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Event-based, 6-DOF Camera Tracking for
High-Speed Applications

Guillermo Gallego, Jon E.A. Lund, Elias Mueggler, Henri Rebecq, Tobi Delbruck and Davide Scaramuzza

Abstract—In contrast to standard cameras, which produce frames at a fixed rate, event cameras respond asynchronously to pixel-level
brightness changes, thus enabling the design of new algorithms for high-speed applications with latencies of microseconds. However,
this advantage comes at a cost: because the output is composed by a sequence of events, traditional computer-vision algorithms are
not applicable, so that a new paradigm shift is needed. We present an event-based approach for ego-motion estimation, which provides
pose updates upon the arrival of each event, thus virtually eliminating latency. Our method is the first work addressing and
demonstrating event-based pose tracking in six degrees-of-freedom (DOF) motions in realistic and natural scenes, and it is able to
track high-speed motions. The method is successfully evaluated in both indoor and outdoor scenes.

Index Terms—Event-based vision, Pose tracking, Dynamic Vision Sensor, Bayes filter, Asynchronous processing, Conjugate priors.

SUPPLEMENTARY MATERIAL

This paper is accompanied by a video showing the per-
formance of our method in several indoor and outdoor se-
quences. A high-resolution version of the video is available at
https://youtu.be/iZZ77F-hwzs.

1 INTRODUCTION

VENT cameras [, p.77], such as the Dynamic Vision Sensor
(DVS [2]), are biologically inspired sensors that overcome
many limitations of traditional cameras: they respond very fast
(within microseconds) to brightness changes, have a very high
dynamic range (120 dB vs 60 dB of standard cameras), and
require low power and bandwidth (20 mW vs 1.5 W of standard
cameras). Such advantages makes these sensors very attractive for
low-powered and/or high-speed applications. However, because
they convey the visual information in a radically different way
than standard cameras (they do not provide grayscale values
but only changes in intensity and the output is composed by a
sequence of asynchronous events rather than frames), computer-
vision algorithms that are conceived for conventional frame-based
cameras do not work on event data. Therefore, new methods must
be developed to leverage the advantages of event-driven vision [3].
Previous works on event cameras are still at an early stage
of development since event cameras have become commercially
available only since 2008 [2]. How to exploit the advantages of
event cameras (i.e., high speed, low latency, and high dynamic
range) is still an open research problem. The challenges we
address in this paper are two: ) event-based 6-DOF pose tracking
in natural scenes; %) tracking the pose during very fast motions,
e.g., where standard cameras suffer from motion blur, as shown
in Fig. 1.

We present a novel probabilistic pose-tracking method for
event-based vision sensors in a known environment. It is based
on Bayesian filtering theory with three key contributions in the
way that the events are processed: ¢) event-based pose update,
meaning that the 6-DOF pose estimate is updated every time an
event is generated, at microsecond time resolution, ¢¢) the design
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Fig. 1: High-speed motion sequence. Top left: image from a
standard camera, suffering from blur due to high-speed motion.
Top right: set of asynchronous DVS events in an interval of 3
milliseconds, colored according to polarity. Bottom: estimated
poses using our event-based (EB) approach, which provides low
latency and high temporal resolution updates. Ground truth (GT)
poses are also displayed.

of a sensor likelihood function using a mixture model that takes
into account both the event generation process and the presence
of noise and outliers (Section 4.3), and ¢:¢) the approximation
of the posterior distribution of the system by a tractable distri-
bution in the exponential family that is obtained by minimizing
the Kullback-Leibler divergence (Section 4.4). The result is a
filter adapted to the asynchronous nature of the DVS, which
also incorporates an outlier detector that weighs measurements
according to their confidence for improved robustness of the pose
estimation. The approximation of the posterior distribution allows
us to obtain a closed-form solution to the filter update equations


https://youtu.be/iZZ77F-hwzs

and has the benefit of being computationally efficient, unlike
particle filtering. Localization of the DVS is achieved with respect
to reference images (and their poses) of the scene. Our method
can handle arbitrary, 6-DOF, high-speed motions of the DVS in
natural scenes.

The paper is organized as follows: Section 2 reviews related lit-
erature on event-based ego-motion estimation methods. Section 3
describes the Dynamic Vision Sensor. The probabilistic approach
developed for DVS 6-DOF pose tracking is described in Section 4,
and it is empirically evaluated on natural scenes in Section 5.
Conclusion and future work are highlighted in Section 6.

2 RELATED WORK ON EVENT-BASED EGoO-
MOTION ESTIMATION

The first work on pose tracking with a DVS was presented
in [4]. The system design, however, was limited to slow planar
motions (i.e., 3 DOF) and planar scenes parallel to the plane of
motion consisting of artificial B&W line patterns. The method
was extended to 3-D in [5] but relied on an external RGB-D
sensor for depth estimation. However, a depth sensor introduces
the same bottlenecks that exist in standard frame-based systems:
depth measurements are outdated for very fast motions, and the
depth sensor is still susceptible to motion blur.

In our previous work [6], a standard grayscale camera was
attached to a DVS to estimate the small displacement between
the current event and the previous frame of the standard camera.
The system was developed for planar motion and artificial B&W
striped background. This was due to the sensor likelihood being
proportional to the magnitude of the image gradient, thus favoring
scenes where large brightness gradients are the source of most of
the event data. Because of the reliance on a standard camera, the
system was again susceptible to motion blur and therefore limited
to slow motions.

An event-based algorithm to track the 6-DOF pose of a DVS
alone and during very high-speed motion was presented in [7].
However, the method was developed specifically for artificial,
B&W line-based maps. Indeed, the system worked by minimizing
the point-to-line reprojection error.

Estimation of the 3-D orientation of a DVS to generate high-
resolution panoramas of natural scenes was presented in [8].
However, the system was restricted to rotational motions, and,
thus, did not account for translation and depth.

Contrarily to all previous works, the approach we present in
this paper tackles full 6-DOF motions, does not rely on external
sensors, can handle arbitrary fast motions, and is not restricted to
specific texture or artificial scenes.

3 EVENT-BASED CAMERAS. THE DYNAMIC VISION
SENSOR (DVS)

Event-based vision constitutes a paradigm shift from conventional
(e.g., frame-based) vision. In standard cameras, pixels are acquired
and transmitted simultaneously at fixed rates; this is the case
of both global-shutter or rolling-shutter sensors. Such sensors
provide little information about the scene in the “blind time”
between consecutive images. Instead, event-based cameras such
as the DVS [2] (Fig. 2a) have independent pixels that respond
asynchronously to relative contrast changes. If I(u,t) is the
intensity sensed at a pixel u = (x,y)" of the DVS, an event

(a) The Dynamic Vision Sensor (DVS).
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(b) Visualization of the output of a DVS (event stream) while viewing
a rotating scene, which generates a spiral-like structure in space-time.
Events are represented by colored dots, from red (far in time) to blue
(close in time). Event polarity is not displayed. Noise is visible by
isolated points.

Fig. 2: Event-based camera.

is generated if the temporal visual contrast (in log scale) exceeds
a nominal threshold Cy:

Alnl:=InI(u,t) —InI(u,t — At) = Cy, ey

where At is the time since the last event was generated at
the same pixel. Different thresholds may be specified for the
cases of contrast increase (C;) or decrease (Cj ). An event
e = (x,y,t,p) conveys the spatio-temporal coordinates and sign
(i.e., polarity) of the brightness change, with p = +1 (ON-event:
Alnl > Cj]') or p = —1 (OFF-event: AlnJ < Cy,). Events
are time-stamped with microsecond resolution and transmitted
asynchronously when they occur, with very low latency. A sample
output of the DVS is shown in Fig. 2b. Another advantage of
the DVS is its very high dynamic range (120 dB), which notably
exceeds the 60 dB of high-quality, conventional frame-based cam-
eras. This is a consequence of events triggering on log-intensity
changes (1) instead of absolute intensity. The spatial resolution
of the DVS is 128 x 128 pixels, but newer sensors, such as the
Dynamic and Active-pixel VIsion Sensor (DAVIS) [9], and color
DAVIS (C-DAVIS) [10] will have higher resolution (640 x 480
pixels), thus overcoming current limitations.

4 PROBABILISTIC APPROACH

Consider a DVS moving in a known static scene. The map of the
scene is described by a sparse set of reference images {I; }fV:rl,
poses {& Z}ZN:TI, and depth map(s). Suppose that an initial guess of
the location of the DVS in the scene is also known. The problem
we face is that of exploiting the information conveyed by the event
stream to track the pose of the DVS in the scene. Our goal is



to handle arbitrary 6-DOF, high-speed motions of the DVS in
realistic (i.e., natural) scenes.

We design a robust filter combining the principles of Bayesian
estimation, posterior approximation, and exponential family distri-
butions with a sensor model that accounts for outlier observations.
In addition to tracking the kinematic state of the DVS, the filter
also estimates some sensor parameters automatically (e.g., event
triggering threshold Cy,) that would otherwise be difficult to tune
manually. !

The outline of this section is as follows. First, the problem
is formulated as a marginalized posterior estimation problem in a
Bayesian framework. Then, the motion model and the measure-
ment model (a robust likelihood function that can handle both
good events and outliers) are presented. Finally, the filter equations
that update the parameters of an approximate distribution to the
posterior probability distribution are derived.

4.1 Bayesian Filtering

We model the problem as a time-evolving system whose state s
consists of the kinematic description of the DVS as well as sensor
and inlier/outlier parameters. More specifically,

s = (€c7€17€j7cthaﬂ-mva-12n)—r7 (2)

where &, is the current pose of the DVS (at the time of the event,
tin (1)), §; and &, are two poses along the DVS trajectory that
are used to interpolate the pose of the last event at the same pixel
(time t — At in (1)), Cy, is the contrast threshold, and 7,,, and U,Qn
are the inlier parameters of the sensor model, which is explained
in Section 4.3.2.

Let the state of the system at time ?; be s, and let the
sequence of all past observations (up to time ?x) be 01.x, where
o, is the current observation (i.e., the latest event).

Our knowledge of the system state is contained in the posterior
probability distribution p(sg|o1.x), also known as belief [I1,
p-27], which is the marginalized distribution of the smoothing
problem p(s1.x|01.1). The Bayes filter recursively estimates the
system state from the observations in two steps: prediction and
correction. The correction step updates the posterior by:

p(sk|o1:k) x p(ok|sk)p(skloik—1), 3

where p(og|sk) is the likelihood function (sensor model) and we
used independence of the events given the state. The prediction
step, defined by

p(sklo1:k—1) = /p(5k|5k—1)p(5k—1\01;k—1)d5k—17 (€]

incorporates the motion model p(sg|sx—1) from t5_1 to tg.

We incorporate in our state vector not only the current DVS
512 pose but also the other relevant poses for contrast calculation
(poses ﬁf,ﬁf in (2)), so that we may use the filter to partially
correct errors of already estimated poses. Past events that are
affected by the previous pose are not re-evaluated, but future
events that reference back to such time will have better previous-
pose estimates.

To have a computationally feasible filter, we approximate the
posterior (3) by a tractable distribution with parameters 7,1 that
condense the history of events 01.5_1,

p(sklork) = q(sk;nr).- 5

1. Today’s event-based cameras, such as the DVS [2] or the DAVIS [9], have
almost a dozen tuning parameters that are neither independent nor linear.
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Assuming a motion model with slowly varying zero-mean random
diffusion, so that most updates of the state are due to the events, the
recursion on the approximate posterior becomes, combining (3)-
(5),

q(sk;mk) = Cplok|sk)q(sk; Mk—1) (0)

for some normalizing constant C. The approximate posterior ¢
is computed by minimization of the Kullback-Leibler (KL) di-
vergence between both sides of (6). As tractable distribution we
choose one in the exponential family because they are very flexible
and have nice properties for sequential Bayes estimation. The KL
minimization gives the update equations for the parameters of the
approximate posterior.

4.2 Motion model

The diffusion process leaves the state mean unchanged and prop-
agates the covariance. How much process noise is added to the
evolving state is determined by the trace of the covariance matrix
(sum of the eigenvalues): each incoming event adds white noise
to the covariance diagonal, thus increasing its trace, up to some
allowed maximum. This works gracefully across many motion
speeds. More specifically, we used a maximum standard deviation
of 0.03 for poses parametrized in normalized twist coordinates
(with translation in units relative to the mean scene depth), to
factor out the metric scale in the diffusion process.

4.3 Measurement Model

Here we elaborate on the choice of likelihood function p(og|sk)
in (6) that is used to model the DVS events. Our contributions are,
starting from an ideal sensor model, %) to define a dimensionless
implicit function based on the contrast residual to measure how
well the DVS pose and the a priori information (e.g., a map
of the scene) explain an event (Section 4.3.1), and %%) to build
upon such measurement function taking into account noise and
outliers, yielding a mixture model for the likelihood function
(Section 4.3.2).

4.3.1 Ideal Sensor Model

In a noise-free scenario, an event is triggered as soon as the
temporal contrast reaches the threshold (1). Such a measurement
would satisfy AlnI — Cy, = 0. For simplicity, let us assume
that the polarity has already been taken into account to select
the appropriate threshold C&]",Ct;. Defining the measurement
function

AlnT

Cn

the event-generation condition becomes M = 0 in a dimension-
less formulation. Assuming a prediction of the temporal contrast
is generated using the system state, A ln I(sy), then (7) depends
on both the system state and the observation, M (o, sx). More
precisely, denoting by

§= (£c5£i7€j7cth)Ta (8)

the part of the state (2) needed to compute (7), we have
M (o, 8k). The likelihood function that characterizes such an
ideal sensor model is

p(ok|sk) = 0(M (o, 51)), ©)

where § is the Dirac delta distribution.

M = 1, @)



All deviations from ideal conditions can be collectively mod-
eled by a noise term in the likelihood function. Hence, a more
realistic yet simple choice than (9) that is also supported by
the bell-shaped form of the threshold variations observed in the
DVS [2] is a Gaussian distribution,

p(ox|sk) = N(M(ox, 51);0,02). (10)

Most previous works in the literature do not consider an
implicit measurement function (7) or Gaussian model (10) based
on the contrast residual. Instead, they use explicit measurement
functions that evaluate the goodness of fit of the event either in
the spatial domain (reprojection error) [4], [7] or in the temporal
domain (event-rate error), e.g., image reconstruction thread of [8],
assuming Gaussian errors. Our measurement function (7) is based
on the event-generation process and combines in a scalar quantity
all the information contained in an event (space-time and polarity)
to provide a measure of its fit to a given state and a priori informa-
tion. However, models based on a single Gaussian distribution (10)
are very susceptible to outliers. Therefore, we opt for a mixture
model to explicitly account for them, as explained next.

4.3.2 Resilient Sensor Model. Likelihood Function

Based on the empirical observation that there is a significant
amount of outliers in the event stream, we propose a likelihood
function consisting of a normal-uniform mixture model. This
model is typical of robust sensor fusion problems [12], where the
output of the sensor is modeled as a distribution that mixes a good
measurement (normal) with a bad one (uniform):

p(ok|sk) = mm N (M (0k, 3k); 0,02,)
+ (1 — ’/Tm)Z/{(M(Ok, §k); Mmina Mmax)v

Y

where 7, is the inlier probability (and (1 — 7,,) is the outlier
probability). Inliers are normally distributed around 0 with vari-
ance o2,. Outliers are uniformly distributed over a known interval
[Minin, Miax]. The measurement parameters o2, and 7, are
considered unknown and are collected in the state vector si to
be estimated.

To evaluate M (o, Si), we need to compute the contrast
Aln I(8x) in (7). We do so based on a known reference image
I" (and pose) and both relevant DVS poses for contrast calcu-
lation. Assuming the depth of the scene is known, the point u’
in the reference image corresponding to the event location u
in the DVS can be computed (with calibrated cameras). Then,
we transfer intensities I(u,t) ~ I"(u/(t)) to approximate
Alnl ~ InI"(u'(t;)) — InI"(u'(tx — At)), where t;, is the
time of the current event and At is the time since the last event
at the same pixel. This approach is more accurate than linearizing
A ln I. We assume that for a small pose change there is a relatively
large number of events from different pixels. In this case the
information contribution of a new event to an old pose will be
negligible, and the new event will mostly contribute to the most
recent pose.

Next, we linearize the measurement function in (11) around
the expected state 5, = Fp(s, |oy.,_)[Sk] Prior to incorporating
the measurement correction:

M(Ok, §k) = M(Ok,gk) + VgM(Ok,gk) . (§k — gk)

= M + Ji, - A5y, (12)
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where Mj, and Jj, are the predicted measurement and Jacobian at
Sk, respectively. Substituting in (11) we get:

p(ok|sk) = Tm N (Mg + Jj - Ady; 0,02) + (1 — ) U. (13)

We assume that the linearization is a good approximation to the
original measurement function.

Finally, we may re-write the likelihood (13) in a more general
and convenient form for deriving the filter equations, as a sum
of exponential families for the state parameters s; (see the
Appendix):

plok|sk) = Zh(Sk) exp(no,5 - T'(sk) — Ao j)-

(14)

4.4 Posterior Approximation and Filter Equations

Our third contribution pertains to the approximation of the poste-
rior distribution using a tractable distribution. For this, we consider
variational inference theory [13], and choose a distribution in the
exponential family as well as conjugate priors, minimizing the
relative entropy error in representing the true posterior distribution
with our approximate distribution, as we explain next.

Exponential families of distributions are useful in Bayesian
estimation because they have conjugate priors [13]: if a given
distribution is multiplied by a suitable prior, the resulting posterior
has the same form as the prior. Such a prior is called a conjugate
prior for the given distribution. The prior of a distribution in the
exponential family is also in the exponential family, which clearly
simplifies recursion. A mixture distribution like (14) does not,
however, have a conjugate prior: the product of the likelihood and
a prior from the exponential family is not in the family. Instead,
the number of terms of the posterior doubles for each new mea-
surement, making it unmanageable. Nevertheless, for tractability
and flexibility, we choose as conjugate prior a distribution in the
exponential family and approximate the product, in the sense of
the Kullback-Leibler (KL) divergence [14], by a distribution of the
same form, as expressed by (6). This choice of prior is optimal if
either the uniform or the normal terms of the likelihood dominates
the mixture; we expect that small deviations from this still gives
good approximations.

Letting the KL divergence (or relative entropy) from a distri-
bution f to a distribution g be

! Ex) (15)

Dialfll9) = [ f@ym? .
which measures the information loss in representing distribution
f by means of g, the posterior parameters 7, are calculated by
minimization of the KL divergence from the distribution on the
right hand side of (6) to the approximating posterior (left hand
side of (6)):

M = arg mnin Dx1,(C p(ok|sk)a(sk; me—1)|la(sk;m))-

It can be shown [ 13, p.505] that for g in the exponential family,
the necessary optimality condition V,, Dxr,(f|lg) = 0 gives the
system of equations (in 77)

Ep5)[T(s)] = Eg(5)[T(5)],
i.e., the expected sufficient statistics must match. Additionally, the
right hand side of (16) is VA = V,A = Ey)[T'(s)] since
g is in the exponential family. In our case, g = q(sk;n), f
p(0k|sk)q(sk; Mik—1) and (16) can also be written in terms of the

(16)



Algorithm 1 Event-based pose tracking

Initialize state variables (DVS pose, contrast threshold, inlier
ratio). Then, for each incoming event:

- propagate state covariance (zero-mean random diffusion)

- transfer the event to the map, compute the depth and evaluate the
measurement function M function (10).

- compute K in (16), the inlier probability m,,, the weight wy
in (17), and the gain wy K.

- update filter variables and covariance (e.g., (18)-(19)).

parameters of (14) [(3)-(6) in the Appendix], the log-normalizer A
and its gradient:

0 :Zexp(A(mJ + k1) — Ak—1) — Ao j))

x (VAo +nk—1) — VA(1)). (17)

Equation (17) describes a system of equations that can be solved
for 1), yielding the update formula for 7, in terms of 75— and the
current event o0j. For a multivariate Gaussian distribution over the
DVS poses, explicit calculation of all update rules has the simple
form of an Extended Kalman Filter (EKF) [11], [15] weighted by
the inlier probability of that event:

Ky = PpJy (JePpJy +02)7" (18)
- N(My: 0, 02
wy = TN (M0, 0,,) (19)
TN (M5 0,02,) + (1 — mm )U
Err1 = & + wi K My, (20
Pry1 = (1 — wp Ky Ji) Py, 21

where 1 is the identity, M, and J;, are given in (12), £ are the
6-DOF twist coordinates of the DVS pose, P is the pose covari-
ance matrix, and wy K}, acts as the Kalman gain. A pseudocode
of the approach is outlined in Algorithm 1.

The posterior approximation described in this section allows
us to fuse the measurements and update the state-vector efficiently,
without keeping multiple hypothesis in the style of particle filters,
which would quickly become intractable due to the dimension of
the state-vector.

5 EXPERIMENTAL RESULTS

For our pose estimation algorithm to work, it requires an existing
photometric map of the scene. As mentioned at the beginning
of Section 4, without loss of generality we describe the map
in terms of depth maps with associated reference frames. These
can be obtained from a previous mapping stage by means of
classical dense reconstruction approaches using standard cameras
(e.g., DTAM [16] or REMODE [17]) or even using a DVS (future
research). For simplicity, in this work we use reference images
from a standard camera and assume nearly planar scenes; however,
this is not a constraint of the method.

We evaluated the performance of our algorithm on several
indoor and outdoor datasets. The datasets also contain fast motion
with excitations in all six degrees of freedom (DOF).

First, we assessed the accuracy of our method against ground
truth obtained by a motion-capture system. We placed the DVS in
front of a scene consisting of rocks (Fig. 3) at a mean scene depth
of 60cm and recorded eight datasets. Fig. 3 shows the position
and orientation errors (i.e., difference between the estimated ones
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Fig. 4: Error in position (relative to a mean scene depth of 60 cm)
and orientation (in degrees) of the trajectories recovered by our
method for all “rocks” sequences (ground truth is given by a
motion capture system). We provide box plots of the root-mean-
square (RMS) errors, the mean errors and the standard deviation
(Std) of the errors.

Standard
camera

Fig. 5: A DVS and a standard camera mounted on a rig. The
standard camera was only used for comparison.

and ground truth)’> for one of the datasets, while Fig. 8 shows
the actual values of the estimated trajectory and ground truth over
time. Fig. 4 summarizes the errors of the estimated trajectories for
all sequences. The mean RMS errors in position and orientation
are 1.63 cm and 2.21°, respectively, while the mean and standard
deviations of the position and orientation errors are p = 1.38 cm,
0 = 0.84cm, and = 1.89°, o = 1.15°, respectively. Notice
that the RMS position error corresponds to 2.71 % of the average
scene depth, which is very good despite the poor spatial resolution
of a DVS.

Next, we show the results of our algorithm in three outdoor
datasets. In this case, ground truth is obtained via pose tracking
with a standard camera running the SVO visual-odometry algo-
rithm, which is available open source [ 1.2

To acquire accurate data for the evaluation, we rigidly mounted
the DVS and the standard camera on a rig (see Fig. 5), and the
same lens model was mounted on both sensors. The DVS has a
spatial resolution of 128 x 128 pixels and operates asynchronously,
in the microsecond scale. The standard camera is a global shutter
Matrix Vision Bluefox camera with a resolution of 752 x 480 pixels
and a frame rate of up to 90 Hz. Both camera and DVS were

2. The rotation error is measured using the angle of their relative rotation
(i.e., geodesic distance in SO(3) [18]).

3. SVO reports relative errors of 0.1%; hence it is justified to use its pose
estimates as ground truth.
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Fig. 3: Error plots in position (relative to a mean scene depth of 60 cm) and in orientation (in degrees) for one of the test sequences
with ground truth provided by a motion capture system with sub-millimeter accuracy.
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Fig. 6: Error plots in position (2nd column, relative to the mean scene depth) and in orientation (3rd column, in degrees) for three
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outdoor test sequences (1st column): “ivy”,

calibrated intrinsically and extrinsically.

The three outdoor datasets (“ivy”, “graffiti”, and “building”)
were recorded with the DVS-plus-camera rig viewing an ivy, a
graffiti covered by some plants, and a building with people moving
in front of it, respectively (see Fig. 6, 1st column and accompany-
ing video submission). The rig was moved by hand with increasing
speed. All sequences exhibit significant translational and rotational
motion. The error plots in position and orientation of all 6-DOFs
are given in Fig. 6. The reported error peaks in the “graffiti” and
“building” datasets are due to a decrease of overlap between the
DVS frustum and the reference map, thus making pose estimation
ambiguous for some motions (e.g., Y -translation vs. X -rotation).

Table 1 summarizes the statistics of the pose tracking error for

graffiti”, and “building”. The mean scene depths are 2.5 m, 3 m, and 30 m, respectively.

the three outdoor sequences. For the “ivy” dataset, the mean and
standard deviation of the position error are 9.93 cm and 4.60 cm,
which correspond to 3.97 % and 1.84 % of the average scene
depth (2.5 m), respectively. The mean and standard deviation of

TABLE 1: Error measurements of three outdoor sequences. Trans-
lation errors are relative (i.e., scaled by the mean scene depth).

‘ Position error [%] Orientation error [°]

4 ‘

RMS o RMS w o
“ivy” 4.37 3.97 1.84 2.21 2.00 0.94
“graffiti” 5.88 5.23 2.70 3.58 3.09 1.80
“building” 7.40 6.47 3.60 3.99 3.43 2.05
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Fig. 8: Indoor experiment with 6-DOF motion. Left: Image of the standard camera overlaid with events (during mild motion). Events
are displayed in red and green, according to polarity. Estimated position (center) and orientation (right) from our event-based algorithm
(solid line), a frame-based method (dash-dot line) and ground truth (dashed line) from a motion capture system.
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Fig. 9: Zoom of Fig. 8. Left: Image of the standard camera overlaid with events (red and green points, according to polarity) during
high-speed motion. Center and right: estimated trajectories. Due to the very high temporal resolution, our algorithm can still track
the motion even when the images of the standard camera are sufficiently blurred so that the frame-based method (FB) failed. The
event-based method (EB) provides pose updates even in high-speed motions, whereas the frame-based method loses track (it only
provides pose updates in the region marked with the shaded area, then it fails).

Fig. 7: The algorithm is able to track the DVS pose in spite of the
considerable amount of events generated by moving objects (e.g.,
people) in the scene.

the orientation error are 2.0° and 0.94°, respectively. For the
“building” dataset, which presents the largest errors, the mean and
standard deviation of the orientation error are 3.43° and 2.05°,
respectively, while, in position error, the corresponding figures are
1.94m and 1.08 m, that correspond to 6.47 % and 3.60 % of the
average scene depth (30 m), respectively.

As reported by the small errors in Table 1, overall our event-
based algorithm is able to accurately track the pose of the DVS
also outdoors. This shows that, in spite of the limited resolution of
the DVS (128 x 128 pixels), the accuracy of the results provided
by our event-based algorithm is comparable to that obtained
by a standard camera processing 20X higher resolution images

(752 x 480 pixels). This is made possible by the DVS temporal
resolution being ten thousand times larger than the standard
camera. We expect that the results provided by our approach
would be even more accurate with the next generation of event-
based sensors currently being developed [9], [10], which will
have higher spatial resolution (640 x 480 pixels). Finally, observe
that in the “building” sequence (Fig. 6, bottom row), our method
gracefully tracks the pose in spite of the considerable amount of
events generated by moving objects (e.g., people) in the scene
(see Fig. 7).

5.1 Tracking during high-speed motions

In addition to the error plots in Fig. 3, we show in Fig. 8 the
actual values of the trajectories (position and orientation) acquired
by the motion capture system (dashed line) and estimated by the
event-based method (solid line) and frame-based method (dash-
dot). Notice that they are all are almost indistinguishable relative
to the amplitude of the motion excitation, which gives a better
appreciation of the small errors reported in Figs. 3 and 4.

Figure 9 shows a magnified version of the estimated trajecto-
ries during high-speed motions (occurring at ¢ > 7s in Fig. 8).
The frame-based method is able to track in the shaded region, up
to t =~ 8.66s (indicated by a vertical dashed line), at which point
it loses tracking due to motion blur, while our event-based method
continues to accurately estimate the pose.

6 CONCLUSION

We have presented a novel, event-based probabilistic approach to
track the pose of an arbitrarily moving event camera in 6-DOF in



natural scenes. Our approach follows a Bayesian filtering method-
ology: the sensor model is given by a mixture-model likelihood
that takes into account both the event-generation process and the
presence of noise and outliers; the posterior distribution of the
system state is approximated according to the relative-entropy
criterion using distributions in the exponential family and conju-
gate priors. This yields a robust EKF-like filter that provides pose
updates for every incoming event, at microsecond time resolution.

We have compared our method against ground truth provided
by a motion capture system or a state-of-the-art frame-based pose-
tracking pipeline. The experiments revealed that the proposed
method accurately tracks the pose of the event-based camera.
In future, we plan to extend the proposed framework to a full
event-based SLAM (Simultaneous Localization and Mapping) in
6-DOF.

APPENDIX A
REWRITING THE LIKELIHOOD FUNCTION
A distribution in the exponential family can be written as

p(x;n) = h(z) exp (n - T(x) — A(n)) ,
where 7) are the natural parameters, T'(x) are the sufficient
statistics of =, A(n) is the log-normalizer, and h(x) is the base
measure.

The likelihood (13) can be rewritten as:

(22)

1
p(ok|sk) :\/ﬂ exp(In(my,) — In(oym,) (23)
Ul o iS85k, MR
*5 Jka 0'2” +2Mk<]k7?n E
+ exp(In((1 — )/ (Mmax — Mmin))),

where we use the Einstein summation convention for the indices

of Ji = (J}) and 5, = (5%). Collecting the sufficient statistics
into
§i5 & 1
T(sy) = |k b ] 1 In(1 —
(50 = |5, 2 i), () a1 = )|

the likelihood can be conveniently rewritten as a sum of two
exponential families (14), 7 = 1,2, with h(s) = 1,

1 . . _ . 1 -
Mol = —iJ,iJ,z, — M, J}, fiM,f, -1,1,0 (24)
nO,Q = [O’Lja Oia 07 07 ]-} (25)
Ay = lnv2r (26)
AO,Q = - ln(Mmax - Mmin)- (27)
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