
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SPAD Response Function The SPAD sensor response func-
tion is non-linear and is given by Equation. 4. The noise in
the SPAD sensor can be attributed to three main sources:
(a) dark count noise (b) shot noise and (c) quantization
noise. The dark count noise is the noise due to the thermal
electrons in the SPAD sensor. The shot noise in SPADs is
the variance in the detected number of photon count. This
value monotonically increases with increasing brightness,
reaches a maximum and then decreases at very high flux [8].
The difference between the noise characteristics of a conven-
tional camera and SPAD is shown in Fig. 6. It is clear from
Equation. 4 that in in low light, the camera response function
of SPAD and conventional cameras are similar. However,
in bright illumination conditions, the SPAD sensor has a
soft saturation, whereas the conventional camera has a hard
saturation. This is modelled in the covariance of the noise
assicated to camera response (R) in the SPAD sensor as
shown in Fig. 6. The covariance of noise R(t) associated
to the flux is given by:

R

RO = 5w+

(16)
where ¢(t) is the flux calculated using Equation. 4.

4.2.3 Asynchronous Kalman Filter

In this section, we describe how to combine the uncertainty
models of event camera and SPADs using Kalman filter.
Similar to [17], we use a continuous time stochastic model
of the log intensity.

dN = e(t)dt + dw
N(t)=N@) +p

where dw is a Wiener process (continuous time stochastic
process) and p is the SPAD noise. Solving this equation boils
down to the ordinary differential equation as :

N(t) = e(t) = KON () - N(#)] 17)

where K (t) is the Kalman gain defined below 19. When an
event arrives, the filter state is updated as :

N(t) = N(t—1)+e(t) (18)

We compute per pixel gain K (¢) from state estimate and
uncertainties as:

(19)

where P(t) is the state covariance and R(t) is the SPAD
uncertainty covariance [17]. At every new event, the state
covariance P(t) is updated from the previous timestamp
t—1ias:

1

PO = v rma =y

+Q)  (20)

where () is the event noise covariance 11. The AKF algo-
rithm is summarized in Algo. 4.2.3.
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Algorithm 1 Event-SPAD Fusion Using Asynchronous
Kalman Filter
1: Initialise variables

2: for New i*" event at pixel p, e(t;) do
3: if new SPAD frame arrives then
4: Deblur new SPAD frame based on Equation. 10
to obtain N (t;)
5: end if
6:  Update image covariance R(t;) using Equation. 16
7. Update state N (t;) using Equation. 18
8:  Update covariance P(t;) using Equation. 20
9: if publishing new image then
10: for all pixels ¢ do
11: Update state N (t{)
12: Update covariance P(t])
13: Write image
14: end for
15: end if
16: end for

4.3 Adaptive SPAD sampling

The SPAD sensor is a photon counting sensor that can detect
single photons. However this comes at the cost of high
bandwidth and redundant data. Instead, we propose an
adaptive sampling mode for the SPAD sensor that captures
a frame only when the uncertainty in state estimation is
high. The AKF approach described in Section 4.2 not only
produces a latent image but also provides an estimate of
the uncertainty in the latent image. We use this uncertainty
to decide when to capture a new frame. The uncertainty in
the latent image is given by the covariance matrix P(t). We
define the uncertainty U in the latent image as the trace of
the covariance matrix. We set a threshold for the uncertainty
and capture a new frame only when the uncertainty exceeds
this threshold. This adaptive sampling mode reduces the
amount of redundant data captured by the SPAD sensor and
also reduces the bandwidth required for data transmission.

5 EXPERIMENTS

This section evaluates the performance of our proposed
method on the task of image reconstruction from SPAD
and event camera data. We first introduce the simulation
environment and hardware setup used for the synthetic
and real-world experiments respectively. Following which
we describe the baseline methods used for comparison.
Then we perform experiments on synthetic data to show
the effectiveness of our method in controlled settings to
quantify the accuracy of our approach. We then evaluate
our method on real sensor data to show the practicality of
our approach in real-world settings. Finally, we perform an
ablation study to show the effectiveness of each component
of our method.

5.1 SimSPAD Dataset

We first evaluate our method on synthetic data to show the
effectiveness of our method in controlled settings. We use
the SPAD simulation framework described in [8] and event
camera simulation framework described in [37] to generate

Fig. 7. Experimental setup. The top row shows the sensor setup
consisting of (a) SwissSPAD2 [35], (b) Prophesee event camera [36]
and FLIR BlackFly S RGB camera from left to right.

synthetic data using the same parameters as the real sensor
data. The input to both the simulation frameworks is an
HDR image and camera trajectory, which is used to render
high framerate images to simulate the SPAD and event data.
The simulator also considers the noise characteristics of
the SPAD and event camera sensors to generate the binary
frames and events. While the camera trajectory simulates
the motion of the camera, we also provide illumination
constraints in the forms of photons per sec to the simulator
to simulate low light conditions. The groundtruth intensity
frames are also provided by the simulator, which are used
for evaluation.

5.2 HS-ESPAD Dataset

We evaluate our method on real sensor data to show the
practicality of our approach in real-world settings. To the
best of our knowledge, there is no publicly available dataset
with synchronized SPAD and event camera data. Therefore,
we collect our own dataset using a state-of-the-art SPAD and
event camera. The experimental setup is shown in Fig. 7.
The SPAD camera [35] used has a resolution of 512 x 512
pixels, a maximum framerate of 100 kHz and exposure time
of 10 psec. We use Prophesee Gen4 event camera [36] which
has a resolution of 1280 x 720 pixels. The two cameras
were placed side by side and synchronized using a software
trigger. The alignment of the two cameras was challenging
due to the fragility of the SPAD prototype sensor. For
each sequence, the alignment was performed using feature-
based homography estimation. To achieve this, we first
reconstructed images from events using [14], [38] and then
estimated global homography by matching the points in
the E2VID and SPAD image sequences. A limitation of this
calibration is that it can only align images upto a plane,
which results in misalignment at the edges of the image
in certain sequences. We only evaluate our method on the
aligned regions of the images.

To compare the sensors with traditional camera, we used
a FLIR Blackfly S global shutter camera with a resolution of
1080 x 1440 pixels. The exposure time of the FLIR camera
was set to 10 msec. We collected over 5 sequences of dif-
ferent scenes with varying illumination conditions, camera
motion and scene dynamics.

5.3 Baseline Methods and Evaluation Metrics

To the best of our knowledge, there are no existing meth-
ods that combine SPAD and event camera data for image
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reconstruction. We therefore compare our method with the
following baselines:

o CF.(E): We use the event-only model of complementary
filter proposed in [9] to reconstruct continous time
images from event data.

o E2VID (E): We also use the state-of-the-art deep learn-
ing based event-based image reconstruction model pro-
posed in [14].

o Deblur (F): We use the state-of-the-art deblurring ap-
proach [39] with traditional camera images.

o AKEF (F + E): We use the complementary filter proposed
in [17] to combine the event data with the traditional
camera data.

e Deblur (S) We use a state-of-the-art deep learning [39]
approach which was trained to denoise and deblur
images. The motion blurred SPAD images are deblurred
using this method.

e OBP (S)Quanta burst photography [2] approach uses
binary SPAD frames to align produce a deblurred im-
age.

Note, that next to each method, we also mention the sensor
data used as input, where S denotes SPAD, E denotes event
camera and F denotes traditional camera and the combina-
tion is denoted by the ‘+” sign. To evaluate all the methods,
we use the traditional image reconstruction metrics PSNR
(peak signal to noise ratio), which captures the effect of noise
in the reconstructed image.

In addition to these metrics, we also evaluate the per-
formance of the sensors using modulation transfer function
(MTF) metrics on the real sensor data. MTF is a measure
of the ability of an imaging system to faithfully transfer
spatial frequencies from the object to the image. The setup
consists of a siemens star target (as shown in Fig. 7), which
is imaged by the all the three sensors namely, SPAD, event
camera and traditional camera as the star is rotated along
the center. The siemens star target has a series of concentric
rings with increasing spatial frequency going from the edge
to the center. In an ideal sensor, the MTF should be close
to 1 for all spatial frequencies. However, in practice, the
MTF decreases with increasing spatial frequency due to the
finite size of the pixels and the motion blur. We use the
MTF metrics to evaluate the performance of the sensors in
capturing high frequency details in the presence of motion
blur.

6 RESULTS
6.1 SimSPAD Dataset

We first evaluate our method on synthetic data to show the
effectiveness of our method in controlled settings and the
metrics are reported in Table 2. The naive integration base-
line results in significant motion blur in the reconstructed
image. In contrast, our method is able to reconstruct the
image with sharper edges as can be seen by the keyboard
keys (row 1) and carpet patterns (row 2). Additionally, our
approach overall has lower noise compared to individual
binary frames.

Comparison of SPAD to Traditional Camera In low light
scenarios, the SPAD sensor is able to capture the scene with
higher dynamic range compared to the traditional camera.

(e) Events (f) Groundtruth

Fig. 8. Simulated Results. Comparing traditional camera (a), SPAD
camera (c), and event camera (e) in low-light scenes. Our method (d)
combines events with SPADs resulting high quality images with low
noise compared to frames+event baseline.

Office Piano Yucca
Sensor  Method Bandw. | PSNR (dB)t PSNR (dB)t PSNR (dB) 1
E CF. [9] 10.48 9.45 11.39
E2VID [14] 13.50 12.62 15.43
F Deblur [39] 0.2 5.62 5.25 5.86
F+E AKF [17] 0.2 14.15 139 13.67
S Deblur [39] 0.4 23.17 19.99 21.86
S QBP SPAD [2] 100 11.23 17.38 18.48
S+E Ours 0.4 21.50 19.44 21.28
S+E Ours (Adapt.) 0.1 17.45 18.04 17.8
TABLE 2

PSNR (dB) and Bandwidth (kHz/pixel) across different sensors on the
SimSPAD dataset. The best performance is highlighted in bold.

This can be seen in Fig. 8 (a) and (b), where the output of
the SPAD sensor is less noisy compared to frame camera
for the same exposure time of 10usec. Given the long
exposure time, both these sensors suffer from motion blur,
which further degrade the quality of the captured scene. In
contrast, the event camera does not suffer from motion blur,



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

as shown in Fig. 8 (c). The combination of event camera
with frames in low light scenarios results in high quality
images, as shown in Fig. 8 (d), however is still noisy due to
inherent noise of the frame sensor. Combining event camera
with SPADs on the other hand results in high quality images
with low noise, as shown in Fig. 8 (e) when comparing to
the groundtruth image in Fig. 8 (f). We also show quan-
titative results in Table 2 to compare the performance of
combining event camera with SPADs to combining events
with traditional cameras in low light. We can achieve upto
7dB improvement in PSNR indicating that SPADs provide
better image quality compared to traditional cameras in low
light scenarios.

|l AKF [17) (F+E)  Ours (S+F) L

20 |- 8
)
Z
a4
Z 10 |- a
9]
s
0

100 Lux 1000 Lux 10000 Lux

Fig. 9. Effect of illumination on sensor fusion. The AKF technique
[17] is more robust when relying on SPAD outputs, rather than standard
cameras.

Effect of Illumination We compare the effect of illumination
on the sensor fusion capabilities of SPADs, frames and
events. We evaluate the performance of our method and
frames and event fusion [17] on SImSPAD while varying
illumination conditions starting from 100 Ix to 10 000 Ix. The
quantitative results are shown in Fig. 9. At low illumination,
the SPAD sensor is able to capture the scene with higher
dynamic range compared to the traditional camera. There-
fore, SPAD-based approaches tend to outperform traditional
camera-based approaches in low light scenarios. We show
that the combination of SPADs and event cameras results in
highest image reconstruction accuracy compared to frame-
based counterpart at all illumination levels. However, as the
illumination increases the performance between the SPADs
and frame counterpart decreases as both sensors tend to
saturate

6.2 HS-ESPAD Dataset

We now evaluate our method on real sensor data collected
using the setup described in Section 5.2. We first provide
quantitative and qualitative evaluation on the effect of
motion blur on SPADs using MTF analysis in Section 6.2.
Following this we show results on natural scenes captured
by the sensors in Section 6.2

MTF Analysis The modulation transfer function (MTF)
evaluates the ability of an imaging system to faithfully
transfer spatial frequencies from the object to the image.
It is a measure of the sharpness of the image and is used
to evaluate the performance of the sensors in the presence
of scene motion. With a static scene, the MTF of a SPAD
camera remains constant around 0.55 across different spatial

10

frequencies as shown in Fig. 11. However, introducing scene
motion induces motion blur decreasing the MTF of the
SPAD down to 0.37. Deblurring the SPAD images using [39]
improves the MTF slightly, however the best performance
is achieved by our method with MTF of 0.51 getting very
close to the MTF of the static scene. Qualitative results of
the MTF analysis are shown in Fig. 10.

@NI(©S)

Fig. 10. Effect of scene motion on image quality Using MTF analysis
on Siemens star, we observe our method (c) preserves the contrast
edges and texture details better than SPAD-only methods Nl(a) and De-
blur [39] (b). For comparison, (d) shows the groundtruth static Siemens
star capture by SPAD.

0.6 Static (S) I NI(S) I DeBlur (S) [39]  Ours (S+E) L

0.4 | .
i n u :
0
0.1 0.2 0.3 0.4 0.5

Fig. 11. MTF analysis of SPADs and event cameras across different
spatial frequencies in lines per mm. Higher is better.

MTE

SPAD in the wild The qualitative results of our method
on real sensor data are shown in Fig. 12. The naive in-
tegration baseline results in significant motion blur in the
reconstructed image. In contrast, our method is able to
reconstruct the image with sharper edges as can be seen by
edges of the Siemens star (row 1) and the fan blades (row 3).
Moreover, our approach overall has lower noise compared
to individual binary frames seen in the tunnel sequence.

Comparison to Quanta Burst Photography (QBP) We
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(a) Events (b) Deblur(S) [39]

(b) E2VID(E) [14]
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(c) Ours (S+E)

(d) QBP

Fig. 12. Qualitative results comparing the best SPAD-only baseline [39] (b), event-only baseline E2V 1D [14] (c) and our method (c) on HS-ESPAD
. The aligned and synchronized events are overlaid on SPADs images and visualized in (a).

Method Sensor Bandwidth
1/5 1/10 1/20 1/30
QBP SPAD 19.402 19900 17.341 15.296
Ours SPAD + Events 24.806 22.619 18.916 16.991
TABLE 3

PSNR values for QBP and AKF methods across various bandwidths.

compare our method to the QBP [2] on the fan sequence
of HS-ESPAD dataset. We evaluate the effect of reducing the
bandwidth of the SPAD sensor on both methods. Reducing
the bandwidth, implies fewer SPAD images used for both
QBP and our method resulting noisier reconstruction. How-
ever, since QBP requires all the binary frames to align the
images, the increased noise has a significant impact on the
performance. In our case, since we rely on events for low
bandwidth deblurring, the noise has a lesser impact on the
performance. The quantitative results are shown in Table 3.
Detailed analysis is provided in suppl. mat.

7 DISCUSSION

We have introduced a novel sensor fusion approach for
capturing high-speed, HDR scenes with low bandwidth. We
show that for the wider range of dynamic scenes, the sensor
capabilities of SPADs and event cameras are complementary
to each other. Our approach leverages the high temporal res-
olution of event cameras and the HDR property of SPADs.
We demonstrated that the combination of SPADs and event
cameras can achieve significant improvement compared to
frame-based counterparts for low-light imaging. Moreover,
by using a Kalman filter approach for event-SPAD fusion,
we can reduce the bandwidth of SPADs by up to 4 times

while outperforming the conventional camera baselines by
5 dB.
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Supplementary Material

1 EVENT SNR CALCULATION

Due to the unique asynchronous and sparse nature of event
camera, quantifying it’s performance under different illumi-
nation and scene motion is challenging. SNR in the context
of event camera depends not only on the illumination but
also on the illumination change and the scene motion.
Moreover, the noise of event camera is quite complex to
model (and an active research area [1], [2]). This makes it
difficult to compare the performance of event camera with
traditional cameras and SPADs. We therefore simplify the
problem to compare the performance of event camera with
traditional cameras and SPADs in terms of SNR. Consider
the scenario where the illumination is given by ® and
the illumination change is given by A®. The event cam-
era parameters are given by the event trigger probability
P.(®,Ad), the contrast threshold C and the noise N(¢).
The noise here corresponds to shot noise which is a function
of illumination (i.e high at lower illumination and low at
higher illumination) without any scene motion. The event
trigger probability is a function that depends on both the
illumination and the illumination change, encompassing the
sensor noise artifacts. Thus, the SNR for event camera is
given by:

(P x %)
N(¢)

Therefore, given event probability, contrast threshold and
noise, we can compare the SNR of event camera with
traditional cameras and SPADs. Estimating these values is
challenging and is an open problem in the field of event
camera research. In this paper, we resort to empirical mea-
sured values of event probability and noise. It was shown
in [3], for fixed contrast threshold, increases illumination
decreases the event probability and for a fixed illumination,
the event probability increases with illumination change
resulting in S-curves. This was measured for 4 illumination
levels of 2Luxz, 10Lux, 100Lux and 600Lux and illumina-
tion changes of 5% to 100%. We therefore use this empirical
data to calculate the event trigger probability for different
illumination and illumination change. Estimating the static
noise as a function of illumination, we use the empirical
data from [2]. In the absence of any motion, the noise as a
function of illumination is an exponentially decreasing func-
tion. The noise here is measured as the event rate per pixel.
This is intuitive as the noise is high at lower illumination
and low at higher illumination. We can now combine these
two empirical measurements to calculate the SNR of event
camera for different illumination and illumination change.
In Fig. 1, we compare the SNR of all 3 sensors: frame, SPAD
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Fig. 1. SNR comparison between SPAD, event and frame sensors at dif-
ferent flux regimes. SPADs and Events have a better quality information
at low lights compared to conventional cameras.

and event camera with increasing illumination. Detailed
observations can be made from this plot as follows:

o Comparison between SPADs and frames: SPADs have
a better low light performance [4]. At higher illumi-
nations, the SNR of frames drops down due to the
saturation of the pixels. SPADs on the other hand, have
a better SNR at higher illumination levels because of
their high dynamic range.

o Effect of illumination change on event SNR: Now only
comparing the two event curves, one can see that higher
contrast changes result in better SNR across illumi-
nation levels. This is intuitive as the event camera is
able to capture more information about the scene with
higher contrast changes. Smaller contrast changes can
be captured at lower illuminations, but as the illumina-
tion increases, the SNR of the event camera drops down
because of the logarithmic nature of event pixel.

o Comparing the three sensors, we can see that SPADs
and events have a better SNR at lower illumination
(with SPADs being more sensitive at lower illumina-
tion). At higher illumination, frames saturate resulting
in a drop in SNR. SPADs on the otherhand, has a
smoother drop in SNR at higher illumination. Events
(for 100% contrast change) do not have a drop in SNR
even at high illumination.

2 EFFECT OF EXPOSURE

SimSPAD We also evaluate the performance of our method
on synthetic data with varying integration time of SPADs.
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(a) NI(S) (b) Deblur(S) [7]
y 4

(b) Exposure 5x (b) Exposure 1x

(b) Exposure 10x

(c) E2VID (E) [6]

(d) Ors S+E

Fig. 2. Results on deblurring SPAD images at different exposure times using SPAD-only methods: NI (a), and Deblur [7] (b) and event-only baseline

[6] (c) and ours (d).

Table 1 shows the performance of our method with varying
exposure times. While increasing the integration time allows
for lower bandwidth and higher SNR, it also results in
more motion blur. At extremely low exposure times (1x
and 5x), the noise is quite significant and the images do
not have any meaningful information and therefore the
deblurring approach results in a very low error for both
SPADs and frames. At higher integration period of 10x,
the SNR of SPAD is significantly better than frame-based
method for the deblurring approach. This is exactly the
non-linear behaviour of SPADs which leverage the low-light
sensitivity better than frames. While the SNR is higher, it
only reflects the noise quality. The SPAD image however
is still significantly motion blurred. With our method, we
outperform frame-based baseline by 8 dB for the highest
exposure time.

Sensor Method 1x 5x 10x
Event CFe [5] 11.39 1139 11.39
E2VID [6] 1543 1543 1543
Frames Deblur [7] 5.86 5.86 5.86
Frames + Events AKF [8] 13.93 1339 1271
SPAD QBP SPAD [4] 17.15 1193 11.23
SPAD Deblur [7] 587 557 2317
SPAD + Events Ours 15.23 1848 21.5
TABLE 1

Effect of exposure time on simulated data: PSNR (dB) for increasing
exposure time by factor of 1x, 5x and 10x.

HS-ESPAD Exposure time of SPADs have significantly im-
pact the motion blur. We show that increasing the exposure
time results in more motion blur in SPAD only methods,
which our approach is resilient to. While the deblur method
[7] is able to reduce motion blur of the window frame
and the building facade, it is not able to reduce motion
blur of the checkered board. On the otherhand, event-only
method such as E2VID [6], reconstructs the image reliably
only where the contrast edges are strong. For example,
the upper left corners of the checkerboard are not reliably
reconstructed by E2VID.

Sensor Method 1x 5x 10x

Event E2VID[6] 95 9.50 9.40

SPAD Deblur [7] 1573 15.87 1857

SPAD + Events  Ours 25.7 21.16  20.25
TABLE 2

Effect of exposure time on real data: PSNR (dB) for increasing
exposure time.

Our method on the other hand is able to reduce motion
blur in all the sequences. Note that we can only deblur
areas which overlap with the event camera field of view.
Since the baseline between event camera and SPADs is
different, not all the areas are deblurred resulting in artifacts
in the background. We also show the quantitative results
in Table 2. We also show qualitative results in Fig. 2. As
events do not have exposure time, the exposure time has
no effect on the performance of event-only methods. On the



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

other hand, increasing exposure time increases the motion
blur, therefore the performance of SPAD only method de-
creases significantly at higher exposure times. Our method
outperforms the SPAD only baseline by 1.68 dB at the 10x
exposure and 10 dB at the lowest exposure.

3 EVENT DOUBLE INTEGRATION

For a traditional image sensor, the response function be-
tween photon flux (measured by photons per sec) and the
incident photons is linear and can be modeled as:

1 f+7/2
= N(t)dt
qecT /f—T/2 ( )

D.(t)

where N is the number of photons detected by the sensor, gc.
is the quantum efficiency of the sensor and T’ is the exposure
time. During the exposure time, the latent image sequence
N(t) is expressed as a function of intensity changes E(t)
and the previous latent image N(f) as follows:

N(t) = N(f)exp (cE(t)) @)

where ¢ is a constant threshold and E(t) is the intensity
change which is the integral of the event signal e(t).

To deblur this image using events, the following event-
based double integral (EDI) model was proposed in [9]:

M /f+T/2
f

(pCC (t) = q T T/2

exp (cE(t)) dt. ©)]

4 COMPARISON TO QBP

We show qualitative results comparing the effect of band-
width on QBP [10] and our method in the fan sequence
in Fig. 3. For the same SPAD bandwidth, our method has
less noise compared to QBP as we use events to deblur
the images, on the other hand QBP uses binary frames
to deblur. Moreover for the lower bandwidth, the binary
frames are not sufficient for deblurring which results in
noisier reconstruction.

5 QUALITATIVE RESULTS

We show more qualitative results on the real-sensor data
HS-ESPAD in Fig. 4 and simulation data SimSPAD in Fig. 5.
The event-baseline E2VID [6] is able to capture details in
high contrast scenes as events are stronger in this region.
However, it suffers to capture details in the low contrast
region, where SPAD data is better. Thus our method com-
bines the advantages of the two resulting in the best quality
of image reconstruction.
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(a) NI(S) (b) QBP(S) [10] (c) Ours (S+E)

(b) BW 1x

(b) BW 1/5

(b) BW 1/10

(b) BW 1/20

(b) BW 1/30

Fig. 3. Effect of bandwidth for (a) Naive integration (NI), (b) QBP [10] and (c) our method. Decreasing the bandwidth adds more noise to the images,
however since we use events to deblur the images, our approach results in less noisy images
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(a) Events (b) Deblur(S) [7] (b) E2VID(E) [6] (c) Ours (S+E)

Q
e
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=

Fig. 4. Qualitative results comparing the best SPAD-only baseline [7] (b), event-only baseline E2V ID [6] (c) and our method (c) on HS-ESPAD .
The aligned and synchronized events are overlaid on SPADs images and visualized in (a).
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(a) Events  (b) Deblur(S) [7] (b) E2VID(E) [6]

Fig. 5. Results of the SPAD-only baseline Deblur [7] (b), best Event-only baseline [11] (c) and our method (c) on our SimSPAD dataset. Events are
overlaid on the blurred image (a).
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