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Performance, Precision, and Payloads:
Adaptive Nonlinear MPC for Quadrotors

Drew Hanover, Philipp Foehn, Sihao Sun, Elia Kaufmann, Davide Scaramuzza

Abstract—Agile quadrotor flight in challenging environments
has the potential to revolutionize shipping, transportation, and
search and rescue applications. Nonlinear model predictive con-
trol (NMPC) has recently shown promising results for agile
quadrotor control, but relies on highly accurate models for
maximum performance. Hence, model uncertainties in the form
of unmodeled complex aerodynamic effects, varying payloads and
parameter mismatch will degrade overall system performance.
In this paper, we propose L1-NMPC, a novel hybrid adaptive
NMPC to learn model uncertainties online and immediately
compensate for them, drastically improving performance over
the non-adaptive baseline with minimal computational overhead.
Our proposed architecture generalizes to many different envi-
ronments from which we evaluate wind, unknown payloads, and
highly agile flight conditions. The proposed method demonstrates
immense flexibility and robustness, with more than 90% tracking
error reduction over non-adaptive NMPC under large unknown
disturbances and without any gain tuning. In addition, the same
controller with identical gains can accurately fly highly agile
racing trajectories exhibiting top speeds of 70 km/h, offering
tracking performance improvements of around 50% relative to
the non-adaptive NMPC baseline. We will release our code fully
open-sourced upon acceptance.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/8oB1rG5iYc4

I. INTRODUCTION

A. Motivation

Unmanned aerial vehicle (UAV) utilization in industrial
applications is increasing at an astounding rate[1–3]. There
are over 300,000 commercial drones registered in the US alone
according to the Federal Aviation Administration [4]. Signif-
icant commercial opportunities exist for robust autonomous
systems which can safely conduct inspection of sensitive,
hazardous, and remote systems. As a result, the global drone
service market is expected to grow from 4.4 Billion USD to
63.6 Billion between 2018 and 2025 [5]. In transportation
and shipping applications, UAVs can improve efficiency of
operations via autonomous missions and high speed maneu-
vers leading to dramatic time savings, cost reductions, and
higher throughput [6]. On a similar note, emergency scenarios
generate the need for agile autonomous systems to conduct
search and rescue tasks when time is of the essence [7].
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Horizon 2020 Research and Innovation Programme under grant agreement
No. 871479 (AERIAL-CORE) and the European Research Council (ERC)
under grant agreement No. 864042 (AGILEFLIGHT).

Fig. 1: Top: Quadrotor carrying a beer payload of unknown
mass while flying an aggressive racing trajectory. Our pro-
posed L1-NMPC method allows to reduce tracking errors on
such agile trajectories by more than 90% compared to non-
adaptive methods. Bottom: L1-NMPC control diagram.

To facilitate these opportunities, UAVs must be able to
accurately track agile trajectories in presence of model un-
certainties and external disturbances such as unknown drag
coefficients, varying payloads, or wind gusts respectively.
These uncertainties can significantly degrade the performance
and reliability of the system and potentially lead to loss of
control if not compensated for. High-fidelity physics-based
models can improve control performance, but are often pro-
hibitively expensive to procure and require extensive levels
of domain expertise [8–11]. With the advancements of data-
driven methods such as those described in [8–10], the costs
of obtaining accurate models has been dramatically reduced.
Models learned from data, however, have a tendency to overfit
and can be intractable to update online [11].

In reality, modeling the system with complete accuracy is
impossible, necessitating control algorithms which are robust
to uncertainty. The field of robust control has tried to ad-
dress this problem with varying degrees of success. Classical
methods such as H∞ and more recently stochastic model
predictive control may enable safe behavior of the autonomous
system, but at the cost of significant performance degrada-
tion [12, 13]. Predicting external disturbances such as wind-
gusts is often impractical due to the chaotic nature of the dis-
turbance [10, 14]. This necessitates the development of highly
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adaptive control algorithms which can robustly compensate for
unknown model dynamics without prior assumptions, while
pushing the system to its dynamic limits.

B. Contribution

In this work, we propose a novel quadrotor control archi-
tecture which cascades a nonlinear model predictive controller
(NMPC) to an L1 adaptive controller to fly highly aggressive
racing trajectories under various types of model uncertainties
and external disturbances with speeds up to 20 m s−1. We
show that the addition of the adaptive controller can drive the
real system towards the behavior specified by the underlying
MPC model with significantly better tracking performance
when compared to a non-adaptive baseline. The proposed
controller can compensate in real-time, while being transfer-
able to many different applications such as flying in windy
environments, carrying completely unknown payloads, and
flying aggressive racing trajectories without any re-tuning of
control gains. When unknown payloads up to 60% of the
quadrotor mass are introduced into the system, our approach
demonstrates a reduction of tracking error over 90% compared
to non-adaptive NMPC methods onboard a real quadrotor.
Additionally, we show that it is even possible to accurately
fly racing trajectories with unknown slung payloads. The data
indicates we can track these trajectories with an unknown
payload representing 13% of the quadrotor’s mass with 44%
higher accuracy than a non-adaptive NMPC without a payload
attached. Our experiments under nominal model conditions
demonstrate at least a 50% tracking performance improve-
ment over state of the art data-driven MPC methods without
an aerodynamics model on a set of increasing speed circle
trajectories which exhibit speeds of up to 36 km/h, indicating
that the adaptive component is able to learn and compensate
for unmodeled aerodynamic effects in real time with minimal
computational overhead.

II. RELATED WORK

Trajectory tracking controllers for quadrotors have been
studied extensively over the last decade. A detailed survey
on quadrotor control methods can be found in [15–17]. Most
of the existing literature focuses on hover conditions or slow
speed maneuvers which satisfy small angle assumptions neces-
sary for linear control methods. We are interested in exploring
a wider flight envelope, and focus on advanced techniques to
push the physical limits of the platform.

Agile flight of aerial vehicles has been a top priority for
the aerospace industry for the better part of 80 years, as a
part of which NASA developed Model Reference Adaptive
Control (MRAC) to deal with large model uncertainties that
are difficult to model and measure [18]. Readers interested in
the underlying mathematics of adaptive control methods for
aerospace vehicles are pointed to the following references [19–
22]. Specifically, we focus on the L1 adaptive control ap-
proach due its inherent ability to provide rapid adaptation
that is decoupled from the robustness of the controller [23].
Applications of L1 adaptive controllers have been successfully

demonstrated across a variety of aerial vehicles such as fixed-
wings, quadcopters, and octocopters [24–26]. The main feature
of the L1 adaptive controller is to drive a system towards a de-
sired reference model behavior. Typically, this is done using a
linear reference model to specify the desired behavior, however
this can lead to unrealistic desired dynamics which cannot be
achieved by the real system. Adaptive control has successfully
demonstrated accurate trajectory tracking using quadrotors in
several works [27–30]. However, the maneuvers conducted are
typically simple step inputs, or slow speed circles which do
not exploit the inherent agility of the quadrotor platform.

Adaptive controllers often act as an augmentation to an ex-
isting baseline controller rather than as a standalone controller.
Authors in [31] take advantage of the high level planning of
linear MPC, cascaded with an adaptive control law to adapt to
persistent model mismatch. A cascaded linear MPC with a lin-
ear reference model L1 adaptive controller was demonstrated
for the quadrotor trajectory tracking problem with exogenous
disturbances in [32], but the trajectories demonstrated were
simplistic and slow. They claim a reduced computational
cost compared to nonlinear MPC frameworks, however the
limitations of linear optimal control when applied to nonlinear
problems are well understood, especially when the vehicle
exhibits highly aggressive maneuvers [33].

Similarly, in [34] a Model Predictive Path Integral (MPPI)
controller was coupled with a nonlinear reference model L1

adaptive controller for agile quadrotor flight, however the
authors have not shown feasibility of the proposed method
on real hardware. No analsis of the adaptive control signal
is provided, however video footage released of the simulation
performance of the proposed L1-MPPI architecture indicates
highly oscillatory control performance in the first-person cam-
era view1. Additionally, the high level MPPI controller can
only run at a rate of 50 Hz using desktop hardware which
makes it infeasible for on-board control.

Previous works demonstrating agile trajectory tracking with
physical quadrotors include [35, 9, 36, 37]. The authors
of [35] demonstrated accurate tracking of aggressive quadrotor
trajectories up to 12.9 m s−1 using a cascaded geometric
controller with INDI. In [9], NMPC leveraging data driven
methods to improve model fidelity was used to achieve state
of the art tracking performance at speeds up to 14 m s−1.
Control commands were calculated off-board the quadrotor
and sent via wireless communication due to the increased
computational overhead from the learned model. Because the
model parameters are obtained offline, it can not adapt to
online parametric changes such as payloads or a reduction
in actuator efficacy.

As the authors in [9] correctly point out, INDI and adaptive
control approaches coupled with traditional geometric con-
trollers are purely reactive and have no ability to plan over a
prediction horizon. To address this, we couple an L1 adaptive
control law with a nonlinear MPC, therefore taking advantage
of the prediction horizon and fully exploiting the nonlinearities
of the system for maximum performance. The controller is

1https://www.youtube.com/watch?v=f602VSGIVb0



3

evaluated against several state of the art controllers and a wide
variety of test conditions both in simulation and reality.

III. METHODOLOGY

A. Notation

We define the World W and Body B frames with orthonor-
mal basis i.e. {xW ,yW , zW }. The frame B is located at the
center of mass of the quadrotor. All four rotors are assumed to
be located on the xy-plane of frame B, as depicted in Fig. 2.

A vector from coordinate p1 to p2 expressed in the W
frame is written as: Wv12. If the vector’s origin coincide with
the frame it is described in, we drop the frame index, e.g. the
quadrotor position is denoted as pWB . Furthermore, we use
unit quaternions q = (qw, qx, qy, qz) with ‖q‖ = 1 to represent
orientations, such as the attitude state of the quadrotor body
qWB . Finally, full SE3 transformations, such as changing the
frame of reference from body to world for a point pB1, can
be described by WpB1 =W tWB + qWB � pB1. Note the
quaternion-vector product denoted by � representing a rota-
tion of the vector by the quaternion as in q�v = q ·[0,vᵀ]ᵀ ·q̄,
where q̄ is the quaternion’s conjugate.

B. Quadrotor Vehicle Dynamics

The quadrotor system dynamics are given by

ẋ =


ṗWB

q̇WB

v̇WB

ω̇B

 = fdyn(x,u) =


vW

qWB

[
0

ωB/2

]
qWB � TB/m+ g

J−1[τB − ωB × JωB ]

 ,

(1)

where g = [0, 0,−9.81 m/s2]T denotes Earth’s gravity, TB is
the collective thrust from the 4 rotors, J = diag(Jx, Jy, Jz)
is the diagonal moment of inertia matrix, m is the quadrotor
mass, and τB is the body torque:

TB =

 0
0∑
Ti

 , τB =

dy(−T0 − T1 + T2 + T3)
dx(−T0 + T1 + T2 − T3)
cτ (−T0 + T1 − T2 + T3)

 ,

(2)

where dx, dy , cτ are the rotor displacements in x and y, and
the rotor drag torque constant respectively. For discrete time,
an explicit Runge-Kutta method of 4th order is used:

xk+1 = fRK4(xk,uk, δt). (3)

C. MPC Formulation

We construct a quadratic optimization problem using a
multi-shooting scheme and solve the following discretized
nonlinear optimal control problem

min
u
xTNQxN +

N−1∑
k=0

xTkQxk + uTkRuk (4)

subject to:xk+1 = fRK4(xk,uk, δt)

x0 = xinit

umin ≤ uk ≤ umax
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Fig. 2: Diagram of the quadrotor model with the world and
body frames and propeller numbering convention.

as a sequential quadratic program (SQP) executed in a real-
time iteration scheme [38]. We discretize the system evolution
into N steps over a time horizon T and constrain the input to
be between 0 ≤ uk ≤ umax. The optimal control problem is
implemented using the open source ACADO toolkit [39].

D. L1-Adaptive Augmentation

We implement the L1 adaptive controller using a nonlinear
reference model [40], which estimates both matched and
unmatched uncertainties using a piecewise constant adaptation
law [41, 42]. The derivation is similar to [34], however we
account for the uncertainties directly at the rotor thrust level.
First, define RI

B =
[
eBx , e

B
y , e

B
z

]
as the rotation matrix from

the body frame to the inertial frame. We can then rewrite
the dynamics to account for both matched and unmatched
uncertainties as

v̇WB =
TB
m
eBz + g +

TB
m
RI
Bς −CdvWB , (5)

ω̇B = J−1[τB − ωB × JωB + ξ], (6)

where ς =
[
ςx, ςy, ςz

]T
is the uncertainty appearing in

the linear accelerations, ξ =
[
ξx, ξy, ξz

]T
is the uncertainty

appearing in the angular accelerations, and Cd is a matrix
of linear drag coefficients. Since a quadrotor is an underac-
tuated system, capable of providing linear acceleration only
along its body z-axis, the unmatched uncertainties defined as
σum =

[
ςx, ςy

]T
, appear purely in the X and Y linear acceler-

ations. This can be thought of as existing in the null space of
the controllability matrix and therefore cannot be compensated
for directly. Then, what remains are the matched uncertainties
σm =

[
ςz, ξx, ξy, ξz

]T
which can be compensated for directly.

The allocation matrix P is defined as

P =

 0 dy 0 −dy
−dx 0 dx 0
cτ −cτ cτ −cτ

 . (7)

Next, consider the reduced state variable, z =
[
vWB ,ωB

]
.

Its derivative can be broken up as a function of the nominal
and uncertain dynamic behavior as follows:

ż = f(RI
B) + g(RI

B)(uL1 + σm) + g⊥(RI
B)σum , (8)
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where f(RI
B) is the desired dynamics defined as

f(RI
B) =

[
g + TMPC

m eBz −CdvWB

J−1τB − ωB × JωB ]

]
. (9)

The single rotor thrusts in expression of τB are obtained from
the solution of the NMPC at the current time. Define g(RI

B)
as the uncertainty in the matched component of the dynamics:

g(RI
B) =

[
eB
z

m ,
eB
z

m ,
eB
z

m ,
eB
z

m

J−1P

]
. (10)

Similarly, g⊥(RI
B) is the uncertainty in the unmatched com-

ponent of the dynamics given by

g⊥(RI
B) =

[
eB
x

m ,
eB
y

m
03×1,03×1

]
. (11)

Let uL1
be the adaptive control input which can act as a

standalone controller, or complement the NMPC signal via
addition. Define the L1 observer as

˙̂z = f(RI
B) + g(RI

B)(uL1
+ σ̂m) + g⊥(RI

B)σ̂um +Asz̃ ,
(12)

where z̃ = ẑ− z and noting that z is the state obtained from
an estimator, and ẑ is the state predicted from the L1 observer.
Define Φ = A−1s (e(AsTs) − I) where Ts is the time step and
As is a Hurwitz matrix which represents the adaptation gains.
Then the piecewise-constant adaptation law is given by[

σ̂m(iTs)
σ̂um(iTs)

]
= −I6×6G−1(iTs)Φ

−1µ(iTs) , (13)

where G(iTs) = [g(RI
B), g⊥(RI

B)] and µ = eAsTs z̃(iTs)
are evaluated at time step i. Next, define a first order, strictly
proper continuous time filter C(s). The L1 control law is then

uL1 = −C(s)σ̂m . (14)

In practice, we implement the control law in discrete time as

uL1,k = uL1,k−1e
−ωcoTs − σ̂m,k(1− e−ωcoTs) , (15)

where ωco is the cutoff frequency of the strictly proper first
order filter. Finally, the discrete time L1 observer can be
propagated forward in time via

ẑk+1 = ẑk + [fk + gk(uL1,k + σ̂m,k) + g⊥k σ̂um,k +Asz̃k]Ts .
(16)

IV. EXPERIMENTS AND RESULTS

Our experiments are designed to answer the following
research questions: (i) How does our proposed L1-NMPC
compare to data-driven MPC methods? (ii) To what extent
can L1-NMPC react to both parametric and non-parametric
disturbances in real world tests? (iii) Does the proposed L1-
NMPC generalize across test scenarios without the need for
gain tuning? We set out to answer these questions through
a variety of simulation and real world tests which cover
exposure to large external disturbances and agile maneuvers.
The experiments start out with a set of different model
predictive controllers which are gradually eliminated over the
course of the experiments based on their tracking performance

Model
GP-MPC MPPI NMPC INDI-NMPC L1-NMPC

Avg. dt
[ms]

4.13 23.13 0.81 0.82 0.82

TABLE I: Average controller update times running on an Intel
Core i7-8750H CPU @ 2.20GHz laptop with 16 Gb of RAM
and Nvidia GeForce GTX 1060 using CUDA 11.2

and computational complexity. We point the reader to our
corresponding video for a better understanding of the level
of flexibility and robustness our proposed architecture can
demonstrate.

A. Simulation

We begin by implementing several state of the art controllers
in simulation including a Single Rotor Thrust NMPC (SRT-
NMPC), a data-driven NMPC (GP-MPC) from [9], MPPI with
Baseline Control from [34], INDI-NMPC from [16], and our
proposed L1-NMPC with and without an aerodynamic model
included in the underlying NMPC. All baseline controllers
have an aerodynamic model enabled by default. We use the
open source Gazebo simulator [43] with the the AscTec Hum-
mingbird quadrotor model using the RotorS extension [44].
Performance in simulation is measured by comparing posi-
tional tracking errors on a set of circular reference trajectories.
These trajectories feature a radius of 5 m and vary in peak
velocities from 2.5-10m s−1.

1) Without Disturbance: First, we fly these trajectories with
a model that best represents our knowledge of the dynamics
within the RotorS simulation. In these cases, the mass, inertia,
drag, and rotor arm lengths of the simulated quadrotor are
perfectly known. The model parameters used in the NMPC
are identical to the parameters in the RotorS simulator. These
experiments without disturbance serve to understand the max-
imum achievable performance by each method in case of
perfect model identification.

We include the timings for each of the tested controllers in
Table I and show the tracking performance on a semi-log scale
for the increasing speed circle trajectories in Figure 3. Our L1-
NMPC without an aerodynamic model outperforms the state
of the art INDI-NMPC and GP-MPC in all cases except for
the fastest circle trajectories, indicating that the adaptation law
is able to compensate partially for unmodeled aerodynamics.

Once we enable the drag model, the L1-NMPC outperforms
all proposed methods, however we note that the performance
improvement is less than 1 cm RMSE over the course of a 60 s
long trajectory. We expect the performance benefit to be small
since the model parameters perfectly match those described
in the simulator. In contrast to all other approaches, MPPI
performed an order of magnitude worse. We therefore do not
consider it as a viable candidate moving forward. SRT-NMPC
with a linear drag model performs similarly to GP-MPC, but
with 80% less computational overhead and therefore forms the
baseline for the remaining simulation trials.

2) Model Mismatch: Next, we inject three different forms
of model mismatch into the model used for the NMPC. The
same increasing speed circle trajectories from the previous
section are used in this analysis. First, the mass of the
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Fig. 3: Simulated tracking accuracy of increasing speed, on
a 5 m radius circle trajectory in the RotorS simulation envi-
ronment. Tracking accuracy is given by RMSE with respect to
the reference trajectory. Each point represents the accumulated
positional tracking error across the trajectory for a given peak
velocity.

quadrotor is increased by 660 g, representing a 90% increase
from the nominal mass of the system. Second, the inertias
on all axis are doubled in the simulator. Finally, the right side
rotor arm lengths are reduced by 25%, representing a persistent
center of gravity offset.

Since the baseline NMPC does not contain any integrator
action, we expect any pure-mass disturbances to result in a
steady-state offset in target Z-height. In an attempt to make a
fair comparison, we add an additional comparison case which
embeds an integrator state on positional error into the NMPC.
The gains for all controllers are not adjusted from the nominal
tests in the previous section. Table II provides the results for
these parametric disturbance cases.

As parametric disturbances are introduced into the test
scenarios, the proposed L1-NMPC architecture demonstrates
a sizeable advantage over the other state of the art methods.
Only the NMPC with integrator action and L1-NMPC show
any ability to compensate for mass mismatch, with L1-NMPC
reducing the tracking error by over 90% in all cases. We
note that all controllers fail to complete the 10 m s−1 circle
trajectory with a 660 g payload. The thrust requirements to fly
this case exceed what is available on the simulated quadrotor
which leads to the NMPC solution failing to converge in
all cases. In the inertia and rotor arm length test cases,
INDI-NMPC and L1-NMPC perform almost identically. The
performance delta between the two methods is less than 5 mm
across these 10 cases. Our adaptive architecture demonstrates
robustness to these uncertainties in addition to providing a
performance benefit when the model is well known. We are
able to immediately identify various forms of disturbance and
swiftly reject it without any gain tuning or model learning.

Model
NMPC NMPC+I INDI-NMPC L1-NMPC

Dist. vpeak

[m s−1]
RMSE
[m]

RMSE
[m]

%↓ RMSE
[m]

%↓ RMSE
[m]

%↓

2.5 0.434 0.029 93 0.434 0 0.007 98
4 0.441 0.045 90 0.440 0 0.010 98
6 0.471 0.091 81 0.470 0 0.020 96
8 0.532 0.167 69 0.537 0 0.032 94M

as
s

10 Crash Crash ? Crash ? Crash ?
2.5 0.02 0.033 -65 0.009 55 0.007 65
4 0.016 0.043 -169 0.015 6 0.014 13
6 0.037 0.080 -116 0.028 24 0.030 19
8 0.070 0.150 -114 0.048 31 0.052 26In

er
tia

10 0.081 0.240 -196 .074 9 0.079 2
2.5 0.078 0.056 28 0.008 90 0.007 91
4 0.049 0.038 22 0.015 69 0.016 67
6 0.052 0.088 -69 0.032 38 0.033 37
8 0.057 0.151 -165 0.053 7 0.056 2

A
rm

L
en

gt
h

10 0.083 0.241 -190 0.083 0 0.087 -5

TABLE II: Tracking performance of increasing speed, 5 m
radius circle trajectories with mass, inertia, and rotor arm
length disturbances in the RotorS simulator. Each table entry
represents the tracking RMSE over the course of a single
trajectory for different speeds. In the Mass cases, we increase
the mass of the quadrotor by 660 g representing a 90% increase
in mass. Similarly, in the Inertia cases, we double the inertia
of the quadrotor. Finally, in the Arm Length cases, we increase
the length of the right side rotor arms by 25% representing a
significant shift to the center of gravity.

B. Real World Experiments

We test our proposed L1-NMPC controller performance
on a quadrotor with mass 750 g outfitted with a Jetson TX2
on-board computer and Radix flight controller with our own
custom low-level flight control firmware. The flight controller
accepts single rotor thrust inputs and performs closed loop
rotor speed control. The quadrotor has a thrust to weight ratio
of about 4.5. We run all controllers completely onboard the
quadrotor and solve the optimal control problem at 100 Hz. A
Vicon motion capture system2 provides pose updates at 400 Hz
which are fused with the Inertial Measurement Unit (IMU) via
an Extended Kalman Filter (EKF) for state estimation.

To demonstrate our approach can significantly improve
tracking performance under model mismatch and aerodynamic
disturbance, we conduct experiments in five settings:
• Setting (i): Increasing speed 5 m radius circle trajectories

up to 10 m s−1 to compare performance to GP-MPC and
INDI-NMPC in a nominal setting.

• Setting (ii): 2 m s−1 circle trajectory with a 450 g un-
known payload to show tracking performance when a
large mass mismatch is present.

• Setting (iii): 2 m s−1 circle with external aerodynamic
disturbance to show ability to rapidly reject external
disturbances.

• Setting (iv): Mildly aggressive flight with a top speed
of 11.9 m s−1 with a 100 g slung payload to show agile
flight is possible with unknown payloads.

• Setting (v): Highly aggressive flight with a top speed of
19.4 m s−1 without payload to demonstrate capability of
accurate tracking near the system limits.

In Setting (i), we perform the same increasing speed circle
trajectories from the simulation experiments and compare

2https://www.vicon.com/
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Model
GP-MPC SRT-NMPC INDI-NMPC L1-NMPC No Aero L1-NMPC w/ Aero

vpeak

[m s−1]
RMSE
[m]

RMSE
[m]

%↓ RMSE
[m]

%↓ RMSE
[m]

%↓ RMSE
[m]

%↓

2.5 0.109 0.070 36 0.038 65 0.022 80 0.016 85
4 0.103 0.086 17 0.052 50 0.026 75 0.021 80
6 0.129 0.103 20 0.055 57 0.035 73 0.034 74
8 0.154 0.153 1 0.058 62 0.057 63 0.041 73

10 0.203 0.223 -10 0.048 76 0.088 57 0.047 77

TABLE III: Tracking performance of increasing speed circle
trajectories evaluated on a real quadrotor platform for sce-
nario (i).

the tracking performance of our method to GP-MPC, SRT-
NMPC, and INDI-NMPC. Table III shows the results of this
comparison. As can be seen, even without an aerodynamic
model, our L1-NMPC architecture outperforms GP-MPC by
over 70% and has a slight advantage over INDI-NMPC,
indicating that the adaptive controller is compensating for both
model mismatch and aerodynamic disturbances. Additionally,
we show that SRT-NMPC with a linear aerodynamic model
matches the performance of GP-MPC and therefore use SRT-
NMPC as the baseline moving forward due to its computa-
tional advantage over GP-MPC.

Next, in Setting (ii) we perform a 2 m s−1 circle with
a 450 g unknown payload attached. This represents a mass
increase of over 60%. The MPC model is not updated to
reflect the changed mass and inertia of the system and the
adaptive controller must compensate for a large disturbance
from takeoff.

Figure 4 shows the tracking performance of the quadro-
tor for scenarios (ii) and (iii). Relative to the non-adaptive
baseline, the L1-NMPC rejects the disturbance and accurately
tracks the specified trajectory. It is important to note that
the adaptation to the unknown payload takes place rapidly,
resulting in less than 1 cm steady state Z position tracking
error. In contrast, the non-adaptive MPC has over a 35 cm
steady state Z position error and cannot compensate for the
modified inertias of the platform, resulting in overshoots which
stray away from the reference.

In Setting (iii) we fly the same trajectory without payloads
but instead add an external aerodynamic disturbance in the
form of a powerful fan which the quad has to fly directly in
front of. The baseline NMPC immediately demonstrates size-
able tracking performance degradation, while the L1-NMPC
is able to compensate for these disturbances in real time and
maintain acceptable, albeit reduced performance. In addition
to being able to compensate for large parametric disturbances,
the L1-NMPC substantially reduces the tracking error when
an exogenous disturbance is introduced. We believe this has
large implications for quadrotors conducting both inspection
and shipping tasks outdoors in windy environments.

For Settings (iv) and (v), we fly a highly dynamic race
track trajectory generated using the method described in
[6]. We compare our proposed approach against the Non-
Adaptive MPC and INDI-NMPC in these settings due to the
latter’s demonstrated success on aggressive racing trajectories.
In Setting (iv), we attach an unknown 100 g slung payload
to introduce a time varying disturbance and fly a mildly
aggressive trajectory with peak velocities of 11.9 m s−1 and
peak linear accelerations of over 2 g’s. With the unknown

Fig. 4: Scenarios (ii) and (iii): Slow speed circle trajectory
with induced disturbances. In Scenario (ii), we add a payload
of 450 g to the quadrotor without updating the nominal NMPC
model. The adaptive controller learns the disturbance and
immediately compensates for it. In Scenario (iii) we add an
external aerodynamic disturbance in the form of a fan and
force the quadrotor to fly directly through the turbulence
generated from the fan. The adaptive controller is able to
compensate immediately for the disturbance and keep the
quadrotor close to the reference trajectory.

slung load attached, the L1-NMPC controller reduces tracking
error by 44% relative to the Non-Adaptive NMPC without a
payload attached. Additionally, we outperform INDI-NMPC
by 34% in tracking error, and show that the performance of
L1-NMPC with and without payloads are nearly identical. This
indicates that the adaptive controller is driving the true system
dynamics towards those specified by the reference system,
regardless of present disturbances.

In Setting (v), we do not introduce disturbances but increase
the aggressiveness of the trajectory. The drone experiences
over 4 g’s of linear acceleration, and experiences peak linear
velocities of around 20 m s−1. The tracking performance for
each of these scenarios can be seen in Figure 5. The L1-
NMPC shows a performance improvement of 49% of relative
to the baseline SRT-NMPC but is outperformed by INDI-
NMPC by less than 5 cm RMSE. The INDI-NMPC controller
is a highly capable racing controller, but relies on an accurate
aerodynamic model to achieve such levels of performance.
With our proposed method we do not require such an accurate
model to achieve high tracking accuracy as demonstrated
in Scenario (i). Beyond this, INDI-NMPC requires that the
model be updated anytime there is a mass change in order
to maximize performance, whereas our controller can learn
and compensate the disturbance without the need of updating
model parameters or controller gains.

Across all of these experiments no adjustments are made
to the high level MPC, nor the adaptive controller. Even with
this constraint, we are able to accurately track a variety of
trajectories with various unknown disturbances. This demon-
strates substantial flexibility and robustness when deploying
the quadrotor in uncertain scenarios for minimal computational



7

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Time, [s]

Po
si

tio
n

E
rr

or
[m

]
Scenario (iv), Race Track w/ Slung Load

Non-Adaptive MPC, No Payload
INDI-MPC
Ours, No Payload
Ours

0 5 10 15
0

0.5

1

1.5

Time, [s]

Po
si

tio
n

E
rr

or
[m

]

Scenario (v), Race Track w/o Disturbance

Non-Adaptive MPC
INDI-MPC
Ours

Fig. 5: Scenarios (iv) and (v): Tracking error over the course of a dynamic race track. The adaptive controller enforces the
quadrotor to fly just as the NMPC model describes it should, regardless if there is a payload present. We demonstrate that when
an unknown payload is attached, the L1-NMPC controller outperforms the non-adaptive baseline without a payload attached
on an agile racing trajetory with peak speeds of 11.9 m s−1 (left), and can achieve high tracking accuracy on extremely agile
trajectories with peak velocities of 19.4 m s−1 without the need to update controller gains or model parameters (right).

overhead.

V. DISCUSSION

Through extensive experimentation, the L1 adaptive con-
troller demonstrably enhances a baseline model predictive
controller by enabling immediate compensation for model
mismatch and external disturbances. Cascading the baseline
NMPC with an adaptive controller provides substantial ben-
efits in tracking performance across all test cases, especially
when there are model mismatches present. The performance
benefit from the adaptation law is at least 50% greater than
the data driven model augmentation provided by GP-MPC,
without the large computational overhead. When implementing
L1-MPPI, we saw the same high frequency oscillatory content
in the body rates that is evident in the videos released
with [34]. While MPPI has shown outstanding results on
ground vehicles [45, 46], we believe the sampling approach
suffers from the curse of dimensionality problem induced by
the 4D space.

We conclude this discussion with the following recommen-
dation: If a user requires aggressive maneuvers and accurate
tracking on trajectories with over 4g linear accelerations and
there is high confidence in the model accuracy, INDI-NMPC
offers the best performance over all controllers considered
for onboard computation. In fact, INDI-NMPC provides the
highest autonomous quadrotor racing performance of any
control architecture previously studied in the literature to date
as indicated by the results in this study and the results in
[16]. On the other hand, if the user is operating in uncertain
environments which may cause large disturbances and require
transportation of various payloads without the ability to update
the model, L1-NMPC offers over a 90% performance im-
provement over non-adaptive NMPC and INDI-NMPC. Like
the non-adaptive NMPC, INDI-NMPC does not offer any
integrative action on linear accelerations and therefore will
always have non-zero steady state error in Z-height tracking
when payloads are present. This is evidenced by the results

in Scenario (iv) where we showed our proposed L1-NMPC
outperforming INDI-NMPC when an unknown slung payload
is introduced into the system.

VI. CONCLUSION

In this work, we proposed augmenting a multi-shooting
NMPC with an L1 adaptive inner-loop controller to compen-
sate for model mismatch which can significantly degrade the
performance of the NMPC. We derived the adaptation law
at the individual rotor thrust level and leveraged the same
nonlinear dynamics model that is embedded in the model
predictive controller. The adaptive controller demonstrated
minimal computational overhead, and can compute corrective
control signals in only 10 microseconds which drastically
improves the system performance relative to the non-adaptive
NMPC baseline. We showed that our proposed method can
outperform state of the art data driven MPC methods in both
simulation and extensive real world testing on the quadrotor
tracking problem. Instead of having to retrain data driven
models online, we instead simply adapt in real time to both
parametric and non-parametric disturbances. Finally, we have
shown that the proposed L1-NMPC can fly highly aggressive
racing trajectories while also being able to carry payloads with
no additional gain tuning.

One drawback of our proposed approach is the potential for
violating actuator constraints due to the inner loop cascade. In
the future, we plan to explore using the uncertainty estimation
from the adaptation law to update our nominal dynamics
model online. We hypothesize that this could significantly
improve the prediction accuracy of the NMPC, thus enabling
a highly adaptive optimal controller which can fully obey state
and input constraints.

VII. ACKNOWLEDGMENT

The authors thank Leonard Bauersfeld for taking the image
used in Figure 1 and his advice on editing the accompanying
video. Additionally, the authors thank Thomas Laengle for his
hardware troubleshooting in the early stages of this project.



8

REFERENCES

[1] G. Loianno and D. Scaramuzza, “Special issue on future challenges
and opportunities in vision-based drone navigation,” Journal of Field
Robotics, 2020.

[2] S. Rajendran and S. Srinivas, “Air taxi service for urban mobility: A
critical review of recent developments, future challenges, and opportu-
nities,” Transportation Research Part E: Logistics and Transportation
Review, vol. 143, p. 102090, Nov 2020, arXiv: 2103.01768.

[3] E. Ackerman, “Skydio demonstrates incredible obstacle-dodging full
autonomy with new r1 consumer drone,” IEEE Spectrum, 2018.
[Online]. Available: http://spectrum.ieee.org/automaton/robotics/drones/
skydio-r1-drone

[4] “Secondary navigation,” Aug 2021. [Online]. Available: https://www.
faa.gov/uas/resources/by the numbers/

[5] Newswire, “Global drone service market report 2019: Market is
expected to grow from usd 4.4 billion in 2018 to usd 63.6 billion
by 2025, at a cagr of 55.9%,” Apr 2019. [Online]. Available:
https://bit.ly/3zUewze

[6] P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning
for quadrotor waypoint flight,” Science Robotics, vol. 6, no. 56,
2021. [Online]. Available: https://robotics.sciencemag.org/content/6/56/
eabh1221

[7] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and
D. Scaramuzza, “Autonomous, vision-based flight and live dense 3D
mapping with a quadrotor MAV,” Journal of Field Robotics, vol. 33,
no. 4, pp. 431–450, 2016.

[8] M. Mehndiratta and E. Kayacan, “Gaussian process-based learning
control of aerial robots for precise visualization of geological outcrops,”
in IEEE Eur. Control Conf. (ECC), 2020.

[9] G. Torrente, E. Kaufmann, P. Foehn, and D. Scaramuzza, “Data-driven
mpc for quadrotors,” IEEE Robotics and Automation Letters, 2021.

[10] S. Sun, C. C. de Visser, and Q. Chu, “Quadrotor gray-box model
identification from high-speed flight data,” Journal of Aircraft, vol. 56,
no. 2, pp. 645–661, 2019.

[11] L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, and D. Scaramuzza,
“Neurobem: Hybrid aerodynamic quadrotor model,” RSS: Robotics,
Science, and Systems, 2021.

[12] K. Zhou and J. C. Doyle, Essentials of robust control. Prentice hall
Upper Saddle River, NJ, 1998, vol. 104.

[13] I. R. Petersen, V. A. Ugrinovskii, and A. V. Savkin, Robust control design
using H-inf methods. Springer Science & Business Media, 2012.

[14] B. Nisar, P. Foehn, D. Falanga, and D. Scaramuzza, “VIMO: Simultane-
ous visual inertial Model-Based odometry and force estimation,” IEEE
Robot. Autom. Lett., vol. 4, no. 3, pp. 2785–2792, Jul. 2019.

[15] T. P. Nascimento and M. Saska, “Position and attitude control of multi-
rotor aerial vehicles: A survey,” Annual Reviews in Control, 2019.

[16] S. Sun, A. Romero, P. Foehn, E. Kaufmann, and D. Scaramuzza,
“A comparative study of nonlinear mpc and differential-flatness-based
control for quadrotor agile flight,” arXiv preprint arXiv:2109.01365,
2021.

[17] A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model predic-
tive contouring control for near-time-optimal quadrotor flight,” arXiv
preprint arXiv:2108.13205, 2021.

[18] I. M. Mareels, B. D. Anderson, R. R. Bitmead, M. Bodson, and S. S.
Sastry, “Revisiting the mit rule for adaptive control,” in Adaptive Systems
in Control and Signal Processing 1986, ser. IFAC Workshop Series.
Pergamon, 1987.

[19] E. Lavretsky and K. A. Wise, “Robust adaptive control,” in Robust and
adaptive control. Springer, 2013, pp. 1 – 449.

[20] K. J. Åström and B. Wittenmark, Adaptive control. Courier Corporation,
2013.

[21] P. A. Ioannou and J. Sun, Robust adaptive control. Courier Corporation,
2012.

[22] N. Hovakimyan and C. Cao, L1 adaptive control theory: Guaranteed
robustness with fast adaptation. SIAM, 2010.

[23] C. Cao and N. Hovakimyan, “Design and analysis of a novel l1
adaptive control architecture with guaranteed transient performance,”
IEEE Transactions on Automatic Control, vol. 53, no. 2, pp. 586–591,
2008.

[24] R. Beard, C. Cao, and N. Hovakimyan, “An l1 adaptive pitch controller
for miniature air vehicles,” in AIAA guidance, navigation, and control
conference and exhibit, 2006, p. 6777.

[25] I. Gregory, C. Cao, E. Xargay, N. Hovakimyan, and X. Zou, “L1 adaptive
control design for nasa airstar flight test vehicle,” in AIAA guidance,
navigation, and control conference, 2009, p. 5738.

[26] S. Mallikarjunan, B. Nesbitt, E. Kharisov, E. Xargay, N. Hovakimyan,

and C. Cao, “L1 adaptive controller for attitude control of multirotors,”
in AIAA guidance, navigation, and control conference, 2012, p. 4831.

[27] Z. T. Dydek, A. M. Annaswamy, and E. Lavretsky, “Adaptive control
of quadrotor uavs: A design trade study with flight evaluations,” IEEE
Trans. Control Sys. Tech., vol. 21, no. 4, pp. 1400–1406, 2013.

[28] C. Nicol, C. Macnab, and A. Ramirez-Serrano, “Robust adaptive control
of a quadrotor helicopter,” Mechatronics, vol. 21, no. 6, pp. 927–938,
2011.

[29] M. Schreier, “Modeling and adaptive control of a quadrotor,” in 2012
IEEE International Conference on Mechatronics and Automation, 2012,
pp. 383–390.

[30] P. Kotaru, R. Edmonson, and K. Sreenath, “Geometric l1 adaptive
attitude control for a quadrotor unmanned aerial vehicle,” arXiv preprint
arXiv:1910.07730, 2020.

[31] M. Bujarbaruah, X. Zhang, H. E. Tseng, and F. Borrelli, “Adaptive mpc
for autonomous lane keeping,” arXiv preprint arXiv:1806.04335, 2018.

[32] K. Pereida and A. P. Schoellig, “Adaptive model predictive control for
high-accuracy trajectory tracking in changing conditions,” in IEEE/RSJ
Int. Conf. Intell. Robot. Syst. (IROS), 2018, pp. 7831–7837.

[33] M. Kamel, M. Burri, and R. Siegwart, “Linear vs nonlinear
mpc for trajectory tracking applied to rotary wing micro aerial
vehicles,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 3463–3469,
2017, 20th IFAC World Congress. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2405896317313083

[34] J. Pravitra, K. A. Ackerman, C. Cao, N. Hovakimyan, and E. A.
Theodorou, “L1-adaptive mppi architecture for robust and agile control
of multirotors,” arXiv preprint arXiv:2004.00152, 2020.

[35] E. Tal and S. Karaman, “Accurate tracking of aggressive quadrotor tra-
jectories using incremental nonlinear dynamic inversion and differential
flatness,” IEEE Transactions on Control Systems Technology, 2020.

[36] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness of
quadrotor dynamics subject to rotor drag for accurate tracking of high-
speed trajectories,” IEEE Robot. Autom. Lett., 2017.

[37] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control
of a quadrotor uav for extreme maneuverability,” IFAC Proceedings
Volumes, 2011.

[38] M. Diehl, H. G. Bock, H. Diedam, and P. B. Wieber, “Fast direct
multiple shooting algorithms for optimal robot control,” in Fast motions
in biomechanics and robotics. Springer, 2006, pp. 65–93.

[39] B. Houska, H. Ferreau, and M. Diehl, “ACADO Toolkit – An Open
Source Framework for Automatic Control and Dynamic Optimization,”
Optimal Control Applications and Methods, vol. 32, no. 3, pp. 298–312,
2011.

[40] X. Wang and N. Hovakimyan, “L1 adaptive controller for nonlinear
time-varying reference systems,” Systems & Control Letters, vol. 61,
no. 4, pp. 455–463, 2012.

[41] Z. Li and N. Hovakimyan, “L1 adaptive controller for mimo systems
with unmatched uncertainties using modified piecewise constant adapta-
tion law,” in 2012 IEEE 51st IEEE conference on decision and control
(CDC). IEEE, 2012, pp. 7303–7308.

[42] E. Xargay, N. Hovakimyan, and C. Cao, “L1 adaptive controller for
multi-input multi-output systems in the presence of nonlinear unmatched
uncertainties,” in Proceedings of the 2010 American Control Conference,
2010, pp. 874–879.

[43] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in IEEE/RSJ Int. Conf. Intell. Robot.
Syst. (IROS), 2004.

[44] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “RotorS–a modular
gazebo MAV simulator framework,” in Robot Operating System (ROS).
Springer, 2016, pp. 595–625.

[45] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory to parallel computation,” Journal of
Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344–357, 2017.

[46] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic MPC for model-based
reinforcement learning,” in IEEE Int. Conf. Robot. Autom. (ICRA), 2017.

http://spectrum.ieee.org/automaton/robotics/drones/skydio-r1-drone
http://spectrum.ieee.org/automaton/robotics/drones/skydio-r1-drone
https://www.faa.gov/uas/resources/by_the_numbers/
https://www.faa.gov/uas/resources/by_the_numbers/
https://bit.ly/3zUewze
https://robotics.sciencemag.org/content/6/56/eabh1221
https://robotics.sciencemag.org/content/6/56/eabh1221
https://www.sciencedirect.com/science/article/pii/S2405896317313083
https://www.sciencedirect.com/science/article/pii/S2405896317313083

	I Introduction
	I-A Motivation
	I-B Contribution

	II Related Work
	III Methodology
	III-A Notation
	III-B Quadrotor Vehicle Dynamics
	III-C MPC Formulation
	III-D L1-Adaptive Augmentation

	IV Experiments and Results
	IV-A Simulation
	IV-A1 Without Disturbance
	IV-A2 Model Mismatch

	IV-B Real World Experiments

	V Discussion
	VI Conclusion
	VII Acknowledgment

